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ABSTRACT

The need for understanding how to distribute computations

across multiple cores, have obviously increased in the multi-

core era. Scheduling the functional blocks of an application

for concurrent execution requires not only a good understand-

ing of data dependencies, but also a structured way to describe

the intended scheduling. In this paper we describe how the

Canals language and its scheduling framework can be used

for the purpose of scheduling and executing legacy code. Ad-

ditionally a set of translation guidelines for translating RVC-

CAL applications into Canals are presented. The proposed

approaches are applied to an existing MPEG-4 Simple Profile

decoder for evaluation purposes. The inverse discrete cosine

transform (IDCT) is accelerated by the means of OpenCL.

1. INTRODUCTION

The ever increasing complexity in software requires more

computational power. Since increasing the clock frequency

of a single core is not a way forward any more[1], espe-

cially for embedded systems where cooling and battery life

often are critical aspects, going multi-core has become the

dominant approach. The transition to multi-core started in

the desktop segment and is now also clearly visible in the

embedded systems domain. A vast amount of existing soft-

ware has been written with sequential execution on a single

core in mind. Unfortunately platform-dependent software

optimized for sequential execution cannot easily make use of

the additional computational power provided by additional

cores. Synchronization of software executing simultane-

ously on several cores requires a more structured approach to

scheduling than what is present in most presently available

software implementations. Completely rewriting all software

would be the best solution, but since impossible in practice

there clearly is a need to deal with legacy code. As an exam-

ple, video coding software is fairly complex because modern

video standards, including MPEG-4[2], allow a bitstream to

be encoded in a variety of ways. It is a tedious task to im-

plement a full decoder/encoder and since a number of video

decoder/encoder implementations already exist it would be

beneficial to use those as a starting point and only rewrite

selected parts in a language that provides proper support for

scheduling applications on multi-core platforms. The parts of

most interest are those in which most time is spent, the bot-

tlenecks. Bottlenecks that could be eliminated by performing

computations in parallel are of special interest. Such bottle-

necks can be found, for instance, by profiling and analyzing

how the data flows through the application.

Our analysis[3] of a particular RVC-CAL implementation

of a MPEG-4 Simple Profile decoder shows that one third of

the computation time is spent on overheads associated with

scheduling, e.g. the IDCT component spends 73% perform-

ing real computations and 27% is consumed by overheads.

Clearly there is a need for better scheduling approaches than

the simple round-robin scheduler used in this decoder. To

be able to elaborate with different scheduling strategies it is

beneficial to separate scheduling decisions from the compu-

tational code. For this purpose the Canals Scheduling Frame-

work is suitable. Benefits of using Canals for legacy applica-

tions are improved performance and increased ability to adapt

to changes in the execution environment. The contributions of

this paper are:

• Presentation of a way to interface and schedule legacy

code using the Canals framework.

• A code translation approach for critical parts of the

system where interfacing legacy code is not sufficient.

Translation enables full Canals support for scheduling,

mapping and code generation.

• OpenCL interfacing/code generation by Canals for

hardware acceleration purposes.

The paper is structured as follows. Background informa-

tion is provided in section 2. Section 3 focus on scheduling

and interfacing legacy code from Canals, while we in sec-

tion 4 present guidelines for translating applications written

in RVC-CAL to the Canals language. A case study, conducted

on a MPEG-4 Simple Profile Decoder demonstrates how the

approaches described in the two previous sections can be ap-

plied in practice, is presented in section 5. Finally, in section

6, we conclude the paper.



2. BACKGROUND

2.1. Canals

In this section we provide brief background on the Canals

language [4]. Canals aims to facilitate code generation for

heterogeneous platforms, primarily in the data flow driven ap-

plication domain. Thus, one of the goals is to be able to ex-

plicitly express data flows making analysis and efficient code

generation possible. Canals does also provide fine-grained

scheduling and execution of a program. A Canals program

describes the intended behaviour of the program in a plat-

form independent manner. All elements exist in parallel and

are capable of performing computations concurrently from a

resource point of view. Only data dependencies restrict the

parallelism. The completely concurrent behaviour can be re-

stricted in the compilation process by supplying a mapping

and an architecture description to the compiler.

Canals is based on the concept of nodes (kernels and net-

works) and links (channels), which connect nodes together.

Computations are performed in the nodes and the links are

representing intermediate buffers in which output data from

nodes is stored before the data is consumed by the next

node. We have included expressive data type descriptions in

Canals, since they are essential for understanding the precise

behaviour of a data flow driven application.

Kernels are the fundamental computational element in

Canals. All major computations in Canals are carried out

inside kernels. Computations are performed on data available

on the incoming data port and the results are written to the

outgoing data port. All declared variables are local: they are

only accessible from the kernel in which they are declared.

Variable values are stored between invocations of a kernel,

implying that kernels have a state. Computations (data pro-

cessing) are performed in the work block using the sequential

Canals Kernel Language. Kernels are also the mechanism

through which communication between the Canals program

and the external environment is handled. Reading input data

from a file, a network stream or a pipe as well as writing

output data are all examples of this kind of external commu-

nication with the environment.

The channel is an abstraction of an inter-kernel memory

buffer, used for storing data produced and consumed by two

connected kernels. A channel must specify the type of data

the channel can hold, while other optional channel restric-

tions, for instance channel capacity, are specified in the chan-

nel definition body. Canals has one predefined channel type;

generic channel, which is an unbounded FIFO queue that can

hold elements of any defined data type. The task of distribut-

ing data and selecting appropriate data paths is essential in

data flow based approaches. Scatter and gather are the Canals

elements responsible of this. A scatter is responsible for dis-

tributing data from one input channel to several output chan-

nels. The policy for distributing the data and the amount of

data distributed to each channel is specified as attributes in

the scatter body. Gathering parallel data flows is possible us-

ing the gather element. Definition of a gather is similar to the

definition of a scatter. Scatter and gather elements can act as

switches between data paths rather than distributing data on

all paths. Kernel, scatter, gather and channel are all basic ele-

ments in the language. In order to be able to group a number

of these elements into a larger functional module we need a

container, in Canals denoted network. All defined elements,

including networks, can be added to a network. It is also in

the network the elements are connected together to build a

larger functional unit. Elements in a network are connected

together with the connect statement.

Canals is a language that does not implement a single

model of computation (MoC) or a set of predefined MoCs,

but instead the computational model is possible to express in

the language itself. Furthermore, each network can execute

using its own model of computation, rather than relying on

one central MoC for the entire program. In Canals, schedul-

ing is concerned with the task of planning the execution of

a Canals network, considering data flow as well as resource

use. To be able to reason about scheduling considering both of

these, they are handled by separate elements in Canals. The

scheduler is responsible for planning the execution of ker-

nels, in such a way that data available as input to the net-

work is routed correctly through the network and eventually

becomes available as output from the network. The scheduler

can accomplish correct routing by inspecting data, obviously

at run-time, arriving to the network and make routing deci-

sions based on the contents of the data. The list of kernels

that must be executed in order to actually move data accord-

ing to the calculated route is denoted a schedule. Triggering

of kernels is the task of the dispatcher. The dispatcher should

strive to execute the schedule in an optimal order regarding

available processing resources.

2.2. CAL

The CAL Actor Language (CAL) [5] is a Domain-Specific

Language which is especially designed to provide a concise

and high-level description of actors. RVC-CAL is a subset of

CAL normalized in MPEG RVC [6] as the reference program-

ming language for describing coding tools in MPEG-C [7].

RVC-CAL, compared with the CAL, restricts the data types,

and operators that cannot be easily implemented onto the plat-

forms. Figure 1 shows an example of an actor describe in

RVC-CAL that computes the absolute value of token received

on the input port I to the output port O.

An actor contains one or several actions. An action is the

only entry point of an actor that may read tokens from input

ports, compute data, change state of the actor and write tokens

to output ports. The body of an action is executed as an imper-

ative function with local variables and imperative statements.

When an actor fires, a single action is selected among others

according to the number and the values of tokens available on



actor Abs () int I ==> uint O :
pos: action I: [u] ==> O:[u]

end
neg: action I :[u] ==> O:[-u]

guard u < 0
end

priority neg > pos; end
end

Fig. 1. CAL Actor for computation of absolute value.

ports and the current state of the actor. The guard conditions

specify additional firing conditions, where the action firing

depends on the values of input tokens or the current state of

the actor. Action selection may be further constrained using

a Finite State Machine and priority inequalities to impose a

partial order among action tags.

A composition of RVC-CAL actors forms an RVC-CAL

network. In an RVC-CAL network, actors communicate via

unbounded channels by reading and writing tokens from and

to FIFOs. At a network level, each actor works concurrently,

executing their own sequential operations. RVC-CAL actors

are only driven by token availability. An actor can fire si-

multaneously regardless of the environment, allowing the ap-

plication to be easily distributed over different processing el-

ements. This feature is particularly useful in the context of

multi-core platforms. An important point of the RVC-CAL

representation is that an actor is not specified in a specific

execution model. RVC-CAL is expressive enough to specify

a wide range of programs that follow a variety of dataflow

models, trading between expressiveness and analyzability.

2.3. OpenCL

The Open Computing Language[8], more commonly known

as OpenCL, is a royalty-free specification for general purpose

parallel programming tasks in heterogeneous systems. The

specification is a platform-independent interface, but imple-

mentations are targeted towards a specific platform and ven-

dor. OpenCL is based on the concepts of a platform model, an

execution model and a memory model. The platform model,

an abstraction of the underlying hardware, consists of a host

and one or more devices. In practice this often today means

that the CPU is the host and the GPU is a device. The memory

model specifies the memory hierarchy of the device. Code

executing on a device is called kernels. Kernels are written

in a restricted version of C99, and can be either binary pre-

compiled or source compiled by the host at runtime. Run-

time (located on host) delegates tasks to the devices for exe-

cution. OpenCL supports data parallel and task parallel pro-

gramming models. Command queues coordinate the execu-

tion of OpenCL kernels in a variety ways including in-order

and out-of-order execution. All data passed between kernels

should be encapsulated as memory objects, thus enforcing the

OpenCL programmer to consider the data flow aspects of his

program. The benefits from accelerating embarrassingly par-

allel sections, which operate on large amounts of data, in an

application using OpenCL are significant, while parallel sec-

tions with inter-dependencies and small data sets gain less.

3. INTERFACING LEGACY CODE FROM CANALS

In this section an approach for scheduling legacy code in

Canals is presented. As discussed in the introduction, a large

quantity of properly working software exists. The software

might require partial redesign to benefit from multi-core pro-

cessors, a design and programming effort that still is reason-

able compared to rewriting the entire application. If critical

parts and blocks of legacy code can be scheduled, mapped

and executed within the same framework, the application can

benefit from multi-core with a relatively low effort.

Interfacing legacy code in this case means that the main

function of the application is generated by the Canals com-

piler. A native Canals application can, a bit simplified, be

seen as a collection of kernels performing computations and

exchanging computational results over channels. Wrapping

source or binary code into what we denote external kernels,

gives the Canals Scheduling Framework access to them as if

they were normal kernels. External kernels can share data

over external channels or normal Canals channels depending

on the interface specification. The use of external channels is

an easy starting point when data transfers are of no or little in-

terest, since external channels essentially hide data transfers

from Canals. From this follows that scheduling of memory

transfers is not possible if external channels are used. An

external kernel is defined similarly to a normal kernel. The

body of an external kernel can contain the following backend

dependant attributes for specifying the interface between the

kernel and Canals:

type External kernel type can be source or binary.

files Files necessary for proper access to the kernel.

inithandle A handle to initialization funtionality that should

be invoked before first kernel execution.

workhandle A handle to the normal execution routine.

enabledhandle A handle to functionality that can decide if

the kernel is eligible for execution.

inputhandle, outputhandle Specifying data access.

getamounthandle, putamounthandle Provides a handle to

the current consunmption/production rate of the kernel.

supportsCanalsIO Specify if the kernel use the Canals

channel API (get, put, look).

An example of a defintion compatible with the C++ backend:

external kernel bit -> bit get * put * IDCT2d {
type = binary;
files = "common_constants.h, idct.o";
workhandle = "extern(C):void idct2d(); idct2d();";
enabledhandle = "extern(C): bool idct2d_is_enabled();

idct2d_is_enabled();";
}



Now that the Canals compiler is aware of the legacy code

block through the external kernel mechanism, but we still

need to gather scheduling information on these kernels. Ad-

ditionally we must select a dispatching strategy.

3.1. Scheduling and Dispatching

Scheduling legacy code means that we must extract infor-

mation about the components and their interconnection, and

make that information available to the Canals scheduler. A

Canals scheduler contains at least one kernel, in which the

schedule computations take place. The scheduling code is

written in the Canals kernel language according to the in-

tended scheduling strategy. To be able to make scheduling

decisions the scheduler must be able to access information

about the network it is scheduling, also during run-time. For

this purpose any kernel inside a scheduler can navigate the

scheduled network through the Run-Time Network Navi-

gation API. The API implements functionality for retrieving

the first element, last element, next element and previous el-

ement. Additionally element information queries regarding

e.g. consumption/production rates, element type and number

of output ports from a scatter element can be made. The same

API is used for scheduling native as well as external kernels.

The API is supported by one network topology matrix per

network. The matrix is a lower-triangular matrix containing

all static information about the network we schedule and in-

formation on how to retrieve correct information for variable

values, such as dynamic production rate or channel size. This

compact representation of network topology and element in-

formation can be placed in a memory close to the process-

ing unit on which the scheduler is mapped, thus ensuring low

communication overhead for most scheduler queries. Mul-

tiple inputs/outputs are possible for external kernels. In the

Canals network they are however only connected by one in-

going and one outgoing external channel, which represent the

input/output port most relevant for scheduling purposes. The

purpose of the connection is to provide information needed

for building the topology table. The order of elements in the

topology table is the same as in the connection order.

It is also possible to build the topology matrix based on

other information than the information which can be extracted

from the Canals network description. For rapid prototyp-

ing, the topology table can even be written manually in the

target language (C++). In case a Canals network only con-

tains elements written in RVC-CAL, the topology table can be

derived from information provided by guards and consump-

tion/production information available in each actor. A Canals

scheduler can be generated based on information from guards,

scheduling FSM and priorities. Run-time computations in

the scheduler can be further reduced by analyzing the topol-

ogy table and the scheduler at compile-time. In Canals the

role of the dispatcher is to execute the schedules produced

by the scheduler, through the Hardware Abstraction Layer

(HAL). The dispatcher should strive towards optimal utiliza-

tion of computational resources by rearranging tasks from one

or several schedules. Sorting of tasks must not break data

dependencies imposed by the scheduler. There is a default

dispatcher that always runs a schedule to completion before

starting the dispatching of the next schedule. The same rules

apply for dispatching external kernels.

3.2. Interfacing OpenCL Kernels from Canals

It is possible to interface OpenCL kernels from Canals

through the external kernel construct. The OpenCL frame-

work (OpenCL API + execution model) can act as an interface

between Canals and CAL. A CAL actor could, for instance,

be compiled into an OpenCL kernel by the CAL compiler,

and scheduled by Canals. The above mentioned interfacing

and scheduling mechanism for external kernels applies for

OpenCL kernels as well. Both the required OpenCL host

and device code must be embedded into the function given to

Canals as work handle. All initialization required should take

place in the function specified as the init handle.

However, it should be mentioned that some properties of

OpenCL and its run-time system mismatch with this simple

interfacing approach, resulting in degraded performance and

limited flexibility. The number of OpenCL kernel instances

intended for concurrent execution is limited by available input

data and hardware limitations (e.g. number of threads on the

GPU). This control information must be completely handled

by the external code, or alternatively be sent as control flow.

4. TRANSLATING RVC-CAL INTO CANALS

The interfacing mechanism described in the previous sec-

tion enables scheduling of legacy functionality expressed in

any supported language. In this section, another solution for

scheduling code expressed in other languages is discussed,

namely the possibility to translate existing source code into

Canals. On the one hand, translation into Canals makes it

possible to use all features of our scheduling framework, but

on the other hand the required translation effort can often be

larger than the effort for interfacing legacy code. The possible

degree of automation is highly depending on the semantics

of the source language and the software design philosophy

applied. Since Canals is a streaming language, software that

has been designed with data flow in mind is most suitable for

translation into Canals. In this work we have studied how,

and to what degree, translation from RVC-CAL (see section

2.2) can be carried out. General guidelines (see table 1)

for such a translation are presented together with a concrete

example on translation of the two-dimensional inverse co-

sine transform into Canals. RVC-CAL and Canals are quite

similar in some aspects; both languages are based on the

concept of computational nodes and links that connect these

nodes. Each computational node consumes and produces



data. Differences between the languages relevant from a

translation viewpoint are: number of input/output links from

each node, data locality and scheduling. In Canals, two nodes

(kernels) can only be connected by a single link while CAL

actors can be connected by an arbitrary number of links. An

approach for resolving this incompatibility is to group data

from several links together into a larger Canals data struc-

ture. In RVC-CAL scheduling can be divided into intra-actor

scheduling, scheduling execution of actions, and inter-actor

scheduling which decides on the execution order among ac-

tors. Inter-actor scheduling is not decided on explicitly by

the programmer but rather by the compiler implementation

and/or run-time system. In practice this means that the most

intuitive translation of an actor into a Canals kernel is not

possible for all valid actors, since Canals schedulers are only

associated with networks and not kernels. Therefore a CAL

actor should in the general case be translated into a Canals

network and an action translates into a kernel. In RVC-CAL,

all variables are declared in the actor and shared by all ac-

tions. In Canals variables are private to the kernel, implying

that two kernels cannot exchange data through a shared vari-

able, which means that the shared variables must be modelled

as data flow. The construction in figure 2a shows how a

combination of scatter (switch) and gather (select) elements

guarantees shared access to data among actions. Scheduler S

decides on the action execution order based on information

translated from guards, the finite state machine and priorities

in an actor. Further, S directs data to the action to be executed

next by altering the switch position for both scatter and gather

elements through the means of control flow. DIN holds the

data available on all actor input ports, while DOUT represents

the data produced to all output ports. DSHARED contains

all variables shared between actions. Actor variables that are

used only within one action can easily be identified and trans-

lated as a kernel variable. All needed data is streamed to a

kernel through the data definition D, which is a composition

of DIN and DSHARED. K forwards data from the gather el-

ement if data is available, otherwise data initialized to default

value is generated. In the case multiple actors are connected

together, forming a RVC-CAL network, two strategies can

be applied. Either all network levels can be flattened into

a single RVC-CAL network, the other option is to translate

each RVC-CAL network into a Canals network. Flattening

a RVC-CAL network is straightforward since the network

descriptions are only a syntactic construction without any

semantics. Once the RVC-CAL network is translated into

Canals it is possible for the programmer to write a scheduler

that decides on the execution order for actors.

The translation guideline above covers translation of a

general actor or actor composition well. However, the trans-

lated Canals application introduces a large number of net-

works and thus run-time overheads. These overheads can

be reduced by using optimizations in the Canals compiler.

If semi-automated translation is a viable option, knowledge

RVC-CAL Canals

Network description Network

Actor Network

Actor variable Data definition/flow

Action Kernel

Procedure, Function Inlined kernel code

Buffer Channel

Guards, FSM, Priorities Scheduler, Control flow

Table 1. RVC-CAL to Canals element mappings.

Fig. 2. Canals representations of a RVC-CAL actor

about the internal workings and data flows of an actor can be

utilized to get a better translation into Canals. In figure 2b,

we have an example of where an actor has been translated

into a Canals kernel and the action selection is controlled by

the scheduler of the containing Canals network. Such a trans-

lation is to recommend for actors where we know that the

actor operates in certain modes, each mode represents a cer-

tain action firing sequence (quasi-static schedule). It is even

possible to integrate the selection of mode into the kernel it-

self (figure 2c), increasing performance but at the same time

reducing the possibilities for fine-grained scheduling. For ac-

tors where a static schedule can be calculated, it is always

possible to translate them into a stand-alone kernel without

use of control flow connections.

4.1. Translation of an IDCT-2D Actor

To illustrate how translation is done in practice, a CAL im-

plementation of the inverse discrete cosine transform (IDCT)

is translated into Canals. The two-dimensional IDCT, oper-

ating on an 8x8 block, is frequently used in video and image

processing. The chosen IDCT (see figure 3) is implemented

as a single CAL actor, with two actions. Additionally prior-

ities, guards, functions, procedures, constants and variables

are present in this design. There are two inputs and a single

output. The dominating input is the coded coefficients and the

output is the decoded coefficients, an additional input repre-

sents a single SIGNED boolean value for the entire block.

The SIGNED flag is a control token that affects the clipping

functionality of the IDCT , which in practice means that it

decides which action is to be fired when the actor is executed.

Both actions will consume 64 values from actor port IN , a

single value from actor port SIGNED and produce 64 val-

ues to port OUT . In figure 4, the Canals translation based on

the previously given guidelines is given. Some kernel code



actor Algo_IDCT2D_ISOIEC_23002_1 ()
int(size=13) IN, bool SIGNED ==> int(size=9) OUT :

int A=1024;int B=1138;...int J=2528;
List(type:int, size=64) scale = [A,B,...,E];

intra: action IN:[ x ] repeat 64, SIGNED:[ s ]
==> OUT:[ block1 ] repeat 64

var
List(type:int,size=64) block1, block2

do
// multiplier-based scaling
block1 := [scale[n] * x[n] : for int n in 0..63];
block1[0] := block1[0] + lshift(1, 12);
// scaled 1D IDCT for rows and columns
idct1d(block1, block2);
...
// clipping
block1 :=[clip(block1[n], 0) :for int n in 0..63];

end

inter: action IN:[ x ] repeat 64, SIGNED:[ s ]
==> OUT:[ block1 ] repeat 64

guard s
var List(...) block1, List(...) block2
do
...
block1:=[clip(block1[n],-255):for int n in 0..63];

end

procedure idct1d ... end
function clip(int x, int lim) --> int ... end
priority inter > intra; end
end

Fig. 3. Code listing for an IDCT CAL actor.

have been omitted, since the translation of action code into

Canals kernel code is fairly straightforward and not the pur-

pose of this study. Since the actions in this case only share

access to constant data and does not access any shared vari-

able, the feedback loop construction is not required.

If we apply knowledge about the functionality (domain

and language expertise) this actor provides and its computa-

tions, a better translation can be made (see figure 5). Here the

actor has been translated directly into a Canals kernel, since

the action selection can be decided on completely by the ker-

nel itself. Examining the original actions reveals that large

portions of the actions could be merged together; only leav-

ing a decision point before clipping is applied.

5. CASE STUDY - A MPEG-4 SP DECODER

In this section we demonstrate how the interfacing approach

(see section 3) can be used to implement a improved schedul-

ing strategy for an MPEG-4 Simple Profile Decoder[9] writ-

ten in RVC-CAL. Further, hardware acceleration through

OpenCL is enabled for a part of the decoder.

5.1. Analyzing and Profiling the Decoder

The idea in this case study is to optimize the performance of

the inverse discrete cosine transform (IDCT) component, but

before we start the process of interfacing and scheduling the

MPEG-4 SP decoder from Canals, we must assure that we

have thorough understanding of it. Therefore we analyze the

RVC-CAL design carefully to get an understanding of the in-

network IN_SIGNED -> OUT Algo_IDCT2D_ISOIEC_23002 {
constant int32 A=1024; ... constant int32 J=2528;
constant int32[64] scale = [A, B, C, ..., E];
set_scheduler S_Algo_IDCT2D_ISOIEC_23002;
set_dispatcher default;

add_scatter sc<ActionSwitch>;
add_gather ga<ActionSelect>;
add_kernel intra<ActionIntra>;
add_kernel inter<ActionInter>;
connect NETWORK_IN -> sc;
connect sc.outport[1] -> intra -> ga.inport[1];
connect sc.outport[2] -> inter -> ga.inport[2];
connect ga -> NETWORK_OUT;

}

scheduler IN_SIGNED->Schedule S_Algo_IDCT2D_ISOIEC {
set_scheduler default;
add_kernel k<S_Algo_ComputeSchedule>;
connect SCHEDULER_IN -> k -> SCHEDULER_OUT;

}

kernel IN_SIGNED -> Schedule S_Algo_ComputeSchedule {
work look 1 put 1 { /* Scheduling code */ }

}

kernel IN_SIGNED -> OUT ActionIntra {
variable IN_SIGNED input;
variable OUT output;
variable int13[64] x;
variable int32[64] block1;
variable int32[64] block2;
variable int32 n;

work get 1 put 1 {
input = get();
x = input.IN;
for(n=0; n<64; n++){block1[n] = scale[n] * x[n];}
// inlined procedure call idct1d(block1, block2)
for(n=0; n<64; n++){
/*inline clip(block1[n], 0)*/

}
output.OUT = block1;
put(output);

}
}

kernel IN_SIGNED -> OUT ActionInter { ... }
scatter IN_SIGNED->[IN_SIGNED,IN_SIGNED] ActionSwitch
gather [OUT, OUT]->OUT ActionSelect...

datadef IN_SIGNED { int13[64] IN; bool SIGNED; }
datadef OUT { int9[64] OUT; }
datadef int32 (type="integer") { bit[32]; }
datadef int13 (type="integer") { bit[13]; }
datadef int9 (type="integer") { bit[9]; }
datadef bool (type="boolean") { bit[1]; }

Fig. 4. IDCT actor expressed in Canals.

kernel DCTCodedBlock->Block Algo_IDCT2D_ISOIEC_23002{
constant int32[64] scale=[1024,1138,1730,...,1264];
variable DCTCodedBlock input;
variable Block output;

work get 1 put 1 {
input = get();
if (input.SIGNED) { // Code for inter action }
else { // Code for intra action }
put(output);

}
}
datadef DCTCodedBlock { int13[64] IN; bool SIGNED; }
datadef Block { int9[64] OUT; }

Fig. 5. A manual translation of the IDCT actor into Canals.



Fig. 6. Decoder based on actors (as external kernels).

teraction between components. In this particular decoder the

two-dimensional IDCT is described at a very detailed level

with a large number of actors and actions. The next step is to

verify that there actually is large overhead in scheduling the

IDCT, overhead that can be eliminated by improved schedul-

ing. Instrumentation and profiling the C-code generated from

RVC-CAL by CAL2C for four video sequences give us that

the default scheduling strategy is unsatisfactory. The decoder

consists of 39 CAL actors that are scheduled and executed

in a simple round-robin order. The scheduler function of an

actor is called upon from a while loop in the main function.

The scheduler function first checks if it is possible to execute

any of the actions in the scheduler by checking the input and

output requirements for each action and not violating rules

imposed by the actor FSM. When no action can be executed

anymore, the action scheduler will return and the main loop

will call upon the scheduler function for the next actor in the

list of actors. We are interested in the scheduling overhead,

which is here defined as the time spent checking if an actor

can execute (by checking the action guards) or not. For differ-

ent actions the time consumed in guard conditions checking is

different. If any guard condition is checked then there can be

multiples checks for it. It can fail at the very first check means

there is no need to check further conditions or it may fail at

the very last check. The hardware used in this case study is a

Desktop Computer equipped with an Intel Core 2 Duo at 2.66

GHz. The RAM was 2 GB and 32-bit windows 7 operating

system. The number of checks was calculated for the MPEG-

4 decoder with the visual studio profiler instrumentation tool.

Detailed results from the analysis is available in [3].

5.1.1. Canals Scheduling Code Generated from CAL Actors

The first step in the case study is to verify that the decoder is

running properly when executed through Canals, using the

same scheduling as in the original code. This means that

for each of the 39 actors a Canals external kernel is defined.

In this case we use binary linking against the C object files

generated by the CAL2C compiler and provide the scheduler

function (which deals with both action scheduling and action

execution) as the workhandle. Some of the actors requires

a certain initialization routine to be run before their first ex-

ecution; for this purpose the inithandle is used. All defined

kernels are added to the top-level network and connected to-

gether by external channels, as can be seen in figure 6. The

Fig. 7. Decoder based on actors and actions.

connection order is in this case not of great importance, but

it will decide on the order elements will be placed in the net-

work topology matrix. Scheduler S creates a schedule, by it-

erating over the element with the getNextElement() function,

containing each kernel once. The system will only terminate

if a iteration count argument is provided on command line.

Since we by analysis and profiling decided to try to im-

prove the scheduling and performance of the IDCT compo-

nent, the next step is to expose that part in a more fine-grained

way to the Canals Scheduler by describing it at action level

(see figure 7). In this design all actions from the 12 actors,

which describe the IDCT-component in the original design,

have been extracted and added as 36 external kernels to a

Canals sub-network. It has its own scheduler SIDCT , that de-

cides on the action execution order within the network. The

top-level scheduler has been altered so that instead of schedul-

ing the 12 actors, it will only check if the Canals network is

enabled (equivalent to the scheduler of the network being en-

abled) and if it is enabled add the network to the schedule.

Enabledness for SIDCT is handled through the enabledhan-

dle attribute, which in this case specifies that the return value

of a certain C function decides on its enabledness. In this par-

ticular implementation the function will check that 64 tokens

of input data and an additional token for the SIGNED value

is available at the input queue and that there is space for 64

output tokens on the output queue. SIDCT scheduling func-

tionality could be derived from guards of each action, but in

this case we have used another better approach. The work pre-

sented in [10] shows that a static action schedule (containing

755 action firings) can be calculated for the IDCT compo-

nent. This static schedule is implemented in SIDCT and put

on the dispatch queue when SIDCT is invoked. We now have

a very fine-grained control over the scheduling of the IDCT

component. Scheduling and dispatching each action one-by-

one in this manner through the Canals HAL is excellent for

evaluation purposes, but because of the dispatching overhead

this results in reduced performance compared to the original

version. Another optimization step must be conducted.

Analysis of the IDCT2dNetwork gives us that it is per-

fectly possible, because of the static schedule, to flatten the

network into a single kernel (figure 8). The transformation

to a kernel was manual, but this step can be automated. The

transformation is also possible for quasi-static schedules. It

can be observed from the instrumentation and profiling that



Fig. 8. Decoder with external kernel for IDCT.

for our four video sequnces there is a reduction in number of

hits and misses after applying the quasi-static schedule, be-

cause we now only perform three checks per IDCT invoca-

tion. Besides the 25% speedup for the IDCT part as a result of

reduction in overheads, a reduction in overheads for the other

actors can be observed. The explanation for this is that the

simple round-robin scheduler in the original design will try

to execute actors the theoretically cannot be enabled before

the IDCT has produced output. For the decoder as a whole,

decoded frames per second improved by 13%.

5.1.2. Canals Scheduling a OpenCL Enabled Decoder

The IDCT operation on a block is obviously an operation that

would benefit from data-parallel execution. For this purpose

the external IDCT kernel in the design can be replaced with

a external OpenCL IDCT kernel (figure 9).OpenCL host and

device code is completely wrapped in the functions provided

to Canals as init- and work-handle, including the decision

on how many predefined number of parallel instances of the

OpenCL kernel should be executed on the graphics process-

ing unit (GPU). If only a small number of parallel instances

are executed at once, the overhead caused by memory trans-

fers from main to device memory will result in low perfor-

mance. This is a common problem in OpenCL program-

ming today, but future OpenCL enabled platforms, such as

the Mali[11], aims to resolve the issue of memory transfers

by using uniform memory for host and device.

As mentioned above, the buffer sizes and number of paral-

lel instances are decided on in the external code block that the

Canals scheduler cannot access nor modify. This is a draw-

back of the interfacing approach. The decoder illustrated in

figure 9, uses a native Canals kernel for the IDCT. The scat-

ter and gather elements indicate that there can be from 1 to N

parallel instances, where N is restricted by mapping strategy

and compiler backend, as well as by the scheduling strategy.

The exact number is decided by the scheduler/dispatcher.

6. CONCLUSION

Existing software cannot directly benefit from the increased

computational power available in multi-core systems. In

this work we have presented two techniques for dealing

with legacy code and adapting it gradually for better multi-

core compatibility, by having more control over scheduling.

Fig. 9. OpenCL accelerated kernels in Canals.

Canals is suitable for the purpose of interfacing and schedul-

ing general legacy code with a small effort. Complete control

and more efficient code generation are provided by the trans-

lation approach for those parts of the application that are of

certain interest and where a larger effort is motivated. We

have also described how Canals can generate, interface and

schedule OpenCL kernels. A case-study of a MPEG-4 Simple

Profile decoder is used for validation purposes.
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