
HAL Id: hal-00717235
https://hal.science/hal-00717235v2

Preprint submitted on 21 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear Space Boostrap Communication Scheme
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Sergio Rajsbaum

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, Sergio Rajsbaum. Linear Space Boostrap
Communication Scheme. 2012. �hal-00717235v2�

https://hal.science/hal-00717235v2
https://hal.archives-ouvertes.fr


Linear Space Bootstrap Communication Schemes

Carole Delporte-Gallet
U. Paris Diderot, France. cd@liafa.univ-paris-diderot.fr

Hugues Fauconnier
U. Paris Diderot, France. hf@liafa.univ-paris-diderot.fr

Eli Gafni
Computer Science Department, UCLA, USA. eli@ucla.edu

Sergio Rajsbaum
Instituto de Matemáticas, UNAM, Mexico. rajsbaum@math.unam.mx

Abstract

We consider a system of n processes with ids
not a priori known, that are drawn from a large
space, potentially unbounded. How can these n
processes communicate to solve a task? We show
that n a priori allocated Multi-Writer Multi-
Reader (MWMR) registers are both needed and
sufficient to solve any read-write wait-free solv-
able task. This contrasts with the existing possi-
ble solution borrowed from adaptive algorithms
that require Θ(n2) MWMR registers.

To obtain these results, the paper shows how
the processes can non-blocking emulate a system
of n Single-Writer Multi-Reader (SWMR) regis-
ters on top of n MWMR registers. It is impossi-
ble to do such an emulation with n− 1 MWMR
registers.

Furthermore, we want to solve a sequence of
tasks (potentially infinite) that are sequentially
dependent (processes need the previous task’s
outputs in order to proceed to the next task).
A non-blocking emulation might starve a process
forever. By doubling the space complexity, using
2n − 1 rather than just n registers, the compu-
tation is wait-free rather than non-blocking.
Keywords: shared memory, read/write reg-
isters, distributed algorithms, wait-free, space
complexity, renaming.

1 Introduction

In many distributed algorithms it is assumed
that the processes, p1, . . . , pn, communicate us-
ing Single-Writer Multi-Reader (SWMR) regis-
ters, R1, . . . , Rn, so pi knows it is the i-th pro-
cess, and can write exclusively to Ri. However,
often processes do not know their indexes, they
know only their ids, and the number of possi-
ble ids N , is much bigger than the number of
processes, n. In this situation, preallocating a
register for each identifier would lead to a dis-
tributed algorithm with a very large space com-
plexity. One would like the processes to run a
renaming algorithm as a preprocessing stage, to
obtain new ids from a smaller range, M(n), that
depends only on n, and then use these ids to
index only M(n) SWMR registers. Several wait-
free renaming algorithms e.g. [6, 12] are known
that reduce the name space to M(n) = 2n − 1
(and this is the best than can be done, except
for some exceptional values of n [14]). However,
if the system did not allocate N SWMR register
to start with, how do the processes communicate
to run the renaming algorithm?

Such a question has been considered in the
context of adaptive computation [7, 8, 25, 2, 4].
In these papers, n is unknown, and moreover pro-
cesses “arrive” and “depart.” When first solving
adaptive renaming to allocate MWMR registers
to processes, they obtain Θ(n2) space complex-



2ity. The first basic question we address here is:
In the most favorable situation, when n is known
and we want to solve is a task, how much space
do we need? Is solving renaming first unavoid-
able?

Recall that a task e.g. [20] is a one shot prob-
lem, where processes start with inputs and after
communicating with each other, must decide on
outputs that satisfy the task’s specification. Fa-
mous examples of tasks are consensus and set
agreement.

We show that indeed it is possible to solve any
read-write wait-free solvable task with nMWMR
registers. To obtain this result, the paper shows
how the processes can non-blocking emulate a
system of n SWMR registers on top of n MWMR
registers. Moreover, as we explain, it is not hard
to prove that no such emulation exists on less
than n MWMR registers.

An application of the non-blocking emulation
is that one can run any SWMR wait-free algo-
rithm that solves a task on n MWMR regis-
ters. In particular, one can run directly a SWMR
(2n − 1)-renaming algorithm such as the one of
[12] on top of n MWMR registers. This is a
significant improvement over the previous adap-
tive Θ(n2) space renaming algorithm, when that
algorithm is instantiated to our context. Ad-
mittedly, the previous renaming algorithm will
actually use fewer than n2 registers but never-
theless since it is apriori unknown how the algo-
rithm will evolve a preallocation of Θ(n2) regis-
ters is necessary. Notice that as the simulation is
non-blocking, a SWMR algorithm that solves a
task on top of the n MWMR registers may incur
some cost in time: a process may not be able to
produce an output value, until another process
finishes the algorithm and exits the emulation.

As said, with n registers we can solve (2n−1)-
renaming, using these new names, with addi-
tional 2n − 1 registers each process can obtain
a dedicated register, and from there on emu-
late a simulated write operation in a wait free-
manner. Are 3n − 1 MWMR necessary to have
a wait-free emulation of a write operation in a
non-terminating environment? We show that a
total of just 2n − 1 MWMR registers is suffi-
cient, describing how the processes can wait-free

emulate a system of n SWMR registers on top
of 2n− 1 MWMR registers. We conjecture that
2n − 1 registers are the minimum possible for
wait-free emulation. The wait-free emulation al-
lows to solve a sequence of tasks (potentially infi-
nite) that are sequentially dependent (processes
need the previous task’s outputs in order to pro-
ceed to the next task). A non-blocking emulation
might starve a process forever. By doubling the
space complexity, using 2n − 1 rather than just
n registers, the computation is wait-free rather
than non-blocking.

The paper also describes an algorithm to
broadcast the value of one of the processes, us-
ing n/2 MWMR registers. The algorithm, which
seems interesting in itself, illustrates the way in-
formation propagates in our emulations. It is
simple, but the proof is subtle.

At the end of the paper we briefly discuss why
we believe our techniques will be useful for dy-
namic systems of bounded concurrency n e.g. [4].
In such a system, any number of processes ar-
rive compute and depart, yet, at any point in
time the number of arrivals exceeds the number
of departures by at most n.

We stress that our interest is in space complex-
ity, our emulations are not particularly efficient
in terms of step complexity. Also, there are vari-
ous previous papers dealing with a similar prob-
lem, but in the adaptive setting. In [10] there
is a definition similar to our emulation problem,
as “store-collect” of a (key,value) problem. An-
other definition of store-collect, by equivalence to
an array (hence more like our problem specifica-
tion) appears in [3]. Similarly, solutions without
explicitly solving renaming first appear in [9], al-
though not very space efficient.

There is a long history of space complexity re-
sults, starting with the mutual exclusion lower
bound of [13] and even before there was interest
in this (see references herein). In this context,
[26] considers renaming with the same motiva-
tion that we do, and shows that 2dlogne+ 1 reg-
isters are sufficient to solve it, and a correspond-
ing lower bound within a constant factor, but
their model is easier than ours. There are vari-
ous algorithms and lower bounds on the number
of registers needed to solve specific problems e.g.



3[15, 16, 18, 25], but we are not aware of gen-
eral emulations. In [23] there is a lower bound
for non-blocking implementations, but it is n−1
registers. In special cases it can be beaten [5].
In [17] a Ω(

√
n) space complexity lower bound

for a randomized nonblocking implementation of
consensus is presented.

2 Model

We assume a standard asynchronous shared-
memory model of computation with n processes
communicating by reading and writing to a fixed
set of shared registers [11, 21]. The processes
have unique ids in {1, . . . , N}, with N >> n.
Processes may take a finite or an infinite number
of steps but we assume that at least one process
takes an infinite number of steps.

The shared memory consists of a set of atomic
Multi-Writer Multi-Readers (MWMR) registers.
We assume that processes can read and write
any MWMR register and these operations are
atomic [19]. For short, we usually omit the term
atomic. If r is such a MWMR register, a process
can write x on r using write(r, x), and read on r
using read(r). A process executes its code taking
three types of atomic steps: the read of a regis-
ter, the write of a register, and the modification
of its local state.

We consider also more powerful operations to
read the registers. A collect is an iterative read
of all registers. A scan returns a snapshot, an
instantaneous view of the registers. In [1], there
are non blocking and wait free linearizable imple-
mentations of the scan. A non-blocking imple-
mentation of scan (NBScan) can be obtained
repeating Collect operations until two of them
return the same values. A scan wait-free imple-
mentation (Scan) is more involved, and has to
embed a snapshot with the write. So in this case
we call the write, update (update(r, v) updates
the register r with the value v).

Two progress conditions that have received
much attention are non-blocking and wait-free.
The non-blocking progress condition states that
when there are concurrent operations at least
one process terminates its operations. The wait-

free [19] progress condition states that each pro-
cess terminates its operations in a bounded num-
ber of its own steps.

We consider also a model in which each pro-
cess has its own atomic Single-Writer Multi-
Reader register (SWMR). Process p can write a
value x in its SWMR register with the operation
write(p, x) and all the processes may read the
value in the SWMR register of p with read(p).

We say that we have a non-blocking (resp.
wait-free) emulation of the n process SWMR
model using m MWMR registers if we imple-
ment write and read in terms of write and
read such that the implementation is linearizable
[22] and the progress condition is non-blocking
(resp. wait free).

A regular SWMR register [24], is a weaker
type of register. A SWMR register is regular if
when no write is concurrent with a read oper-
ation, the read returns the current value in the
register. Otherwise the read returns any value
written by a concurrent write operation or the
last value in the register before the concurrent
writes. With regular SWMR registers it is possi-
ble to wait-free free implement atomic SWMR
register [21, 24]. So to emulate non-blocking
(resp. wait-free) the n process SWMR register
model using m MWMR registers it is enough to
emulate non-blocking (resp. wait-free) n process
model with regular SWMR register model.

3 Preliminaries

We consider algorithms that have the same
structure as algorithm in Figure 1. Processes
share a set R of MWMR registers. Each process
maintains a variable V iew. Each process repeat-
edly reads all registers (function Collect()) and
updates its variable V iew by adding all it has
just read in V iew together with some other val-
ues in variable input, and then writes it in some
registers.

For each R ∈ R, Rτ denotes the value of reg-
ister R at time τ . Similarly, V iewτp denotes the
value of variable V iew of p at time τ .

We say that v is eventually forever inR if there
is a time τ such that for all time τ ′ > τ , v ∈ Rτ ′ .



4
function Collect():
1 V = ∅
2 for all R in R
3 V = V ∪ read(R)
4 return V

main loop:
repeat forever

5 V iew = Collect() ∪ V iew ∪ input
6 Let (deterministically) Reg be some register in R
7 write(Reg, V iew)

Figure 1: Generic algorithm.

We have directly from the algorithm:

Observation 1 For all processes p and for all
times τ and τ ′, if τ < τ ′ then V iewτp ⊆ V iewτ

′
p

Following [13], we say that registerR is covered
by process p at some time τ if the next register
that p writes after time τ is R: more precisely p
covers R at time τ if, at time τ , the next writing
of p (Line 7) is on register R and p has begun the
Collect in Line 5. Note that if p does not cover
R, before writing R, p reads the value of R (by
Collect in Line 5) and then it will write in R at
least this value.

If some register is covered the value of this reg-
ister may be lost. So, by extension, we say that
R is V –covered at time τ if all processes covering
R at time τ are going to write sets containing V
in register R. If R is V -covered at time τ , next
writings contains V (by processes covering R) or
contains Rτ (by processes not covering R that
read R before writing). We have:

Lemma 2 If, at some time τ , register R is V –
covered at time τ then for all τ ′ ≥ τ , (Rτ ∩V ) ⊆
Rτ

′
.

Proof. By induction on the number k of writ-
ings of R made after time τ , we prove that R
contains Rτ ∩ V . For k = 0 it is clear. Consider
any writing of R after time τ and assume this
writing is made, say, by process q. Consider the
two cases:

• either q does not cover R at time τ and then
q makes a Collect before writing R. This

Collect occurs after time τ and by induction
hypothesis it returns a value containing Rτ∩
V . Then process q writes a superset of Rτ ∩
V in register R.

• or q covers R at time τ and V ⊆ V iewp then
q writes a superset of Rτ ∩ V in R.

If no process covers R at time τ , then by defi-
nition R is V -covered for any set V , then by the
previous Lemma after time τ , R contains forever
Rτ . In particular:

Lemma 3 If R is not covered at time τ and v ∈
Rτ then v will be eventually forever in R.

Let R∞ be the set of registers infinitely often
written:

Lemma 4 If v is eventually forever in R then v
is eventually forever in all registers in R∞.

Proof. There is a time τ after which v is for-
ever in R, after this time all Collect contains v
and then all next writing will contain v. Hence
all registers infinity often written will contain
v.

Lemma 5 If at time τ , card{R ∈ R|v ∈ Rτ} ≥
n, then v will be forever in all registers in R∞

Proof. Let X be the set of at least n registers
containing v and p be the last process that wrote
before time τ in any register in X. Just after
this writing p does not cover any register. As we
have n processes, by the pigeon hole principle at
least one register in X is not cover. Then by
Lemma 3, v will be forever in some register and
by Lemma 4, v will be forever in all R∞.

4 Broadcast

We give here a very weak definition of broadcast.
Essentially this definition ensures that the value
of some process will be known by all processes
making an infinity of steps. More precisely, we



5assume that each process p has a value vp to
broadcast, the broadcast is defined by way of
a primitive deliver operation returning a set of
values. The broadcast ensures:

• (integrity) if v belongs to the set of values
returned by some deliver then v = vp for
some process p,

• (convergence) there is a value v and a time
τ after which every set returned by any
deliver contains v.

Code for process p

Shared variable :
array of m MWMR register : R

Local variable:
set of Values V iew = {vp}
set of Values Deliver = ∅

function Collect():
1 variable: set of Values V = ∅
2 for i from 1 to m do
3 V = V ∪ read(R[i])
4 return V

Task main:
5 repeat forever
6 for i = 1 to m
7 V iew = V iew ∪NBScan();
8 write(R[i], V iew)

Task Deliver:
9 forever Deliver = Collect()

Figure 2: Broadcast with m MWMR registers

Here processes share m MRMW registers R[i],
1 ≤ i ≤ m and write successively each register.

The algorithm of Figure 2 is a simple applica-
tion of the generic algorithm of Figure 1. But
here in, the main loop, we use a non-blocking
scan NBScan instead of Collect. NBScan()
returns V , a snapshot of the registers, such
that there is a time τ such that R[i]τ = V [i].
NBScan() is only assumed to be non-blocking.
Implementation of such non-blocking snapshot
is easy [1]. As NBScan is a particular form of
Collect all previous Lemmata from Section 3 ap-
ply. For a snapshot V , V [i] is the value returned

for register R[i] and abusing notation, V may
denote ∪1≤i≤mV [i].

A Deliver reads all the registers and returns
the union of the values read in the registers.
Note, using Collect() that Deliver always ter-
minate. We prove the main property:

Theorem 6 Algorithm of Figure 2 implements
broadcast if m > n

2

The proof is rather subtle, it is in Ap-
pendix A.

5 Non-Blocking emulation of
SWMR registers

We first describe the emulation, and then the
lower bound, in Section 5.2.

5.1 The algorithm

The algorithm in Figure 3 is a non-blocking em-
ulation of regular SWMR registers for n pro-
cesses using an array R of m MWMR registers,
if m ≥ n.

In the following to distinguish between the
writings of MWMR registers and the emulation
of SWMR writings, we denote the first ones us-
ing lower case and the second ones with upper
case. To make its k-write, a process p adds the
value to write (in fact the value, its identity
and its timestamp k) to its variable V iew. The
write ends when the value to be written is in
all the m registers. A read of value written
by process q collects the values present in regis-
ters and returns the value from q with a maximal
timestamp among all the values from q.

As in the generic algorithm of Figure 1, each
process p maintains a variable V iew contain-
ing all the information it knows. Iteratively,
each process reads all the m registers by a non-
blocking scan and accordingly updates its vari-
able V iew before writing it in the next register in
cyclic order. The write of v terminates as soon
as v is in n registers. Here instead of Collect, we
use NBScan, a non blocking Scan, as described
in Section 2.



6
Shared variable :

array of m MWMR-register : R

// To ensure non-blocking we assume m ≥ n
Local variable:

set of Values V iew = ∅
Code for process p

init k=0;

//NBScan returns a snapshot of the shared memory
write(p, x):
1 v = (x, p, k)
2 next = 0
3 V iew = V iew ∪ {v}
4 do
5 Snap = NBScan()
6 V iew = Snap ∪ V iew
7 write(R[next], V iew)
8 next = (next+ 1) mod m
9 until (card{r|v in Snap[r]} ≥ n)
10 k = k + 1

read(q):
11 V iew = Collect()
12 return x such that (x, q, u) ∈ V iew with maximal u

Figure 3: Non blocking implementation of regu-
lar SWMR registers for n processes.

The main point here is that as we have n pro-
cesses and at least n registers then at least one
register will not be covered and then all the val-
ues contained in this register will eventually be
present in all registers and will remain forever in
all registers. Hence as soon as a value is present
in all registers the write is terminated because
afterwards the Collect of every read will con-
tain this value.

First we prove the safety properties of the im-
plementation of regular register.

We say that the write of v succeeds at time
τ if there is some register such that after time τ ,
v is forever in this register. By extension, we say
that the write of v succeeds if there is a time
at which the write of v succeeds or equivalently
if v is eventually forever in R. Directly from the
algorithm we get the following lemmas:

Lemma 7 Let v = (x, p, k) and v′ = (y, p, k′)
such that k ≥ k′, if v succeeds at time τ , then v′

succeeds at time τ too.

By Lemma 4 and the code of the algorithm:

Lemma 8 If the write of v succeeds at time τ ,
after this time v is returned by every Collect.

Lemma 9 Let S be the set of all values (x, p, k)
that succeed at time τ and K the maximal k over
all (x, p, k) in S, then read of p returns the
value v = (x, p, k) ∈ S with k ≥ K maximal.

From Lemma 5:

Lemma 10 If at some time τ , v is in n regis-
ters, then the write of v succeeds at time τ .

Lemma 11 (safety) Any read(p) returns the
last value x such that write(p, x) terminates be-
fore the beginning of the read, or a value x such
that write(p, x) is concurrent with the read.

Proof. Assume x is the kth write of p, let v
be (x, p, k). Consider any read(p) and let E be
the set of values returned by the Collect made
for this read. By Lemma 8 all values for which
the write has succeeded are in E. write(p, x)
returns when, for a NBScan (Line 5), v be-
longs to n registers (Line 9) at some time. Then
by Lemma 10, v succeeds by the time of the
NBScan and E contains all values for which the
write has terminated. Lemma 9 proves that the
value returned by the read(p) is either the last
value for which the write by p has terminated
or a value for which the write is concurrent.

Now we prove that the algorithm is non-
blocking. First as Collect is wait-free, any read
is wait-free too:

Lemma 12 Any read made by a process that
takes an infinite number of steps terminates.

By Lemma 4, and the fact that the write ends
when the value is in all registers:

Lemma 13 Assume the registers are written in-
finitely often, if the write of v succeeds then v
will eventually be forever in all registers and if
the process that writes v takes an infinite num-
ber of steps, the write terminates.



7Lemma 14 If the registers are written infinitely
often then an infinity of write terminate.

Proof. By contradiction assume the contrary:
there is a time τ after which no write termi-
nates. When a process has terminated all its
writes it stops writing the registers, then there
is at least one process that takes an infinite num-
ber of steps and does not terminate the write of
some v. By Lemma 13, there is time at which all
registers will contain values for which the write
is not terminated. By pigeon hole principle one
of these registers is not covered and contains a
value for which the write is not terminated, by
Lemma 3 the write of this value succeeds, and
by Lemma 13, the write of this value terminates
–a contradiction.

If after some time there is no writing of the
registers, being non-blocking any NBScan re-
turns:

Lemma 15 If some process that takes an in-
finite number of steps is stuck forever on a
NBScan then the registers are written infinitely
often.

Lemma 16 (non-blocking) If m ≥ n, and the
write of v by a process p that takes an infi-
nite number of steps does not terminate, then
infinitely often some writes terminate.

Proof. By contradiction, assume that the
write of some process p that takes an infinite
number of steps does not terminate and only
a finite number of writes occurs. Then by
Lemma 14, there is a time after which no regis-
ters are written and by Lemma 15, p may not be
stuck on a NBScan and hence p makes progress
in its code and hence writes registers infinitely
often. By Lemma 14 an infinity of write termi-
nates —a contradiction

Lemmas 11 and 16 prove that the algorithm in
Figure 3 is a non blocking emulation of regular
SWMR registers for n processes from n MWM-
Rregisters. We now use the classical wait free
transformation [21, 24] from regular to atomic
registers to conclude:

Theorem 17 There is a non blocking emula-
tion of SWMR registers for n processes from n
MWMR registers.

5.2 Lower bound

We prove in this section that we cannot emulate
SWMR registers for n processes with less than n
MWMR registers.

Lemma 18 SWMR registers for n processes
cannot be emulated with n− 1 MWMR registers.

Proof. Consider a set of n processes
p1, . . . , pn. By contradiction, assume we can em-
ulate the SWMR system with (n − 1)-MWMR
atomic registers. We construct inductively a run
e where this assumption is not satisfied. For this
we construct by induction on k a partial run ek
and a set Rk of k registers each being covered by
processes p1, . . . , pk.

(k = 1) : In e1 only process p1 takes steps and
its code is write(p1, p1).

Claim: p1 has to write in some register.

Proof. By contradiction assume p1 does not
write in any register and assume the code of pn
is read(p1). Once p1 ends its write, pn takes
steps and does not find any value written by p1,
contradicting the semantics of a register.

In e1, only p1 takes steps and stops just before
its first writing of a register, say R1. Then p1
covers R1 and R1 = {R}.
(k < n − 1) : By induction let ek be such that
{p1, · · · , pk} covers each register in the set of
k registers Rk. Run ek+1 extends partial run
ek for the process pk+1 that executes the code
write(pk+1, pk+1).

Claim: pk+1 has to write in some register not
in Rk.

Proof. By contradiction assume pk+1 does not
write any register not in Rk and assume the code
of pn is read(pk+1). pk+1 ends its write and
has only written registers in Rk, then each pro-
cess in {p1, . . . , pk} executes one step and over-
rides each register in Rk. Then pn executes the
code for read(pk+1). But this execution is in-
distinguishable (for all processes different from



8pk+1) from one in which pk+1 does not make any
write and the read may not return the value
written by pk+1.

In ek+1, pk+1 takes steps and stops before writ-
ing a register that is not in Rk, say Rk+1. Then
pk+1 covers Rk+1. Define Rk+1 = Rk ∪Rk+1.

When k = n−1,Rn−1 contains all the MWMR
registers. Now, consider process pn and assume
it runs the code write(pn, pn). Run en is an ex-
tension of en − 1 in which pn takes steps until it
ends its write and takes no other steps. Each
process executes one step and overrides each reg-
ister in Rn−1. At this point the value written
by pn is not in the local memory of any process
(except pn) and in particular it is not in the local
memory of p1. Then p1 ends its write(p1, p1),
at the end of this write, the value written by
pn is not in any MWMR registers and the run is
indistinguishable (for all processes different from
pn) from the same run in which pn does not take
any write. Now if p1 runs read(pn), p1 cannot
get the value written by pn.

6 Wait-free emulation of
SWMR registers

The previous emulation is only non-blocking.
Using 3n − 1 MWMR registers with help of the
simulation of n non-blocking SWMR registers it
is easy to simulate n wait-free SWMR registers.
For this, the 3n−1 registers are partitioned into
a set W of n registers and a set PR of 2n−1 reg-
isters. The n MWMR registers of W are used to
(non-blocking) simulate n SWMR register with
the algorithm of Figure 3. With these n SWMR
registers we can run a renaming algorithm [6, 12].
In fact as such an algorithm always terminates in
a finite number of steps it is easy to verify that
the non-blocking simulation is enough to ensure
that the renaming terminates. Hence each pro-
cess p of the n processes gets an unique identity
id(p) in the set {1, · · · , 2n − 1}. To write a
value v, p will write in the id(p)th register of
PR. As p is the unique writer the simulation is
wait-free. But it is possible to reduce the number

of MWMR registers to 2n− 1. In the algorithm
we propose we eventually get an unique identity
in the set {1, . . . , n}.

Shared variable :
array of n− 1 MWMR-register : W
array of n+ 1 MWMR-register : PR

Local variable:
set of Values V iew = ∅

//V iew.proc: set of processes in V iew ordered by names
//Update, Scan: wait-free snapshot
Code for process p

init k=0;

write(p, x):
1 v = (x, p, k)
2 next = 0
3 nextReg = W [next]
4 V iew = V iew ∪ {v}
5 Name = index of p in V iew.proc
6 do
7 Snap = Scan() /*of W and PR*/
8 V iew = Snap ∪ V iew
9 if (Snap[card(V iew.proc)] = ⊥) then
10 Name = index of p in V iew.proc
11 Update(PR[card(V iew.proc)], V iew)
12 else
13 if next = n then update(PR[Name], V iew)
14 else update(W [next], V iew)
15 next = (next+ 1) mod (n+ 1)
16 until (card{r|v in Snap[r]} ≥ n)
17 k = k + 1

read(q):
18 V iew = Collect()
19 return x such that (x, q, u) ∈ V iew with maximal u

Figure 4: Wait-free emulation with 2n MWMR
registers for n processes.

We present first an algorithm with 2n MWMR
registers. The algorithm of Figure 4 has a struc-
ture similar to the previous algorithms. Each
process maintains a variable V iew containing all
information it knows. Here the processes ac-
cess shared variables using wait free snapshot by
means of primitives Update and Scan. Imple-
mentations of such primitives are described for
example in [1].

For a set V of values V.proc denotes the list of
all processes occurring in V (process q occurs in
V if there is any v = (x, q, s) in V ). For conve-



9nience all the lists of processes are ordered by
process identities. The index of process p in
an ordered list of processes is the rank of p in
the list. Indexes begins on 0, for example, for
1, 3, 8, 15 the index of 1 is 0 and index of 3 is 1.

In the algorithm the processes share an ar-
ray W (Working registers) of n − 1 MWMR-
registers (W [0], . . . ,W [n − 2]) and an array PR
(Personal Registers) of n + 1 MWMR-registers
(PR[0], . . . , PR[n]).

Personal registers play a double part: they
give the supposed number of participants and
give a personal register for each participant. For
this, the last cell different from ⊥ gives the sup-
posed number and list of participants: if PR[a]
is this last cell then the supposed number of
participants is a and the list of participants is
PR[a].proc. In the ordered list of assumed par-
ticipants process p determines its index (variable
Name) and will consider PR[Name] as its per-
sonal register (Lines 5 and 10).

As usual to write a value x (assuming it is
the kth), a process adds v = (x, p, k) to its V iew
and successively writes (by Update and after up-
dating its V iew by Scan in Line 8) to the n− 1
registers W (Line 14) and in its personal regis-
ter PR[Name](Line 13). But it has to check that
its Name is correct. After each Scan a process
will verify that the number of participants corre-
sponds to the contents of PR registers (Line 9):
if the number of participants is a then PR[a]
must be the last cell different from ⊥. If it is
the case, its Name is up to date and it writes
the next register (Line 13 and 14). If it not
the case, the index of the last non ⊥ cell in PR
is less than the number of participants that p
has seen, then p writes in the correct cell of PR
(PR[a] if a is the number of participants seen by
p) (Line 11) and determine its new index Name
in its list (Line 10).

As before the write terminates when v is in at
least n registers (condition in Line 16): when v is
in n registers at least one of these registers is not
covered. Roughly speaking, write is wait-free
because eventually the last cell distinct of ⊥ will
correspond to the actual number of participants,
and the list of participants in this cell will be the
actual list of all participants, hence processes will

have a personal register in which it will be alone
to write.

The same arguments proving the safety prop-
erties of the non-blocking algorithm of Figure 3
apply here (essentially the write of v terminates
when v is in at least n registers by a non cov-
ering argument then v will be returned by all
Scan). Then we restrict ourselves to prove the
wait-freedom.

For each register r, r.proc is the list of all pro-
cesses occurring in r.

Lemma 19 There is a time after which each
register r of PR[0], ..., PR[n − 1] is written by
at most one process.

Proof. Let max be the greatest i such that
PR[i] 6= ⊥. By definition of the index, max
may not be the Name of any register, then
PR[max] may only be written by processes in
Line 11 for which for the previous Scan PR[max]
was ⊥. Hence this register is written only a
finite number of time. Consider time τ after
which only processes that make an infinite num-
ber of Scan/Update take steps and after which
PR[max] is no more written.
Claim There are a set Participant of size
max and a time σ > τ after which: (1)
PR[max].proc = Participant and (2) for ev-
ery process p that makes an infinite number of
Scan/Update, V iewp.proc = Participant.
Proof. Let Participant be the value of
PR[max].proc a time τ .

Let p be a process that makes an infinite
number of Scan/Update, p will make some
Scan after time τ getting PR[max]. Then
there is a time τp after which PR[max].proc ⊆
V iewp.proc. Then PR[max].proc 6= V iewp.proc
is equivalent to max 6= card(V iewp.proc). If
Participant = PR[max].proc 6= V iewp.proc
then max < card(V iewp.proc) and p will write
in PR[card(V iewp.proc)] contradicting the defi-
nition of PR[max]. Let time σ be max of τp for
all p making an infinite number of Scan/Update,
after time σ conditions (1) and (2) of the claim
are satisfied.

Let i such that 0 ≤ i ≤ n and assume that
PR[i] is written after time σ, then by definition



10of max, we can assume that 0 ≤ i < max. If,
after time σ > τ , some q writes PR[i], by defini-
tion of τ , this process makes an infinite number
of Scan/Update. By the claim, V iewq.proc =
Participant, and if q writes in PR[i] that means
that the index of q in Participant is i and as
each process making an infinity of Scan/Update
has an unique index in Participant, q is the only
writer of PR[i].

Lemma 20 The algorithm in Figure 4 emulates
wait-free n SWMR registers with 2n MWMR reg-
isters for n processes.

Proof. We prove only the wait-freedom. As-
sume a process p that takes an infinite number of
steps tries to write v = (x, p, k) in its register
and does not succeed. Then (v, p, k) in inserted
in V iewp and by Lemma 1, (v, p, k) remains for-
ever in V iewp

By the algorithm, p executes an infinite num-
ber of Scan/Update and writes V iewp an infi-
nite number of times in at least one register of
PR. By Lemma 19, there is a register PR[i]
and a time τ after which p writes infinitely of-
ten in PR[i] and p is the only writer of PR[i].
Then v will be forever in PR[i]. After time τ , ev-
ery process q that executes Scan/Update reads
PR[i] and includes it in its V iewq. Then all pro-
cesses that write after time τ in some register
will write v in this register too. As we assume
that the write of p does not terminate, at least
p writes in each register of W . Therefore, there
is a time after which v will be forever in all the
n− 1 registers W and in register PR[i], then for
any Scan v will be in at least n registers and the
write of v ends.

Notice that the information in PR[n] can be
easily integrated to PR[n−1]. So we can use only
2n − 1 MWMR registers. The shared MWMR
registers array W is of size n − 1 and array PR
is of size n.

Finally, we replace Line 9 to Line 11 from al-
gorithm in Figure 4 with Lines in Figure 5 :

Theorem 21 The algorithm in Figure 5 emu-
lates wait-free n SWMR registers with 2n − 1
MWMR-registers for n processes.

9.1 if Name 6= index of p in V iew.proc then
9.2 Name = index of p in V iew.proc
9.3 if (card(V iew.proc) = n

and card(PR[n− 1].proc) = n− 1)
or (card(V iew.proc) < n

and Snap[card(V iew.proc)] = ⊥))
9.4 then
9.5 if (card(V iew.proc) = n) then
9.6 update(PR[n− 1], V iew)
9.7 else
11 update(PR[card(V iew.proc)], V iew)

Figure 5: Wait-free emulation with 2n − 1
MWMR registers for n processes.

7 Concluding remarks

We have seen how n processes emulate SWMR
non-blocking using n-registers and wait-free us-
ing 2n − 1 MWMR registers. What if we have
M processes M >> n (M possibly infinite) but
we have the notion of arrivals and departures
of processes? Processes have to solve the task
only under the condition that the number of
processes that invoked the task (arrived) minus
the number of processes that obtain an output
(departed) is at any point of time less or equal
to n. Suppose that we know that a task T is
read-write non-blocking (resp. wait-free) solv-
able in the SWMR model under the assumption
of n-concurrency. Can we solve T with just n
(resp. 2n− 1) MWMR registers, without indefi-
nite postponement, i.e. the step complexity of a
process until it gets an output will be, like in the
SWMR model, a function of n rather than M?

We observe that the non-blocking simulation is
in fact n-concurrent. Thus, for the non-blocking
case, the answer is positive. Concerning the
wait-free simulation it is more tricky, but we con-
jecture that the answer is positive too.



iReferences

[1] Yehuda Afek, Hagit Attiya, Danny Dolev,
Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. Jour-
nal of the ACM, 40(4):873–890, 1993.

[2] Yehuda Afek and Yaron De Levie. Ef-
ficient adaptive collect algorithms. Dis-
tributed Computing, 20:221–238, 2007.

[3] Yehuda Afek, Gideon Stupp, and Dan
Touitou. Long-lived adaptive collect with
applications. In Proceedings of FOCS,
FOCS ’99, pages 262–272. IEEE, 1999.

[4] Marcos K. Aguilera. A pleasant stroll
through the land of infinitely many crea-
tures. SIGACT News, 35(2):36–59, June
2004.

[5] James Aspnes, Hagit Attiya, and Keren
Censor-Hillel. Polylogarithmic concurrent
data structures from monotone circuits. J.
ACM, 59(1):2:1–2:24, March 2012.

[6] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg,
and R. Reischuk. Renaming in an asyn-
chronous environment. Journal of the ACM,
37(3):524–548, 1990.

[7] Hagit Attiya and Arie Fouren. Polynominal
and adaptive long-lived (2k-1)-renaming. In
Proceedings of the 14th International Con-
ference on Distributed Computing, DISC
’00, pages 149–163, London, UK, UK, 2000.
Springer-Verlag.

[8] Hagit Attiya and Arie Fouren. Adaptive
and efficient algorithms for lattice agree-
ment and renaming. SIAM J. Comput.,
31(2):642–664, February 2002.

[9] Hagit Attiya and Arie Fouren. Algorithms
adapting to point contention. J. ACM,
50(4):444–468, July 2003.

[10] Hagit Attiya, Arie Fouren, and Eli Gafni.
An adaptive collect algorithm with applica-
tions. Distributed Computing, 15(2):87–96,
July 2002.

[11] Hagit Attiya and Jennifer Welch. Dis-
tributed Computing. Fundamentals, Simula-
tions, and Advanced Topics. John Wiley &
Sons, 2004.

[12] Elizabeth Borowsky and Eli Gafni. Imme-
diate atomic snapshots and fast renaming.
In PODC, pages 41–51. ACM Press, 1993.

[13] James E. Burns and Nancy A. Lynch.
Bounds on shared memory for mutual exclu-
sion. Inf. Comput., 107(2):171–184, 1993.

[14] Armando Castañeda and Sergio Rajsbaum.
New combinatorial topology bounds for re-
naming: the lower bound. Distributed Com-
puting, 22(5-6):287–301, 2010.

[15] Panagiota Fatourou, Faith Fich, and Eric
Ruppert. Space-optimal multi-writer snap-
shot objects are slow. In Proceedings of the
twenty-first annual symposium on Princi-
ples of distributed computing, PODC ’02,
pages 13–20, New York, NY, USA, 2002.
ACM.

[16] Panagiota Fatourou, Faith Ellen Fich, and
Eric Ruppert. Time-space tradeoffs for im-
plementations of snapshots. In Proceedings
of the thirty-eighth annual ACM symposium
on Theory of computing, STOC ’06, pages
169–178, New York, NY, USA, 2006. ACM.

[17] Faith Fich, Maurice Herlihy, and Nir Shavit.
On the space complexity of randomized
synchronization. J. ACM, 45(5):843–862,
September 1998.

[18] Maryam Helmi, Lisa Higham, Eduardo
Pacheco, and Philipp Woelfel. The space
complexity of long-lived and one-shot times-
tamp implementations. In Proceedings of
the 30th annual ACM SIGACT-SIGOPS
symposium on Principles of distributed com-
puting, PODC ’11, pages 139–148, New
York, NY, USA, 2011. ACM.

[19] Maurice Herlihy. Wait-free synchronization.
ACM Transactions on Programming Lan-
guages and Systems, 13(1):123–149, Jan-
uary 1991.



ii[20] Maurice Herlihy and Nir Shavit. The
topological structure of asynchronous com-
putability. Journal of the ACM, 46(2):858–
923, 1999.

[21] Maurice Herlihy and Nir Shavit. The Art
of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[22] Maurice Herlihy and Jeannette M. Wing.
Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, 1990.

[23] Prasad Jayanti, King Tan, and Sam Toueg.
Time and space lower bounds for nonblock-
ing implementations. SIAM J. Comput.,
30(2):438–456, April 2000.

[24] Leslie Lamport. On interprocess communi-
cation; part I and II. Distributed Comput-
ing, 1(2):77–101, 1986.

[25] Mark Moir. Fast, long-lived renaming im-
proved and simplified. Sci. Comput. Pro-
gram., 30(3):287–308, March 1998.

[26] E. Styer and G. L. Peterson. Tight bounds
for shared memory symmetric mutual ex-
clusion problems. In Proceedings of the
eighth annual ACM Symposium on Princi-
ples of distributed computing, PODC ’89,
pages 177–191, New York, NY, USA, 1989.
ACM.



iiiA Broadcast: Proof of Theo-
rem 6

If a process takes an infinity number of steps then
its Delivers terminate, and the Integrity prop-
erty is trivial. We now prove the convergence.

Recall that we assume that there is at least one
process that takes an infinite number of steps.

Lemma 22 At least one process makes an in-
finite number of NBScan and all registers are
written infinitely often.

Henceforth R∞ is here the set of all registers.

If all registers contain some set of values V , if
the number of processes covering registers with
values W such that V 6⊆ W is less than m, the
number of registers, then V will be forever con-
tained in all registers.

Lemma 23 If at some time τ , let V ⊆⋂
1≤j≤mR[j]τ and let Q = {q ∈ Π|V 6⊆ V iewτq },

if card(Q) < m then there is a time τ ′′ > τ such
that for all τ ′ > τ ′′, V ⊆

⋂
1≤j≤mR[j]τ

′
.

Moreover there is a time after which for all
processes p that take an infinite number of steps
V ⊆ V iewp.

Proof. If card(Q) < m then by pigeon hole
principle at least one register, say R[j], is V –
covered then by Lemma 2, V = V ∩R[j]τ will be
forever in this register. By Lemma 4, eventually
V will be in all registers. Then if p takes an
infinite number of steps it eventually makes a
NBScan that returns a superset of V and by
Lemma 1 there is a time after which V is forever
in V iewp.

Now consider some properties on sets written
in registers. From Lemma 1 and the fact that
V iew is a subset of the set of initial values and
this set is finite we get:

Lemma 24 For all processes p, there is a set V
of values such that there is a time after which
forever V iewp = V .

A set of values E is said to be stable if E is
written infinitely often in some register. By

Lemma 22 and the fact that there is a finite set
of values, there is at least one stable set.

Then, directly from the definition:

Lemma 25 E is stable if and only if there is a
process p that takes an infinite number of steps
and a time τ after which we have forever E =
V iewp.

As a process writes always some values, a sta-
ble set is not the empty set.

Lemma 26 If E is stable then E 6= ∅.

Hence, let τ0 the time after which only stable
sets are written in registers.

Stable sets may be ordered by inclusion, for
this order a stable set E is minimal if and only if
for all stable sets E′ if E′ ⊆ E then E′ = E. As
the set of stable sets being finite, minimal stable
sets always exist.

Consider a minimal stable set M , and assume
a time τ ≥ τ0. LetM be the set of processes that
take an infinite number of steps that eventually
write M in registers. By Lemma 25 at least one
process pM that takes an infinite number of steps
writes M forever in all registers. Before writing
M in some register, pM makes a NBSscan of
all registers returning snapshot V . By stability
V = M and by minimality of M , for each i we
have V [i] = M . Then there is a time σ ≥ τ ′ such
that for each i, 1 ≤ i ≤ m, we have R[i]σ = M .

Assume by contradiction that there is some
stable set X such that X ∩M = ∅. Let X be the
set of such sets, and P be the set of processes
that take an infinite number of steps and even-
tually write in the registers any X ∈ X . From
Lemma 23, if card(P) < m, M will be forever in
all registers but then card(P) = 0 contradicting
the hypothesis. Then we have card(P) ≥ m.

Consider any minimal stable set N in X , by
a symmetric argument we prove that if Q is the
set of processes that take an infinite number of
steps and eventually write stable sets Y such that
Y ∩N = ∅ then card(Q) ≥ m.

As card(Q) ≥ m, card(P) ≥ m, P and Q are
disjoint and n < 2m, we get a contradiction.

Hence if n < 2m all stable sets contain M ,
proving that all Deliver eventually return sets



ivall containing M . Moreover, by Lemma 26, there
is a value in M , proving the convergence prop-
erty.


