
SCHEDULING OF CAL ACTOR NETWORKS BASED ON DYNAMIC CODE ANALYSIS

Jani Boutellier, Olli Silvén

University of Oulu

Department of Computer Science and Engineering

FI-90014 University of Oulu

Mickaël Raulet

INSA Rennes

IETR

FR-35708 Rennes Cedex 7

ABSTRACT

CAL is a dataflow oriented language for writing high-level

specifications of signal processing applications. The lan-

guage has recently been standardized and selected for the

new MPEG Reconfigurable Video Coding standard.

Application specifications written in CAL can be trans-

formed into executable implementations through develop-

ment tools. Unfortunately, the present tools provide no way

to schedule the CAL entities efficiently at run-time.

This paper proposes an automated approach to analyze

specifications written in CAL, and produce run-time sched-

ules that perform on average 1.5x faster than implementa-

tions relying on default scheduling. The approach is based

on quasi-static scheduling, which reduces conditional execu-

tion in the run-time system.

Index Terms— Scheduling, signal processing, data flow

analysis

1. INTRODUCTION

Reconfigurable Video Coding (RVC) is a relatively recent

standard of MPEG [1]. RVC itself does not define a new

video compression methodology, but provides a unified way

to describe already existing video codecs.

A unified codec specification approach requires one

Model of Computation (MoC) and language, which in the

case of RVC is CAL [2]. The CAL language offers a

dataflow-based MoC, where individual nodes (called actors)

communicate with each other through FIFO buffers. The set

of nodes describing an application is a CAL network.

After having been selected as the official language of the

RVC standard, a variety of development tools have been de-

signed for the CAL language. The most notable of these is the

Orcc compiler1, which reads applications described in CAL,

and generates VHDL, C, C++ or LLVM code as output.

Applications described in CAL are easy to parallelize and

port to other platforms due to the generality and high level

of expression of the language. However, there are also draw-

backs in the description generality: implementation code (e.g.

1Available from http://orcc.sf.net

C) generated from CAL specifications is less optimized than

hand-written implementation code. To alleviate the perfor-

mance gap between hand-written implementations and those

generated from high-level CAL specifications, a variety of ap-

proaches [3, 4, 5] have been proposed.

Here, we concentrate on the approach of quasi-static

scheduling. It has been shown that quasi-static scheduling can

produce considerable performance improvement [5], but un-

fortunately no fully automatic method has yet been proposed

to create quasi-static schedules for CAL actor networks.

This paper presents an automatic approach for creating

quasi-statically scheduled RVC implementations. The solu-

tion is partially based on the Orcc compiler and includes a

code generator that automatically generates ready-to-compile

quasi-static C code. In the experiments we present the clear

performance benefit offered by the proposed approach.

2. STATEMENT OF THE PROBLEM

An RVC decoder is specified with a network of CAL actors.

Each CAL actor represents a logical part of the video decoder

(e.g. dequantizer, IDCT etc.). Internally, actors work like

finite state machines (FSMs) that contain states, state transi-

tions and internal variables. To enable conditional execution,

state transitions of CAL actors may also have guard condi-

tions that must be fulfilled for the state transition to happen.

Information is transferred from one actor to another over

point-to-point FIFO buffers. The data is wrapped inside to-

kens and each FIFO carries tokens of a specified size. Con-

nections between FIFOs and actors are called actor ports.

Computations are performed in actor FSM state transitions

called actions that produce and consume different numbers of

tokens. When a state transition in an actor takes place, it is

said that the actor fires. Fig. 1 depicts two CAL actors.

The CAL MoC is very powerful, but unfortunately en-

ables functionality that makes the actor network hard to an-

alyze. In contrast, for example, the synchronous data flow

(SDF) MoC is straightforward and can be thoroughly ana-

lyzed [6]. The main difference between the CAL MoC and

that of SDF is that SDF does not allow different paths of ex-

ecution; every data item is processed by the same computa-



actor a actor b

p

s
t

token 

gate

f

interface to other actors

Fig. 1. Actors a and b, port p, FSM state s and state transition

t. FIFO buffer f carries two tokens.

tions. In contrast, by the use of the aforementioned guard

conditions, CAL allows the behaviour of actors to change dy-

namically. One further way to express this is by saying that

SDF only allows data tokens, whereas CAL uses both data

and control tokens.

This flexibility and unpredictability of CAL makes the

language hard to analyze and complicates the computation

scheduling greatly. By default, the Orcc compiler that pro-

duces C code from CAL specifications, creates a round-robin

scheduler that iterates through all actors in the network and

checks if there are actions that could be fired. This approach is

fool-proof in its generality, but requires the scheduling algo-

rithm to repeadetly poll for token availability, values of vari-

ables and states of actors.

Large CAL networks (such as video decoders) contain

around one hundred actors and up to a few hundred FIFO

buffers between them. When the CAL network is compiled,

and executed on a processor, the FIFOs and variables neces-

sarily reside in the main memory of the processor, to which

random accesses are very slow. Thus, the superfluous polling

of a round-robin scheduler adds a considerable amount of

memory accesses and therefore increases the execution time.

In contrast, a quasi-statically scheduled CAL network is

analyzed at compile time, and excess polling is removed prior

to code generation. Thus, at run-time, the quasi-statically

scheduled network runs in a more predictable fashion, with

considerably less polling and thus, faster. The challenge of

quasi-static scheduling is to find the parts in the CAL network

that behave in a fully predictable manner.

3. PROPOSED APPROACH

In a previous publication [5], quasi-static scheduling was in-

troduced in a more detailed fashion than above, but no auto-

matic way was presented to acquire it. The fully automated

approach presented in this paper can be divided into three

independent parts: 1) analysis preparation, 2) CAL network

analysis and 3) code generation.

The network analysis is performed by running the CAL

network with real data and by recording the behaviour of each

actor and the whole network to a kind of an execution trace.

Based on the actor (and network) behaviour detected dur-

ing this analysis, the code generator produces a quasi-static

schedule to be used in the final run-time implementation.

3.1. Prerequisites

Enabling the run-time inspection of data values in a CAL net-

work requires the insertion of hooks to actors. Evidently, this

monitoring must not affect the network functionality.

An actor network having quasi-static behaviour means

that there are data and control tokens flowing in the FIFO

buffers. However, the CAL language does not contain dif-

ferent token types, which means that tokens affecting the

network behaviour (control tokens) must be identified by spe-

cial methods. The crucial question is: which FIFO buffers in

the network carry control tokens?

Fig. 1 shows a toy example: FIFO f connects actors a and

b. In the network analysis, we look at the structure of actor

b and decide that FIFO f carries control tokens, if values of

tokens coming from f can affect the action firing of actor b.

The presence or absence of tokens in f affects the possi-

bility of firing actions as well, but we are not interested in this.

Besides tokens, also internal variables of actors may affect ac-

tor firings. Thus, all variables that affect state transitions, are

under analysis as well.

In practice, the analysis tool identifies all actions in each

actor, that have conditional execution (guard conditions).

These actions are monitored all the time when the network

analysis is running.

3.2. Token gating

Essentially, a quasi-statically scheduled actor network works

in different operating modes that are defined by the values of

control tokens. It can be stated that the control tokens param-

eterize the network behaviour as in parameterized SDF [7].

This assumption implies that the control tokens truly have

total control over the actor network. By default, this is not

the case in a round-robin scheduled network. Thus, the net-

work must be harnessed to be under control of the control

tokens both in the analysis phase and the final quasi-static im-

plementation. In practice we do this by adding token gates to

FIFOs that control the network behaviour.

A token gate actor performs no computations, but simply

blocks tokens from flowing when the gate is closed. The uses

of the token gate are twofold: first, the gate orchestrates the

computations so that a new computation starts only after the

previous one has finished, and second, the value of the to-

ken passing through the gate can be observed and used as a

parameter to define the behaviour of the network.

The feasible places for the token gate are those FIFO

buffers that are observed to carry control tokens, as described

in Subsection 3.1. In the set of CAL networks we used in the



t

strand 1

strand 2

a1

signature

action 1

action 2

action 3

action 4

action 5

actio
n

 ch
a

a1

a2

a3

b1

b2

c1

c2
d1

action 5

action 6

ain

Fig. 2. Gate token t can have three different values, each in-

voking a specific strand. In strand 3, actor a has three possible

action chains: a1, a2 and a3.

experiments, the number of such FIFOs ranges between 5 and

30 in each network. Thus, all options can be iterated through

to see which FIFO produces the best results. At present, our

code generator allows only one token gate to be placed in

each network.

In the end of the analysis preparation stage, the token gate

CAL actor is inserted to the network after which it appears to

the analysis tool just like any other actor. The token gate is

also depicted in Fig. 1.

3.3. Network analysis

The dynamic analysis of the CAL network is performed at

two different levels of hierarchy: the network level and the

actor level. When the analysis is running, the relevant state

parameters (we call signature) of each actor are recorded be-

fore the actor is allowed to operate. The actor signature con-

tains: 1) the FSM state, 2) the number of tokens on each input

port, 3) the value of the first token on each input port, 4) the

value of each relevant internal variable. The internal variables

are selected automatically as described in Subsection 3.1.

When the signature has been recorded, the actor is al-

lowed to execute. Meanwhile, the analysis software records

all the actions that the actor performs and finally observes the

end FSM state of the actor. This recorded sequence of actions

we call an action chain. Thus, there is one action chain for

each signature.

Whilst running the analysis, each actor is invoked thou-

sands of times. Between invocations, actors produce a num-

ber of different signatures and action chains. In some rare

cases, it happens that for the same signature, an actor exhibits

two different action chains. This means that the behaviour of

the actor can not be modeled by our quasi-static assumption.

In this case, that signature is labeled dynamic and triggers the

basic scheduler at run-time in the final implementation.

The control tokens that flow through the token gate are

called gate tokens. On the network level, the analysis software

maintains a data record for each gate token value. The data

record contains the sequence of actors that is invoked for that

gate token value, and this sequence of actors is called a strand.

Generally, actors in a strand may behave in various ways, so

each actor slot in a strand has several alternative action chains

that are identified based on their signature (see Fig. 2).

Upon completion, the analysis software has the following

records: 1) a set of signatures for each actor, and an action

chain that follows each signature; 2) one strand for each gate

token value.

In practice, it required modifications to the Orcc code

generator to allow the observation and recording of this data.

Because the modified Orcc code generator still produces

general-purpose C code, the running of this analysis takes

only up to a couple of minutes despite the large amount of

data it records.

3.4. Code generation

The code generator starts producing the quasi-statically

scheduled code by iterating through every gate token value.

For each gate token value, a C function is produced that con-

tains the strand of actor invocations. As stated before, there

are generally several different actor behaviours for each actor

slot in a strand. This variation is taken care of at actor level.

For each actor slot in a strand, the code generator browses

its databases to locate all possible actor behaviours that have

taken place in this slot and gathers these as a set of signatures

S. Then, the code generator analyzes the signatures in S and

produces a set of rules to identify which action chain to fire.

The rule may be, for example

if (port_1_token_count() == 64 &&

variable_3_count() == 0 &&

port_1_value() == 1024) then ...

Naturally, the code generator tries to use as few condi-

tions as possible, as it is wasteful at run-time to unnecessarily

check the conditions of variables and FIFO states. If an ac-

tor requires too many conditional statements to evaluate to a

single action chain, or there are too many different actor be-

haviours, the code generator inserts a call to the default actor

scheduler. In these cases, it would have taken more clock cy-

cles to select the correct action chain than running the default

scheduler does.

It is important to notice that these rules to select the cor-

rect actor behaviour are dependent on the gate token value and

the actor index in the strand; i.e. if one actor is invoked twice

in the same strand, both instances of the same actor have dif-

ferent sets of rules.

3.5. The runtime system

The quasi-statically scheduled CAL network is composed of

C code that originates from two different sources. First, the

schedule files that originate from our code generator, and sec-

ond, the actor C files that are produced by another modified



Table 1. Speedup (s.up) provided by quasi-static schedul-

ing (qss) compared to the default scheduling of the network.

Numbers are gigacycles used to decode 500 frames.

Netw. s1 s2 m1 m2 l s.up

MVG 98.5 100.7 94.5 102.7 109.2

qss 44.6 48.8 42.0 52.0 52.9 2.11

RVC 80.0 82.9 76.6 85.0 88.6

qss 67.6 74.2 64.4 77.8 79.0 1.14

Serial 44.6 47.7 42.0 50.4 51.5

qss 32.4 36.4 29.9 39.7 40.0 1.33

Xilinx 119.7 145.8 110.6 161.5 154.1

qss 96.6 124.3 95.9 142.7 116.2 1.20

backend of the Orcc code generator. The special Orcc back-

end to produce the run-time network implementation provides

access to the actor variables and FIFO contents that enable

choosing between strands and action chains.

4. EXPERIMENTS

Our tool for automatic generation of quasi-static schedules

was experimented on 4 different CAL networks. These net-

works were different implementations of the MPEG-4 Simple

Profile video decoder.

The quasi-static schedules were acquired by using a

176x144 video sequence of up to 250 frames as training

data. The decoding performance was measured with 5 dif-

ferent video sequences that had the resolution of 720x480

and lasted 500 frames. The experiments were performed on

an Intel Core 2 Duo E8500 -based workstation running Win-

dows 7. The compiler used was MS Visual Studio 2008 with

default O2 level optimizations enabled.

The results are visible in Table 1. An example of reading

Table 1 goes as follows: with the default Orcc scheduler and

the MVG network, it takes 98.5 gigacycles (Gc) to decode

500 frames of the s1 video sequence. With the quasi-static

schedule generated by the tools described here, the same ef-

fort takes 44.6 Gc, providing a speedup of 2.21. Network-

wise speedups are shown on the right and the overall average

speedup is 1.45. The speedup differences between networks

are rather great. The speedup that quasi-static scheduling can

offer depends on the actors that are present in the network, as

well as the network structure.

The tools described in this paper are available2 as open

source, and the networks are available from the Orcc website.

5. DISCUSSION

Although the experimental results already show a consid-

erable performance improvement, it is evident that there is

2https://sourceforge.net/projects/efsmsched/

much more potential in the presented approach, than what

has been shown.

The presented analysis approach is based on execution

traces, which means that the outcome of the analysis depends

on the input data. If the training data sequence does not uti-

lize all allowed CAL network behaviours, the quasi-statically

scheduled decoder will fail if such a previously unknown be-

haviour is invoked. A more robust approach would be to use

static code analysis for the network. Static CAL code analy-

sis performed by Wipliez and Raulet [3] could replace some

preprocessing and analysis steps that have been described in

this paper. This is a clear direction for future work.

6. CONCLUSION

In this paper we have described an automatic way of acquir-

ing quasi-static schedules for CAL actor networks. The ap-

proach is based on dynamic code analysis followed by the

generation of improved program code. Experiments show

the quasi-statically scheduled code to provide an average pro-

gram speedup of 1.5x.

7. REFERENCES

[1] M. Mattavelli, I. Amer, and M. Raulet, “The Reconfig-

urable Video Coding standard,” IEEE Signal Processing

Magazine, vol. 27, no. 3, pp. 159–167, May 2010.

[2] J. Eker and J. Janneck, “CAL language report,” Tech.

Rep. UCB/ERL M03/48, UC Berkeley, 2003.

[3] M. Wipliez and M. Raulet, “Classification and transfor-

mation of dynamic dataflow programs,” in Conference on

Design and Architectures for Signal and Image Process-

ing, 2010.

[4] R. Gu, J. Janneck, M. Raulet, and S. S. Bhattacharyya,

“Exploiting statically schedulable regions in dataflow

programs,” Journal of Signal Processing Systems, pp. 1–

14, 2010.

[5] J. Boutellier, C. Lucarz, S. Lafond, V. Martin Gomez,

and M. Mattavelli, “Quasi-static scheduling of CAL actor

networks for Reconfigurable Video Coding,” Journal of

Signal Processing Systems, 2009, DOI:10.1007/s11265-

009-0389-5.

[6] S. Sriram and S. S. Bhattacharyya, Embedded Multi-

processors: Scheduling and Synchronization, Marcel

Dekker, New York, NY, 2000.

[7] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized

dataflow modeling for DSP systems,” IEEE Transactions

on Signal Processing, vol. 49, no. 10, pp. 2408–2421, Oct

2001.


