Carole Delporte-Gallet

Hugues Fauconnier

Eli Gafni

Sergio Rajsbaum
email: rajsbaum@math.unam.mx

Sergio Rajsbaum Linear

Linear Space Boostrap Communication Scheme

Keywords: shared memory, read/write registers, distributed algorithms, wait-free, space complexity, renaming

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In many distributed algorithms it is assumed that the processes, p 1 , . . . , p n , communicate using Single-Writer Multi-Reader (SWMR) registers, R 1 , . . . , R n , so p i knows it is the i-th process, and can write exclusively to R i . However, often processes do not know their indexes, they know only their ids, and the number of possible ids N , is much bigger than the number of processes, n. In this situation, preallocating a register for each identifier would lead to a distributed algorithm with a very large space complexity. One would like the processes to run a renaming algorithm as a preprocessing stage, to obtain new ids from a smaller range, M (n), that depends only on n, and then use these ids to index only M (n) SWMR registers. Several waitfree renaming algorithms e.g. [START_REF] Attiya | Renaming in an asynchronous environment[END_REF][START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF] are known that reduce the name space to M (n) = 2n -1 (and this is the best than can be done, except for some exceptional values of n [START_REF] Castañeda | New combinatorial topology bounds for renaming: the lower bound[END_REF]). However, if the system did not allocate N SWMR register to start with, how do the processes communicate to run the renaming algorithm? Such a question has been considered in the context of adaptive computation [START_REF] Attiya | Polynominal and adaptive long-lived (2k-1)-renaming[END_REF][START_REF] Attiya | Adaptive and efficient algorithms for lattice agreement and renaming[END_REF][START_REF] Moir | Fast, long-lived renaming improved and simplified[END_REF][START_REF] Afek | Efficient adaptive collect algorithms[END_REF][START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF]. In these papers, n is unknown, and moreover processes "arrive" and "depart." When first solving adaptive renaming to allocate MWMR registers to processes, they obtain Θ(n 2) space complex-ity. The first basic question we address here is: In the most favorable situation, when n is known and we want to solve is a task, how much space do we need? Is solving renaming first unavoidable?

Recall that a task e.g. [START_REF] Herlihy | The topological structure of asynchronous computability[END_REF] is a one shot problem, where processes start with inputs and after communicating with each other, must decide on outputs that satisfy the task's specification. Famous examples of tasks are consensus and set agreement.

We show that indeed it is possible to solve any read-write wait-free solvable task with n MWMR registers. To obtain this result, the paper shows how the processes can non-blocking emulate a system of n SWMR registers on top of n MWMR registers. Moreover, as we explain, it is not hard to prove that no such emulation exists on less than n MWMR registers.

An application of the non-blocking emulation is that one can run any SWMR wait-free algorithm that solves a task on n MWMR registers. In particular, one can run directly a SWMR (2n -1)-renaming algorithm such as the one of [START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF] on top of n MWMR registers. This is a significant improvement over the previous adaptive Θ(n 2) space renaming algorithm, when that algorithm is instantiated to our context. Admittedly, the previous renaming algorithm will actually use fewer than n 2 registers but nevertheless since it is apriori unknown how the algorithm will evolve a preallocation of Θ(n 2) registers is necessary. Notice that as the simulation is non-blocking, a SWMR algorithm that solves a task on top of the n MWMR registers may incur some cost in time: a process may not be able to produce an output value, until another process finishes the algorithm and exits the emulation.

As said, with n registers we can solve (2n -1)renaming, using these new names, with additional 2n -1 registers each process can obtain a dedicated register, and from there on emulate a simulated write operation in a wait freemanner. Are 3n -1 MWMR necessary to have a wait-free emulation of a write operation in a non-terminating environment? We show that a total of just 2n -1 MWMR registers is sufficient, describing how the processes can wait-free emulate a system of n SWMR registers on top of 2n -1 MWMR registers. We conjecture that 2n -1 registers are the minimum possible for wait-free emulation. The wait-free emulation allows to solve a sequence of tasks (potentially infinite) that are sequentially dependent (processes need the previous task's outputs in order to proceed to the next task). A non-blocking emulation might starve a process forever. By doubling the space complexity, using 2n -1 rather than just n registers, the computation is wait-free rather than non-blocking.

The paper also describes an algorithm to broadcast the value of one of the processes, using n/2 MWMR registers. The algorithm, which seems interesting in itself, illustrates the way information propagates in our emulations. It is simple, but the proof is subtle.

At the end of the paper we briefly discuss why we believe our techniques will be useful for dynamic systems of bounded concurrency n e.g. [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF]. In such a system, any number of processes arrive compute and depart, yet, at any point in time the number of arrivals exceeds the number of departures by at most n.

We stress that our interest is in space complexity, our emulations are not particularly efficient in terms of step complexity. Also, there are various previous papers dealing with a similar problem, but in the adaptive setting. In [START_REF] Attiya | An adaptive collect algorithm with applications[END_REF] there is a definition similar to our emulation problem, as "store-collect" of a (key,value) problem. Another definition of store-collect, by equivalence to an array (hence more like our problem specification) appears in [START_REF] Afek | Long-lived adaptive collect with applications[END_REF]. Similarly, solutions without explicitly solving renaming first appear in [START_REF] Attiya | Algorithms adapting to point contention[END_REF], although not very space efficient.

There is a long history of space complexity results, starting with the mutual exclusion lower bound of [START_REF] Burns | Bounds on shared memory for mutual exclusion[END_REF] and even before there was interest in this (see references herein). In this context, [START_REF] Styer | Tight bounds for shared memory symmetric mutual exclusion problems[END_REF] considers renaming with the same motivation that we do, and shows that 2 logn + 1 registers are sufficient to solve it, and a corresponding lower bound within a constant factor, but their model is easier than ours. There are various algorithms and lower bounds on the number of registers needed to solve specific problems e.g. [START_REF] Fatourou | Space-optimal multi-writer snapshot objects are slow[END_REF][START_REF] Fatourou | Time-space tradeoffs for implementations of snapshots[END_REF][START_REF] Helmi | The space complexity of long-lived and one-shot timestamp implementations[END_REF][START_REF] Moir | Fast, long-lived renaming improved and simplified[END_REF], but we are not aware of general emulations. In [START_REF] Jayanti | Time and space lower bounds for nonblocking implementations[END_REF] there is a lower bound for non-blocking implementations, but it is n -1 registers. In special cases it can be beaten [START_REF] Aspnes | Polylogarithmic concurrent data structures from monotone circuits[END_REF]. In [START_REF] Fich | On the space complexity of randomized synchronization[END_REF] a Ω(√ n) space complexity lower bound for a randomized nonblocking implementation of consensus is presented.

Model

We assume a standard asynchronous sharedmemory model of computation with n processes communicating by reading and writing to a fixed set of shared registers [START_REF] Attiya | Distributed Computing. Fundamentals, Simulations, and Advanced Topics[END_REF][START_REF] Herlihy | The Art of Multiprocessor Programming[END_REF]. The processes have unique ids in {1, . . . , N }, with N >> n. Processes may take a finite or an infinite number of steps but we assume that at least one process takes an infinite number of steps.

The shared memory consists of a set of atomic Multi-Writer Multi-Readers (MWMR) registers. We assume that processes can read and write any MWMR register and these operations are atomic [START_REF] Herlihy | Wait-free synchronization[END_REF]. For short, we usually omit the term atomic. If r is such a MWMR register, a process can write x on r using write(r, x), and read on r using read(r). A process executes its code taking three types of atomic steps: the read of a register, the write of a register, and the modification of its local state.

We consider also more powerful operations to read the registers. A collect is an iterative read of all registers. A scan returns a snapshot, an instantaneous view of the registers. In [START_REF] Afek | Atomic snapshots of shared memory[END_REF], there are non blocking and wait free linearizable implementations of the scan. A non-blocking implementation of scan (N BScan) can be obtained repeating Collect operations until two of them return the same values. A scan wait-free implementation (Scan) is more involved, and has to embed a snapshot with the write. So in this case we call the write, update (update(r, v) updates the register r with the value v).

Two progress conditions that have received much attention are non-blocking and wait-free. The non-blocking progress condition states that when there are concurrent operations at least one process terminates its operations. The wait-free [START_REF] Herlihy | Wait-free synchronization[END_REF] progress condition states that each process terminates its operations in a bounded number of its own steps.

We consider also a model in which each process has its own atomic Single-Writer Multi-Reader register (SWMR). Process p can write a value x in its SWMR register with the operation write(p, x) and all the processes may read the value in the SWMR register of p with read(p).

We say that we have a non-blocking (resp. wait-free) emulation of the n process SWMR model using m MWMR registers if we implement write and read in terms of write and read such that the implementation is linearizable [START_REF] Herlihy | Linearizability: A correctness condition for concurrent objects[END_REF] and the progress condition is non-blocking (resp. wait free).

A regular SWMR register [START_REF] Lamport | On interprocess communication; part I and II[END_REF], is a weaker type of register. A SWMR register is regular if when no write is concurrent with a read operation, the read returns the current value in the register. Otherwise the read returns any value written by a concurrent write operation or the last value in the register before the concurrent writes. With regular SWMR registers it is possible to wait-free free implement atomic SWMR register [START_REF] Herlihy | The Art of Multiprocessor Programming[END_REF][START_REF] Lamport | On interprocess communication; part I and II[END_REF]. So to emulate non-blocking (resp. wait-free) the n process SWMR register model using m MWMR registers it is enough to emulate non-blocking (resp. wait-free) n process model with regular SWMR register model.

Preliminaries

We consider algorithms that have the same structure as algorithm in Figure 1. Processes share a set R of MWMR registers. Each process maintains a variable V iew. Each process repeatedly reads all registers (function Collect()) and updates its variable V iew by adding all it has just read in V iew together with some other values in variable input, and then writes it in some registers.

For each R ∈ R, R τ denotes the value of register R at time τ . Similarly, V iew τ p denotes the value of variable V iew of p at time τ .

We say that v is eventually forever in R if there is a time τ such that for all time τ > τ , v ∈ R τ .

function Collect():

1 V = ∅ 2 for all R in R 3 V = V ∪ read(R) 4 return V main loop: repeat forever 5 V iew = Collect() ∪ V iew ∪ input 6
Let (deterministically) Reg be some register in R We have directly from the algorithm:

Observation 1 For all processes p and for all times τ and τ , if τ < τ then V iew τ p ⊆ V iew τ p Following [START_REF] Burns | Bounds on shared memory for mutual exclusion[END_REF], we say that register R is covered by process p at some time τ if the next register that p writes after time τ is R: more precisely p covers R at time τ if, at time τ , the next writing of p (Line 7) is on register R and p has begun the Collect in Line 5. Note that if p does not cover R, before writing R, p reads the value of R (by Collect in Line 5) and then it will write in R at least this value.

If some register is covered the value of this register may be lost. So, by extension, we say that R is V -covered at time τ if all processes covering R at time τ are going to write sets containing V in register R. If R is V -covered at time τ , next writings contains V (by processes covering R) or contains R τ (by processes not covering R that read R before writing). We have:

Lemma 2 If, at some time τ , register R is V - covered at time τ then for all τ ≥ τ , (R τ ∩ V) ⊆ R τ .
Proof. By induction on the number k of writings of R made after time τ , we prove that R contains R τ ∩ V . For k = 0 it is clear. Consider any writing of R after time τ and assume this writing is made, say, by process q. Consider the two cases:

• either q does not cover R at time τ and then q makes a Collect before writing R. This

Collect occurs after time τ and by induction hypothesis it returns a value containing R τ ∩ V . Then process q writes a superset of R τ ∩ V in register R.

• or q covers R at time τ and V ⊆ V iew p then q writes a superset of R τ ∩ V in R.

If no process covers R at time τ , then by definition R is V -covered for any set V , then by the previous Lemma after time τ , R contains forever R τ . In particular: Lemma 3 If R is not covered at time τ and v ∈ R τ then v will be eventually forever in R.

Let R ∞ be the set of registers infinitely often written:

Lemma 4 If v is eventually forever in R then v is eventually forever in all registers in R ∞ .
Proof. There is a time τ after which v is forever in R, after this time all Collect contains v and then all next writing will contain v. Hence all registers infinity often written will contain v.

Lemma 5 If at time τ , card{R ∈ R|v ∈ R τ } ≥ n, then v will be forever in all registers in R ∞ Proof. Let X be the set of at least n registers containing v and p be the last process that wrote before time τ in any register in X. Just after this writing p does not cover any register. As we have n processes, by the pigeon hole principle at least one register in X is not cover. Then by Lemma 3, v will be forever in some register and by Lemma 4, v will be forever in all R ∞ .

Broadcast

We give here a very weak definition of broadcast. Essentially this definition ensures that the value of some process will be known by all processes making an infinity of steps. More precisely, we assume that each process p has a value v p to broadcast, the broadcast is defined by way of a primitive deliver operation returning a set of values. The broadcast ensures:

• (integrity) if v belongs to the set of values returned by some deliver then v = v p for some process p,

• (convergence) there is a value v and a time τ after which every set returned by any deliver contains v. The algorithm of Figure 2 is a simple application of the generic algorithm of Figure 1. But here in, the main loop, we use a non-blocking scan N BScan instead of Collect. N BScan() returns V , a snapshot of the registers, such that there is a time

1 variable: set of Values V = ∅ 2 for i from 1 to m do 3 V = V ∪ read(R[i])
τ such that R[i] τ = V [i].
N BScan() is only assumed to be non-blocking. Implementation of such non-blocking snapshot is easy [START_REF] Afek | Atomic snapshots of shared memory[END_REF]. As N BScan is a particular form of Collect all previous Lemmata from Section 3 apply. For a snapshot V , V [i] is the value returned for register R[i] and abusing notation, V may denote

∪ 1≤i≤m V [i].
A Deliver reads all the registers and returns the union of the values read in the registers. Note, using Collect() that Deliver always terminate. We prove the main property:

Theorem 6 Algorithm of Figure 2 implements broadcast if m > n 2
The proof is rather subtle, it is in Appendix A.

Non-Blocking emulation of SWMR registers

We first describe the emulation, and then the lower bound, in Section 5.2.

The algorithm

The algorithm in Figure 3 is a non-blocking emulation of regular SWMR registers for n processes using an array R of m MWMR registers, if m ≥ n.

In the following to distinguish between the writings of MWMR registers and the emulation of SWMR writings, we denote the first ones using lower case and the second ones with upper case. To make its k-write, a process p adds the value to write (in fact the value, its identity and its timestamp k) to its variable V iew. The write ends when the value to be written is in all the m registers. A read of value written by process q collects the values present in registers and returns the value from q with a maximal timestamp among all the values from q.

As in the generic algorithm of Figure 1, each process p maintains a variable V iew containing all the information it knows. Iteratively, each process reads all the m registers by a nonblocking scan and accordingly updates its variable V iew before writing it in the next register in cyclic order. The write of v terminates as soon as v is in n registers. Here instead of Collect, we use N BScan, a non blocking Scan, as described in Section 2. //N BScan returns a snapshot of the shared memory write(p, x): The main point here is that as we have n processes and at least n registers then at least one register will not be covered and then all the values contained in this register will eventually be present in all registers and will remain forever in all registers. Hence as soon as a value is present in all registers the write is terminated because afterwards the Collect of every read will contain this value.

1 v = (x, p, k) 2 next = 0 3 V iew = V iew ∪ {v} 4 do 5 Snap = N BScan() 6 V iew = Snap ∪ V iew 7 write(R[next], V iew) 8 next = (next + 1) mod m 9 until (card{r|v in Snap[r]} ≥ n) 10 k = k + 1 read(q): 11 V iew = Collect() 12 return x such that (x, q, u) ∈ V iew with maximal u
First we prove the safety properties of the implementation of regular register.

We say that the write of v succeeds at time τ if there is some register such that after time τ , v is forever in this register. By extension, we say that the write of v succeeds if there is a time at which the write of v succeeds or equivalently if v is eventually forever in R. Directly from the algorithm we get the following lemmas:

Lemma 7 Let v = (x, p, k) and v = (y, p, k) such that k ≥ k , if v succeeds at time τ , then v succeeds at time τ too.
By Lemma 4 and the code of the algorithm: Lemma 8 If the write of v succeeds at time τ , after this time v is returned by every Collect.

Lemma 9 Let S be the set of all values (x, p, k) that succeed at time τ and K the maximal k over all (x, p, k) in S, then read of p returns the value v = (x, p, k) ∈ S with k ≥ K maximal.

From Lemma 5:

Lemma 10 If at some time τ , v is in n registers, then the write of v succeeds at time τ .

Lemma 11 (safety) Any read(p) returns the last value x such that write(p, x) terminates before the beginning of the read, or a value x such that write(p, x) is concurrent with the read.

Proof. Assume x is the kth write of p, let v be (x, p, k). Consider any read(p) and let E be the set of values returned by the Collect made for this read. By Lemma 8 all values for which the write has succeeded are in E. write(p, x) returns when, for a N BScan (Line 5), v belongs to n registers (Line 9) at some time. Then by Lemma 10, v succeeds by the time of the N BScan and E contains all values for which the write has terminated. Lemma 9 proves that the value returned by the read(p) is either the last value for which the write by p has terminated or a value for which the write is concurrent. Now we prove that the algorithm is nonblocking. First as Collect is wait-free, any read is wait-free too:

Lemma 12 Any read made by a process that takes an infinite number of steps terminates.

By Lemma 4, and the fact that the write ends when the value is in all registers: Lemma 13 Assume the registers are written infinitely often, if the write of v succeeds then v will eventually be forever in all registers and if the process that writes v takes an infinite number of steps, the write terminates. Lemma 14 If the registers are written infinitely often then an infinity of write terminate.

Proof. By contradiction assume the contrary: there is a time τ after which no write terminates. When a process has terminated all its writes it stops writing the registers, then there is at least one process that takes an infinite number of steps and does not terminate the write of some v. By Lemma 13, there is time at which all registers will contain values for which the write is not terminated. By pigeon hole principle one of these registers is not covered and contains a value for which the write is not terminated, by Lemma 3 the write of this value succeeds, and by Lemma 13, the write of this value terminates -a contradiction.

If after some time there is no writing of the registers, being non-blocking any N BScan returns:

Lemma 15 If some process that takes an infinite number of steps is stuck forever on a N BScan then the registers are written infinitely often.

Lemma 16 (non-blocking) If m ≥ n, and the write of v by a process p that takes an infinite number of steps does not terminate, then infinitely often some writes terminate.

Proof.

By contradiction, assume that the write of some process p that takes an infinite number of steps does not terminate and only a finite number of writes occurs. Then by Lemma 14, there is a time after which no registers are written and by Lemma 15, p may not be stuck on a N BScan and hence p makes progress in its code and hence writes registers infinitely often. By Lemma 14 an infinity of write terminates -a contradiction Lemmas 11 and 16 prove that the algorithm in Figure 3 is a non blocking emulation of regular SWMR registers for n processes from n MWM-Rregisters. We now use the classical wait free transformation [START_REF] Herlihy | The Art of Multiprocessor Programming[END_REF][START_REF] Lamport | On interprocess communication; part I and II[END_REF] from regular to atomic registers to conclude: Theorem 17 There is a non blocking emulation of SWMR registers for n processes from n MWMR registers.

Lower bound

We prove in this section that we cannot emulate SWMR registers for n processes with less than n MWMR registers.

Lemma 18 SWMR registers for n processes cannot be emulated with n -1 MWMR registers.

Proof.

Consider a set of n processes p 1 , . . . , p n . By contradiction, assume we can emulate the SWMR system with (n -1)-MWMR atomic registers. We construct inductively a run e where this assumption is not satisfied. For this we construct by induction on k a partial run e k and a set R k of k registers each being covered by processes p 1 , . . . , p k .

(k = 1) : In e 1 only process p 1 takes steps and its code is write(p 1 , p 1). Claim: p 1 has to write in some register. Proof. By contradiction assume p 1 does not write in any register and assume the code of p n is read(p 1). Once p 1 ends its write, p n takes steps and does not find any value written by p 1 , contradicting the semantics of a register.

In e 1 , only p 1 takes steps and stops just before its first writing of a register, say R 1 . Then p 1 covers R 1 and R 1 = {R}.

(k < n -1) : By induction let e k be such that {p 1 , • • • , p k } covers each register in the set of k registers R k . Run e k+1 extends partial run e k for the process p k+1 that executes the code write(p k+1 , p k+1). Claim: p k+1 has to write in some register not in R k . Proof. By contradiction assume p k+1 does not write any register not in R k and assume the code of p n is read(p k+1). p k+1 ends its write and has only written registers in R k , then each process in {p 1 , . . . , p k } executes one step and overrides each register in R k . Then p n executes the code for read(p k+1). But this execution is indistinguishable (for all processes different from p k+1) from one in which p k+1 does not make any write and the read may not return the value written by p k+1 .

In e k+1 , p k+1 takes steps and stops before writing a register that is not in R k , say R k+1 . Then

p k+1 covers R k+1 . Define R k+1 = R k ∪ R k+1 .
When k = n-1, R n-1 contains all the MWMR registers. Now, consider process p n and assume it runs the code write(p n , p n). Run e n is an extension of e n -1 in which p n takes steps until it ends its write and takes no other steps. Each process executes one step and overrides each register in R n-1 . At this point the value written by p n is not in the local memory of any process (except p n) and in particular it is not in the local memory of p 1 . Then p 1 ends its write(p 1 , p 1), at the end of this write, the value written by p n is not in any MWMR registers and the run is indistinguishable (for all processes different from p n) from the same run in which p n does not take any write. Now if p 1 runs read(p n), p 1 cannot get the value written by p n .

Wait-free emulation of SWMR registers

The previous emulation is only non-blocking. Using 3n -1 MWMR registers with help of the simulation of n non-blocking SWMR registers it is easy to simulate n wait-free SWMR registers. For this, the 3n -1 registers are partitioned into a set W of n registers and a set P R of 2n-1 registers. The n MWMR registers of W are used to (non-blocking) simulate n SWMR register with the algorithm of Figure 3. With these n SWMR registers we can run a renaming algorithm [START_REF] Attiya | Renaming in an asynchronous environment[END_REF][START_REF] Borowsky | Immediate atomic snapshots and fast renaming[END_REF]. In fact as such an algorithm always terminates in a finite number of steps it is easy to verify that the non-blocking simulation is enough to ensure that the renaming terminates. Hence each process p of the n processes gets an unique identity id(p) in the set {1, • • • , 2n -1}. To write a value v, p will write in the id(p)th register of P R. As p is the unique writer the simulation is wait-free. But it is possible to reduce the number of MWMR registers to 2n -1. In the algorithm we propose we eventually get an unique identity in the set {1, . . . , n}.

Shared variable :

array of n -1 MWMR-register : W array of n + 1 MWMR-register : PR Local variable: set of Values V iew = ∅ //V iew.proc: set of processes in V iew ordered by names //U pdate, Scan: wait-free snapshot Code for process p init k=0; write(p, x): We present first an algorithm with 2n MWMR registers. The algorithm of Figure 4 has a structure similar to the previous algorithms. Each process maintains a variable V iew containing all information it knows. Here the processes access shared variables using wait free snapshot by means of primitives U pdate and Scan. Implementations of such primitives are described for example in [START_REF] Afek | Atomic snapshots of shared memory[END_REF].

1 v = (x, p, k) 2 next = 0 3 nextReg = W [next] 4 V iew = V iew ∪ {v} 5 N ame = index of p in V iew.proc 6 do 7 Snap = Scan() /*of W and P R*/ 8 V iew = Snap ∪ V iew 9 if (Snap[card(V iew.proc)] = ⊥) then 10 N ame = index of p in V iew.proc 11 U pdate(P R[card(V iew.proc)], V iew)
For a set V of values V.proc denotes the list of all processes occurring in V (process q occurs in V if there is any v = (x, q, s) in V). For conve-nience all the lists of processes are ordered by process identities. The index of process p in an ordered list of processes is the rank of p in the list. Indexes begins on 0, for example, for 1, 3, 8, 15 the index of 1 is 0 and index of 3 is 1.

In the algorithm the processes share an array W (Working registers) of n -1 MWMRregisters (W [0], . . . , W [n -2]) and an array PR (Personal Registers) of n + 1 MWMR-registers (P R[0], . . . , P R[n]).

Personal registers play a double part: they give the supposed number of participants and give a personal register for each participant. For this, the last cell different from ⊥ gives the supposed number and list of participants: if P R[a] is this last cell then the supposed number of participants is a and the list of participants is P R[a].proc. In the ordered list of assumed participants process p determines its index (variable N ame) and will consider P R[N ame] as its personal register (Lines 5 and 10).

As usual to write a value x (assuming it is the kth), a process adds v = (x, p, k) to its V iew and successively writes (by U pdate and after updating its V iew by Scan in Line 8) to the n -1 registers W (Line 14) and in its personal register P R[N ame](Line 13). But it has to check that its N ame is correct. After each Scan a process will verify that the number of participants corresponds to the contents of P R registers (Line 9): if the number of participants is a then P R[a] must be the last cell different from ⊥. If it is the case, its N ame is up to date and it writes the next register (Line 13 and 14). If it not the case, the index of the last non ⊥ cell in P R is less than the number of participants that p has seen, then p writes in the correct cell of P R (P R[a] if a is the number of participants seen by p) (Line 11) and determine its new index N ame in its list (Line 10).

As before the write terminates when v is in at least n registers (condition in Line 16): when v is in n registers at least one of these registers is not covered. Roughly speaking, write is wait-free because eventually the last cell distinct of ⊥ will correspond to the actual number of participants, and the list of participants in this cell will be the actual list of all participants, hence processes will have a personal register in which it will be alone to write.

The same arguments proving the safety properties of the non-blocking algorithm of Figure 3 apply here (essentially the write of v terminates when v is in at least n registers by a non covering argument then v will be returned by all Scan). Then we restrict ourselves to prove the wait-freedom.

For each register r, r.proc is the list of all processes occurring in r.

Lemma 19 There is a time after which each register r of P R[0], ..., P R[n -1] is written by at most one process.

Proof. Let max be the greatest i such that P R[i] = ⊥. By definition of the index, max may not be the N ame of any register, then P R[max] may only be written by processes in Line 11 for which for the previous Scan P R [max] was ⊥. Hence this register is written only a finite number of time. Consider time τ after which only processes that make an infinite number of Scan/U pdate take steps and after which P R[max] is no more written. Claim There are a set P articipant of size max and a time σ > τ after which: (1) P R[max].proc = P articipant and (2) for every process p that makes an infinite number of Scan/U pdate, V iew p .proc = P articipant.

Proof.

Let P articipant be the value of P R[max].proc a time τ .

Let p be a process that makes an infinite number of Scan/U pdate, p will make some Scan after time τ getting P R[max]. Then there is a time τ p after which P R[max].proc ⊆ V iew p .proc. Then P R[max].proc = V iew p .proc is equivalent to max = card(V iew p .proc). If P articipant = P R[max].proc = V iew p .proc then max < card(V iew p .proc) and p will write in P R[card(V iew p .proc)] contradicting the definition of P R[max]. Let time σ be max of τ p for all p making an infinite number of Scan/U pdate, after time σ conditions (1) and (2) of the claim are satisfied.

Let i such that 0 ≤ i ≤ n and assume that P R[i] is written after time σ, then by definition of max, we can assume that 0 ≤ i < max. If, after time σ > τ , some q writes P R[i], by definition of τ , this process makes an infinite number of Scan/U pdate. By the claim, V iew q .proc = P articipant, and if q writes in P R[i] that means that the index of q in P articipant is i and as each process making an infinity of Scan/U pdate has an unique index in P articipant, q is the only writer of P R[i].

Lemma 20 The algorithm in Figure 4 emulates wait-free n SWMR registers with 2n MWMR registers for n processes.

Proof. We prove only the wait-freedom. Assume a process p that takes an infinite number of steps tries to write v = (x, p, k) in its register and does not succeed. Then (v, p, k) in inserted in V iew p and by Lemma 1, (v, p, k) remains forever in V iew p By the algorithm, p executes an infinite number of Scan/U pdate and writes V iew p an infinite number of times in at least one register of P R. By Lemma 19, there is a register P R[i] and a time τ after which p writes infinitely often in P R[i] and p is the only writer of P R[i]. Then v will be forever in P R[i]. After time τ , every process q that executes Scan/U pdate reads P R[i] and includes it in its V iew q . Then all processes that write after time τ in some register will write v in this register too. As we assume that the write of p does not terminate, at least p writes in each register of W . Therefore, there is a time after which v will be forever in all the n -1 registers W and in register P R[i], then for any Scan v will be in at least n registers and the write of v ends.

Notice that the information in P R[n] can be easily integrated to P R[n-1]. So we can use only 2n -1 MWMR registers. The shared MWMR registers array W is of size n -1 and array P R is of size n.

Finally, we replace Line 9 to Line 11 from algorithm in Figure 4 with Lines in Figure 5 :

Theorem 21 The algorithm in Figure 5 emulates wait-free n SWMR registers with 2n -1 MWMR-registers for n processes.

Concluding remarks

We have seen how n processes emulate SWMR non-blocking using n-registers and wait-free using 2n -1 MWMR registers. What if we have M processes M >> n (M possibly infinite) but we have the notion of arrivals and departures of processes? Processes have to solve the task only under the condition that the number of processes that invoked the task (arrived) minus the number of processes that obtain an output (departed) is at any point of time less or equal to n. Suppose that we know that a task T is read-write non-blocking (resp. wait-free) solvable in the SWMR model under the assumption of n-concurrency. Can we solve T with just n (resp. 2n -1) MWMR registers, without indefinite postponement, i.e. the step complexity of a process until it gets an output will be, like in the SWMR model, a function of n rather than M ? We observe that the non-blocking simulation is in fact n-concurrent. Thus, for the non-blocking case, the answer is positive. Concerning the wait-free simulation it is more tricky, but we conjecture that the answer is positive too. i

Figure 1 :

 1 Figure 1: Generic algorithm.

6 for i = 1 to m 7 V 9 foreverFigure 2 :

 6792 Figure 2: Broadcast with m MWMR registers

 Shared variable :array of m MWMR-register : R // To ensure non-blocking we assume m ≥ n Local variable: set of Values V iew = ∅ Code for process p init k=0;

Figure 3 :

 3 Figure 3: Non blocking implementation of regular SWMR registers for n processes.

12 else 13 if

 1213 next = n then update(P R[N ame], V iew) 14 else update(W [next], V iew) 15 next = (next + 1) mod (n + 1) 16 until (card{r|v in Snap[r]} ≥ n) 17 k = k + 1 read(q): 18 V iew = Collect()19 return x such that (x, q, u) ∈ V iew with maximal u

Figure 4 :

 4 Figure 4: Wait-free emulation with 2n MWMR registers for n processes.

9. 1 2 NifFigure 5 :

 125 Figure 5: Wait-free emulation with 2n -1 MWMR registers for n processes.

iii A Broadcast: Proof of Theorem 6

If a process takes an infinity number of steps then its Delivers terminate, and the Integrity property is trivial. We now prove the convergence.

Recall that we assume that there is at least one process that takes an infinite number of steps.

Lemma 22 At least one process makes an infinite number of N BScan and all registers are written infinitely often.

Henceforth R ∞ is here the set of all registers.

If all registers contain some set of values V , if the number of processes covering registers with values W such that V ⊆ W is less than m, the number of registers, then V will be forever contained in all registers.

Moreover there is a time after which for all processes p that take an infinite number of steps V ⊆ V iew p .

Proof. If card(Q) < m then by pigeon hole principle at least one register, say R[j], is Vcovered then by Lemma 2, V = V ∩ R[j] τ will be forever in this register. By Lemma 4, eventually V will be in all registers. Then if p takes an infinite number of steps it eventually makes a N BScan that returns a superset of V and by Lemma 1 there is a time after which V is forever in V iew p . Now consider some properties on sets written in registers. From Lemma 1 and the fact that V iew is a subset of the set of initial values and this set is finite we get:

Lemma 24 For all processes p, there is a set V of values such that there is a time after which forever V iew p = V .

A set of values E is said to be stable if E is written infinitely often in some register. By Lemma 22 and the fact that there is a finite set of values, there is at least one stable set.

Then, directly from the definition:

Lemma 25 E is stable if and only if there is a process p that takes an infinite number of steps and a time τ after which we have forever E = V iew p .

As a process writes always some values, a stable set is not the empty set.

Hence, let τ 0 the time after which only stable sets are written in registers.

Stable sets may be ordered by inclusion, for this order a stable set E is minimal if and only if for all stable sets E if E ⊆ E then E = E. As the set of stable sets being finite, minimal stable sets always exist.

Consider a minimal stable set M , and assume a time τ ≥ τ 0 . Let M be the set of processes that take an infinite number of steps that eventually write M in registers. By Lemma 25 at least one process p M that takes an infinite number of steps writes M forever in all registers. Before writing M in some register, p M makes a N BSscan of all registers returning snapshot V . By stability V = M and by minimality of M , for each i we have V [i] = M . Then there is a time σ ≥ τ such that for each i,

Assume by contradiction that there is some stable set X such that X ∩ M = ∅. Let X be the set of such sets, and P be the set of processes that take an infinite number of steps and eventually write in the registers any X ∈ X . From Lemma 23, if card(P) < m, M will be forever in all registers but then card(P) = 0 contradicting the hypothesis. Then we have card(P) ≥ m.

Consider any minimal stable set N in X , by a symmetric argument we prove that if Q is the set of processes that take an infinite number of steps and eventually write stable sets Y such that Y ∩ N = ∅ then card(Q) ≥ m.

As card(Q) ≥ m, card(P) ≥ m, P and Q are disjoint and n < 2m, we get a contradiction.

Hence if n < 2m all stable sets contain M , proving that all Deliver eventually return sets iv all containing M . Moreover, by Lemma 26, there is a value in M , proving the convergence property.