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Abstract

This paper provides a simple approach for the consideration of quadratic BSDEs

with bounded terminal conditions. Using solely probabilistic arguments, we retrieve

the existence and uniqueness result derived via PDE-based methods by Kobylan-

ski [11]. This approach is related to the study of quadratic BSDEs presented by

Tevzadze [14]. Our argumentation, as in [14], highly relies on the theory of BMO

martingales which was used for the first time for BSDEs in [9]. However, we avoid in

our method any fixed point argument and use Malliavin calculus to overcome the dif-

ficulty. Our new scheme of proof allows also to extend the class of quadratic BSDEs,

for which there exists a unique solution: we incorporate delayed quadratic BSDEs,

whose driver depends on the recent past of the Y component of the solution. When

the delay vanishes, we verify that the solution of a delayed quadratic BSDE converges

to the solution of the corresponding classical non-delayed quadratic BSDE.
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1 Introduction

Since there introduction by Pardoux and Peng [13], BSDEs have attracted a lot of attention

due mainly to there connection with stochastic control problems. Solving a BSDE consists
in the obtention of an adapted couple process (Y,Z) satisfying a dynamics of the form

Yt = ξ +

∫ T

t
F (s, Ys, Zs)ds −

∫ T

t
ZsdBs , 0 ≤ t ≤ T . (1.1)

In there seminal paper [13], Pardoux and Peng provide the existence of a unique solution

(Y,Z) to this equation for a given square integrable terminal condition ξ and a lipschitz
random driver F . Many extensions have been considered so far: addition of a jump com-

ponent, constraints on the solution, drivers which are solely integrable, drivers which may
depend on all the past of the solution (Y,Z) . . . Allowing to treat in particular exponential

utility maximization problems, the main innovation on BSDEs since there introduction is
probably the consideration of quadratic BSDEs.

Restricting to bounded terminal conditions ξ, Kobylanski [11] derives the existence of
a unique solution for the BSDE (1.1) whenever Y is a scalar process but F is quadratic

with respect to its Z component. The consideration of scalar Y components allows to
use comparison arguments and hereby to order BSDE solutions once the drivers and the

terminal conditions are. The approach of Kobylanski follows an exponential change of vari-
able and relies on the adaptation of PDE based approximation methods to the resolution
of a probabilistic question. The main objective of this paper is to provide an alternative

direct and probabilistic proof of the existence of a unique solution in this framework. In
the Lipschitz-quadratic case, Tevzadze [14] obtained via a Picard iteration argument, the

existence of a unique solution to quadratic scalar BSDEs, which remarkably extends to
multidimensional Y components for small terminal conditions. One of the key point in[14]

is the use of the theory of BMO martingales which allows a fixed point argument in this
quadratic setting. Let us recall that the theory of BMO martingales was used for the first

time in [9] in the context of BSDEs. For classical quadratic BSDEs, Briand and Hu [4, 5]
proved the existence of a solution for unbounded terminal conditions ξ with exponential

moments, and verified that uniqueness holds under an extra convexity condition on the
driver F . Barrieu and El Karoui [2] obtained recently similar results using on the contrary

a forward approach for this question. Observe also that Delbaen Hu and Bao [7] exhib-
ited bounded terminal conditions for which a BSDE with superquadratic driver admits no

bounded solution.

Our argumentation restricts here to the consideration of bounded terminal conditions
ξ and Lipschitz-quadratic generators and relies on the theory BMO martingales, as in

[14]. Instead of a fixed point argument, we propose here to construct the solution to our
quadratic BSDE by approximation based on Malliavin calculus which leads to a quite short
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and simple proof. To be a little bit more precise, our scheme of proof is the following. Using
linearization arguments, we exhibit a priori estimates on the S∞ norm and the BMO norm
of the (Y,Z) process, solution of a quadratic BSDE in the spirit of [1, 3]. These estimates

provide a control on the distance between two solutions of quadratic BSDEs with similar
driver in terms of the distance between the corresponding bounded terminal conditions.

This provides in particular the uniqueness of solution for quadratic BSDEs. Our second
main observation is that the S∞ norm of the Y component for solutions of Lipschitz BSDEs

does not depend on the Lipschitz constant of the generator with respect to z. For Malliavin
differentiable terminal conditions, this property naturally extends to the Z component of

Lipschitz BSDE solutions. Combining this estimate with the approximation of quadratic
drivers by Lipschitz ones provides the existence of a solution for quadratic BSDEs associ-

ated to bounded Malliavin differentiable terminal conditions. A direct density argument
then allows to relieve the Malliavin differentiability restriction.

The second part of the paper is dedicated to the extension of existence and uniqueness re-
sults for quadratic BSDES using the probabilistic tools developed in our new approach. We

focus on delayed quadratic BSDEs whose driver admits a functional Lipschitz dependence
with respect to the recent past of the process Y . Considering Lipschitz drivers depending

on all the past of Y , Delong and Imkeller [6] derived the existence of a unique solution
whenever the Lipschitz constant of the generator or the maturity T is small enough. In

order to consider BSDEs with any maturity, we restrict here to drivers depending at time t

on the recent values (Ys)(t−δ)+≤s≤t of the process Y , for small time delay δ > 0. Following

the methodology developed in the first Section, sharp BMO estimates together with lin-
earization arguments provide the existence of unique solution for time-delayed quadratic

BSDEs with bounded terminal conditions, as soon as the delay δ is small enough. We
also establish the convergence of the solution to the one associated to undelayed classical

BSDE as the delay vanishes to zero.

The rest of the paper is organized as follows. Section 2 is dedicated to the construction

of a unique solution for quadratic BSDEs using solely probabilistic arguments. We first
present the framework of interest, a priori sharp estimates on the solution and a powerful

stability property for quadratic BSDEs. Then, we derive an almost sure upper bound
for the (Y,Z) solution of Lipschitz BSDE with uniformly Malliavin differentiable bounded

terminal conditions. Since this upper bound does not depend on the z-Lipschitz constant
of the driver, the previous stability result together with a density argument provides the

existence of a unique solution for quadratic BSDEs. Section 3 focuses on delayed quadratic
BSDEs and provides successively the existence of a unique solution for small time delay

and the convergence of the solution when the delay vanishes. The corresponding technical
results are reported to Section 3.4.
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Notations. Throughout this paper, we are given a finite horizon T and a probability
space (Ω,F ,P) endowed with a d-dimensional standard Brownian motion W = (Wt)t≥0.
Any element x ∈ R

d will be identified to a column vector with i-th component xi and

Euclidian norm |x|. CT denotes the set C([0, T ],R) of continuous functions from [0, T ] to
R. For p > 1, we denote by:

• Sp the set of real valued F-adapted continuous processes Y on [0, T ] such that

‖Y ‖Sp := E
[

sup0≤r≤T |Yr|
p
] 1

p < ∞,

• S∞ the set of real valued F-adapted continuous processes Y on [0, T ] such that

‖Y ‖S∞ := supω∈Ω sup0≤r≤T |Yr(ω)| < ∞,

• L
p the set of predictable R

d-valued processes Z s.t. ‖Z‖Lp :=E

[(

∫ T
0 |Zr|

pdr
)] 1

p
<∞,

• Hp the set of predictable Rd-valued processes Z s.t. ‖Z‖Hp :=E

[

(

∫ T
0 |Zr|

2dr
)

p
2

]
1

p

<∞,

• H2
BMO denotes the subset of H2 of processes Z such that

∫ .
0 Zs · dBs is a Bounded in

Mean Oscillation (BMO for short) martingale, i.e such that, there exists a nonnega-
tive constant C such that, for each stopping time τ ≤ T ,

E

[
∫ T

τ
|Zs|

2 ds
∣

∣ Fτ

]

≤ C2.

The ‖
∫ .
0 Zs · dBs‖BMO is defined as the best nonnegative constant C for which the

above inequality is satisfied. We refer to the book by N. Kazamaki [10] for further
details on BMO martingales.

2 Quadratic BSDEs revisited

2.1 The framework for quadratic BSDE

Here is the quadratic BSDE of interest:

Yt = ξ +

∫ T

t
F (s, Ys, Zs)ds −

∫ T

t
Zs · dBs , 0 ≤ t ≤ T , (2.1)

with ξ ∈ S∞ and F : [0, T ]× R× R
d → R a given deterministic map. All along the paper

we shall work under the following assumptions.

(H0) The random variables ξ and ‖F (., 0, 0)‖∞ are almost surely bounded by K0 > 0.

(Hq) There exist two constants Ly > 0 and Kz > 0 such that:

|F (t, y, z) − F (t, y′, z′)| ≤ Ly|y − y′|+Kz(1 + |z|+ |z′|)|z − z′| ,

for any (t, y, z, y′, z′) ∈ [0, T ]× [R× R
d]2.
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Remark 2.1 Observe for later use that (Hq) together with (H0) implies the following
useful estimate:

|F (t, y, z)| ≤ |F (t, 0, 0)| + |F (t, y, 0) − F (t, 0, 0)| + |F (t, y, z) − F (t, y, 0)|

≤ ‖F (., 0, 0)‖∞ + Ly|y|+Kz(1 + |z|)|z|

≤ K0 +
Kz

2
+ Ly|y|+

3Kz

2
|z|2 , (2.2)

for any (t, y, z) ∈ [0, T ] × R× R
d.

Remark 2.2 We restrict to the consideration of deterministic driver g in order to avoid

unnecessary technicalities, induced by the Malliavin regularization method presented in
Section 2.5. We favor a spotless presentation of an innovative approach for the treatment

of quadratic BSDEs.

Theorem 2.1 [Kobylanski [11]] If (H0) and (Hq) hold, then the BSDE (2.1) has a

unique solution (Y,Z) ∈ S∞ ×H2.

In this section, we retrieve the result of Kobylanski using a very different approach, which

relies only on probabilistic arguments. Here is the line of proof. First, we derive in Section
2.2 precise a priori upper bounds on the S∞ norm of Y and the BMO norm of

∫ .
0 ZsdBs

for any solution (Y,Z) of the BSDE (2.1). These bounds together with nice properties
of BMO martingales allow to derive in Proposition 2.3 a stability result for the BSDE

(2.1). This powerful property directly provides in Corollary 2.2 the uniqueness of solution
for the quadratic BSDE (2.1), and also permits to restrict the search of solution for (2.1)

to the particular case where the terminal condition ξ has bounded Malliavin derivatives,
see Theorem 2.2. This is the purpose of Lemma 2.1, whose main argument relies on the

property observed in Proposition 2.4: the Z component of a Lipschitz BSDE with such a
terminal condition admits an a.s. upper bound, which does not depend on the Lipschitz

constant of the driver with respect to z.

Remark 2.3 Let us point out that this approach, based on BMO martingales, leads directly

to a comparison result using almost the same computations as in the proof of the stability

result Proposition 2.3.

2.2 A priori estimates for quadratic BSDEs

We first observe that any solution (Y,Z) ∈ S∞ × H2 of the quadratic BSDE provides a
BMO martingale

∫ .
0 Zs · dBs, for which we exhibit an explicit control on its BMO norm.
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Proposition 2.1 Suppose that (H0) and (Hq) are in force. Then, for any solution (Y,Z) ∈

S∞ × H2 of the BSDE (2.1), the process
(

∫ t
0 Zs · dBs

)

0≤t≤T
is a BMO martingale which

satisfies:
∥

∥

∥

∥

∫ .

0
Zs · dBs

∥

∥

∥

∥

BMO

≤
1 ∨ T

3

(

1 +
4K0

Kz
+

2Ly

Kz
‖Y ‖S∞

)

e3Kz‖Y ‖S∞ . (2.3)

Proof. The main argumentation of this proof follows the idea of [3], see p. 831 for details.
Let introduce the C2 function ϕ : R 7→ (0,∞) defined by

ϕ : x 7→
e3Kz |x| − 1− 3Kz |x|

|3Kz|2
, so that ϕ′′(.)− 3Kz|ϕ

′(.)| = 1 .

We pick a stopping time τ and applying Ito’s formula to the regular function ϕ, we compute

ϕ(Yτ ) = ϕ(ξ) +

∫ T

τ

(

ϕ′(Ys)F (s, Ys, Zs)−
ϕ′′(Ys)Z

2
s

2

)

ds−

∫ T

τ
ϕ′(Ys)ZsdBs

≤ ϕ(ξ) +

∫ T

τ

(

3Kz

2
|ϕ′(Ys)| −

ϕ′′(Ys)

2

)

Z2
sds+

∫ T

τ
|ϕ′(Ys)|

(

K0 +
Kz

2
+ Ly|Ys|

)

ds

−

∫ T

τ
ϕ′(Ys)ZsdBs ,

where the last inequality follows from (2.2). Since ϕ′′(.)−3Kz |ϕ
′(.)| = 1 and ϕ ≥ 0, taking

the conditional expectation with respect to Fτ , we compute

1

2
E

[
∫ T

τ
Z2
sds | Fτ

]

≤ E

[

ϕ(ξ) +

∫ T

τ
|ϕ′(Ys)|

(

K0 +
Kz

2
+ Ly|Ys|

)

ds | Fτ

]

.

Because Y is bounded and |ϕ′(x)| ≤ (3Kz)
−1e3Kz‖Y ‖S∞ whenever |x| ≤ ‖Y ‖S∞ , the pre-

vious estimate together with ϕ(0) = 0 implies

E

[

(∫ T

τ
Zs · dBs

)2

| Fτ

]

≤
2e3Kz‖Y ‖S∞

3Kz
E

[

|ξ|+ T

(

K0 +
Kz

2
+ Ly‖Y ‖S∞

)

| Fτ

]

≤
1 ∨ T

3

(

1 +
4K0

Kz
+

2Ly

Kz
‖Y ‖S∞

)

e3Kz‖Y ‖S∞ .

The arbitrariness of the stopping time τ together with the definition of the BMO norm
concludes the proof. ✷

For any solution (Y,Z) ∈ S2×H2
BMO of the quadratic BSDE (2.1), the next proposition

shows that Y ∈ S∞ and provides an explicit upper bound for Y ∈ S∞. Once again we
derive this classical upper bound (see [11] or [4]) with simple arguments.

Proposition 2.2 Suppose that (H0) and (Hq) hold and let (Y,Z) ∈ S2 × H2
BMO be a

solution of the quadratic BSDE (2.1). Then Y ∈ S∞ and Y is controlled by an upper-

bound which does not depend on Kz:

‖Y ‖S∞ ≤ eLyT (‖ξ‖∞ + ‖F (., 0, 0)‖∞T ) . (2.4)
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Proof. The proof relies on a classical linearization argument together with the BMO
property of Z. Observe first that the BSDE (2.1) may rewrite as a linear one

Yt = ξ +

∫ T

t
(F (s, 0, 0) + asYs + bs · Zs)ds−

∫ T

t
Zs · dBs , 0 ≤ t ≤ T ,

where the processes a and b are respectively defined by

as =
F (s, Ys, Zs)− F (s, 0, Zs)

Ys
1|Ys|>0 and bs =

F (s, 0, Zs)− F (s, 0, 0)

|Zs|2
Zs1|Zs|>0 ,

for 0 ≤ s ≤ T . Observe that Assumption (Hq) directly implies

|at| ≤ Ly and |bt| ≤ Kz(1 + |Zt|) , 0 ≤ t ≤ T . (2.5)

Since Z ∈ H2
BMO, we deduce that

(

∫ t
0 bs · dBs

)

0≤t≤T
is a BMO martingale. Therefore,

Girsanov theorem ensures that the process Bb := (Bt+
∫ t
0 bsds)0≤t≤T is a Brownian motion

under a new equivalent probability P
b. A direct application of Ito’s formula provides

e
∫ t
0
audu Yt = e

∫ T
0

audu ξ +

∫ T

t
e
∫ s
0
audu F (s, 0, 0)ds −

∫ T

t
Zs · dB

b
s , 0 ≤ t ≤ T ,

which directly leads to

Yt = E
Pb

[

e
∫ T

t
audu ξ +

∫ T

t
e
∫ s

t
audu F (s, 0, 0)ds | Ft

]

, 0 ≤ t ≤ T .

Plugging (2.5) in this expression, we get

|Yt| ≤ eLyT (‖ξ‖∞ + ‖F (., 0, 0)‖∞T ) , 0 ≤ t ≤ T ,

and the arbitrariness of t ∈ [0, T ] completes the proof. ✷

Corollary 2.1 Let (H0) and (Hq) be in force and consider any solution (Y,Z) of the

quadratic BSDE (2.1). Then if (Y,Z) is valued in S∞ × H2 or S2 × H2
BMO, it in fact

belongs to S∞ ×H2
BMO and satisfies

‖Y ‖S∞ +

∥

∥

∥

∥

∫ .

0
ZsdBs

∥

∥

∥

∥

BMO

≤ C0 , (2.6)

where C0 is a constant that only depends on T , Ly, Kz and K0.

Proof. Proposition 2.1 and Proposition 2.2 ensure that (Y,Z) ∈ S∞×H2
BMO whenever it

belongs to S∞ ×H2 or S2 ×H2
BMO. Assumption (H0) together with estimates (2.4) and

(2.3) provide directly (2.6). ✷
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2.3 Stability and uniqueness result for quadratic BSDEs

The next proposition details a powerful stability property for quadratic BSDEs, whose

proof mainly relies on properties of BMO martingales in particular the reverse Hölder
inequality (see [10] or [3]).

Proposition 2.3 For i = 1, 2, let (Y i, Zi) valued in S∞ ×H2 or S2 ×H2
BMO be solution

of the BSDE

Y i
t = ξi +

∫ T

t
F (s, Y i

s , Z
i
s)ds−

∫ T

t
Zi
s · dBs , 0 ≤ t ≤ T ,

where ξ1, ξ2 and F satisfy Assumptions (H0) and (Hq). Then, we have

‖Y 1 − Y 2‖S2p + ‖Z1 − Z2‖Hp ≤ Cp‖ξ
1 − ξ2‖L2p , for any p > p0 , (2.7)

where p0 > 1 and (Cp)p>p0 are suitable constants which depend on T , Ly, Kz and K0.

Proof. Let denote ∆Y := Y 1 − Y 2, ∆Z := Z1 − Z2, ∆ξ := ξ1 − ξ2 and ∆Ft :=

F (t, Y 1
t , Z

1
t ) − F (t, Y 2

t , Z
2
t ), for t ∈ [0, T ]. All along the proof, for a given parameter p,

Cp denotes a generic constant whose value may change from line to line and which only

depends on T , Ly, Kz and K0. We split the proof in two steps, where we demonstrate
respectively the controls on the ∆Y and the ∆Z terms.

Step 1. Control of ‖∆Y ‖Sp

As in the proof of Proposition 2.2, we use a linearization argument and rewrite

∆Yt = ξ +

∫ T

t
(ās∆Ys + b̄s ·∆Zs)ds −

∫ T

t
∆Zs · dBs ,

where the processes ā and b̄ are respectively defined by

ās =
F (s, Y 1

s , Z
1
s )− F (s, Y 2

s , Z
1
s )

∆Ys
1|∆Ys|>0 , b̄s =

F (s, Y 2
s , Z

1
s )− F (s, Y 2

s , Z
2
s )

|∆Zs|2
∆Zs1|∆Zs|>0 ,

for 0 ≤ s ≤ T . Observe that Assumption (Hq) directly implies that

|āt| ≤ Ly and |b̄t| ≤ Kz(1 + |Z1
t |+ |Z2

t |) , 0 ≤ t ≤ T . (2.8)

According to Proposition 2.1, Z1 and Z2 belong to H2
BMO, so that

(

∫ t
0 b̄s · dBs

)

0≤t≤T
is a

BMO martingale. Furthermore, Corollary 2.1 ensures the existence of a constant C0 > 0,
which only depends on T , Ly, Kz and K0 such that

∥

∥

∥

∥

∫ .

0
b̄sdBs

∥

∥

∥

∥

BMO

+

∥

∥

∥

∥

∫ .

0
Z1
sdBs

∥

∥

∥

∥

BMO

+

∥

∥

∥

∥

∫ .

0
Z2
sdBs

∥

∥

∥

∥

BMO

≤ C0 . (2.9)
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Besides, we deduce from Girsanov theorem the existence of an equivalent probability mea-
sure Pb̄ under which the process B b̄ := (B+

∫ .
0 b̄sds) is a Brownian motion, and we compute

e
∫ t
0
āudu∆Yt = e

∫ T
0

āudu∆ξ −

∫ T

t
e
∫ s
0
āudu∆Zs · dB

b̄
s , 0 ≤ t ≤ T .

Denoting (E b̄
t )0≤t≤T the Doleans-Dade exponential of b̄ and plugging (2.8) in the previous

expression, we get

|∆Yt| ≤ E
Pb̄
[

e
∫ T

t
āsds|∆ξ| | Ft

]

≤ eLyT
(

E b̄
t

)−1
E

[

|∆ξ|E b̄
T | Ft

]

, 0 ≤ t ≤ T . (2.10)

Since
∫ .
0 b̄sdBs is a BMO martingale, the reverse HŽlder inequality implies

E

[(

E b̄
T

)q
| Ft

]

≤ C∗
q

(

E b̄
t

)q
, 0 ≤ t ≤ T , 1 < q < q∗ , (2.11)

where the constants q∗ > 1 and (Cq)1<q<q∗ are given by

q∗ := φ−1

(∥

∥

∥

∥

∫ .

0
b̄sdBs

∥

∥

∥

∥

BMO

)

, with φ : q 7→

(

1 +
1

q2
log

2q − 1

2q − 2

)1/2

− 1 ,

C∗
q := 2

(

1−
2q − 2

2q − 1
exp

{

q2

(

∥

∥

∥

∥

∫ .

0
b̄sdBs

∥

∥

∥

∥

2

BMO

+ 2

∥

∥

∥

∥

∫ .

0
b̄sdBs

∥

∥

∥

∥

BMO

)})−1

,

see the proof of Theorem 3.1 in [10] for details. Since q∗ and (C∗
q )1<q<q∗ are respectively

non-increasing and non-decreasing with respect to
∥

∥

∫ .
0 b̄sdBs

∥

∥

BMO
, estimate (2.9) allows

to suppose without loss of generality that they only depend on T , Ly, Kz, K0. Denoting

by p the conjugate of a given q ∈ (1, q∗) and combining the conditional Cauchy-Schwartz
inequality together with (2.10) and (2.11), we derive

|∆Yt|
p ≤ epLyT (E b̄

t )
−p

E

[(

E b̄
T

)q
| Ft

]
p
q
E [|∆ξ|p | Ft] ≤ epLyT

∣

∣C∗
q

∣

∣

p
q E [|∆ξ|p | Ft] ,

for any 0 ≤ t ≤ T . Introducing the constant p∗ := q∗/(q∗ − 1) which only depends on T ,

Ly, Kz and K0, we deduce from Doob’s maximal inequality that

‖∆Y ‖Sp ≤ Cp ‖∆ξ‖Lp , for any p > p∗ . (2.12)

Finally, choosing any p0 > p∗ provides the expected control on ∆Y .

Step 2. Control of ‖∆Z‖Hp

We now turn to the obtention on the control of the ∆Z term and fix p > p∗. A direct

application of Ito’s formula provides

|∆Y0|
2 +

∫ T

0
|∆Zr|

2dr = |∆ξ|2 − 2

∫ T

0
(∆Yr)∆Zr · dBr + 2

∫ T

0
∆Yr∆Frdr . (2.13)
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Observe that (Hq) also implies

2

∫ T

0
∆Ys∆Fsds ≤ 2Ly

∫ T

0
|∆Ys|

2ds+ 2Kz

∫ T

0
(1 + |Z1

s |+ |Z2
s |)|∆Ys||∆Zs|ds

≤ sup
0≤t≤T

|∆Yt|
2

(

LyT + 2K2
z

∫ T

0
(1 + |Z1

r |+ |Z2
r |)

2dr

)

+
1

2

∫ T

0
|∆Zr|

2dr .

Plugging this expression into (2.13), the application of Burkholder-Davis-Gundy and Cauchy-

Schwartz inequalities provides

‖∆Z‖pHp ≤ Cp

(

‖∆ξ‖pLp
+ E

[

(∫ T

0
(∆Yr)∆Zr · dBr

)

p
2

]

+ ‖∆Yr‖
p
Sp

)

+ Cp E

[

sup
0≤t≤T

|∆Yt|
p

(
∫ T

0
(1 + |Z1

r |+ |Z2
r |)

2dr

)

p
2

]

≤ Cp



‖∆ξ‖pLp
+ E

[

(∫ T

0
|∆Zr|

2dr

)

p
2

]

1

2

E

[

sup
t≤T

|∆Yt|
p

]
1

2

+ ‖∆Yr‖
p
Sp





+ Cp E

[

(∫ T

0
(1 + |Z1

r |+ |Z2
r |)

2dr

)p
]

1

2

E

[

sup
0≤t≤T

|∆Yt|
2p

]
1

2

.

Besides, since Z1 and Z2 belong to H2
BMO, the energy inequality for BMO martingales,

see Section 2.1 in [10] for e.g., together with Corollary (2.1) provide

E

[

(∫ T

0
|Z1

s |
2ds

)p

+

(∫ T

0
|Z2

s |
2ds

)p
]

≤ p!

(

∥

∥

∥

∥

∫ ·

0
Z1
sdBs

∥

∥

∥

∥

2p

BMO

+

∥

∥

∥

∥

∫ ·

0
Z2
sdBs

∥

∥

∥

∥

2p

BMO

)

≤ Cp .

Combining the two previous expressions together with the inequality ab ≤ 2a2+b2/2 yields

1

2
‖∆Z‖pHp ≤ Cp

(

‖∆ξ‖pLp
+ ‖∆Y ‖pSp + ‖∆Y ‖p

S2p

)

.

Hence, the arbitrariness of p > p∗ together with (2.12) leads to

‖∆Z‖Hp ≤ Cp‖∆ξ‖L2p
, for any p > p∗ .

Therefore, picking p0 := p∗ concludes the proof. ✷

Choosing ξ1 = ξ2 = ξ ∈ S∞, the uniqueness property of solution for the quadratic BSDE

(2.1) under (H0)-(Hq) is a direct consequence of Proposition 2.3. This is the point of the
following corollary.

Corollary 2.2 If (H0) and (Hq) hold, the quadratic BSDE (2.1) admits at most one

solution in S∞ ×H2 and in S2 ×H2
BMO.
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2.4 An auxiliary fine property for Lipschitz BSDEs

This subsection is dedicated to the obtention of tractable nice upper bounds for the solution

(Y,Z) of the BSDE (2.1), whenever the driver F is Lipschitz. For this purpose, we suppose
all along this subsection that F satisfies the following classical Lipschitz condition:

(Hlip) There exist two constants Ly > 0 and Lz > 0 such that:

|F (t, y, z) − F (t, y′, z′)| ≤ Ly|y − y′|+ Lz|z − z′| , (t, y, z, y′, z′) ∈ [0, T ]× [R× R
d]2 .

The existence of a unique solution (Y,Z) ∈ S2 × H2 for the BSDE (2.1) under (H0)-
(Hlip) is a well known result due to the seminal paper of Pardoux and Peng [13]. We

observe in the next proposition that the process Y , which lies in S∞, is controlled by an
upper bound which does not depend on Lz. More remarkably, Z satisfies a similar property

whenever the terminal condition has uniformly bounded Malliavin derivatives.

Proposition 2.4 If (H0) and (Hlip) hold, then the unique solution (Y,Z) ∈ S2 ×H2 of

the Lipschitz BSDE (2.1) satisfies the following properties.

(i) Y ∈ S∞ and ‖Y ‖S∞ admits an upper-bound which does not depend of Lz:

‖Y ‖S∞ ≤ eLyT (‖ξ‖∞ + ‖F (., 0, 0)‖∞T ) . (2.14)

(ii) If in addition ξ is Malliavin differentiable and ‖Dξ‖S∞ = sup0≤t≤T ‖Dtξ‖∞ < ∞,

then Z ∈ S∞ and ‖Z‖S∞ admits an upper-bound which does not depend of Lz:

‖Z‖S∞ ≤ ‖Dξ‖S∞ eLyT . (2.15)

Proof. We prove each assertion separately.

(i) Although a direct comparison argument is available in this lipschitz context, observe

that (2.14) can be proved following the line of proof of Proposition 2.2. In this Lipschitz
context, the proof is simpler since no BMO martingale arguments are necessary.

(ii) We now turn to the proof of (2.15) and first consider the case where F is a C1 function

with respect to the y and z components. Since ξ is Malliavin differentiable, it follows from
[8] that (Y,Z) is also Malliavin differentiable and its derivative satisfies

DθYt = Dθξ +

∫ T

t
[∂yF (s, Ys, Zs)DθYs − ∂zF (s, Ys, Zs)DθZs]ds −

∫ T

t
DθZsdBs ,

for 0 ≤ θ ≤ t ≤ T . Besides, Assumption (Hlip) implies that |∂yF | ≤ Ly and |∂zF | ≤ Lz,

so that, applying the exact same reasoning as above leads to

|DθYt| ≤ ‖Dξ‖S∞ eLyT , 0 ≤ θ ≤ t ≤ T .

11



Since (DtYt)0≤t≤T is a version of (Zt)0≤t≤T , see Proposition 5.3 in [8], we directly get (2.15).

The general case, where F is only Lipschitz continuous, can be treated by standard
regularization arguments. We skip the details. ✷

2.5 Existence of solution for quadratic BSDEs

With the help of the estimates for Lipschitz BSDEs derived in the previous Section, we

first prove the existence of a solution for the quadratic BSDE (2.1) whenever the terminal
condition ξ has bounded Malliavin derivatives.

Lemma 2.1 Let (H0) and (Hq) hold and suppose that ξ is Malliavin differentiable and

satisfies

‖Dξ‖S∞ = sup
0≤t≤T

‖Dtξ‖ < ∞ P− a.s.

Then, the quadratic BSDE (2.1) admits a solution in S∞ × S∞.

Proof. Let consider the sequence (F̄k)k∈N of driver functions defined on [0, T ] × R × R
d

by

F̄k : (t, y, z) 7→ F

(

t, y,
|z| ∧ k

|z|
z

)

, k ∈ N .

Since F satisfies (Hq), we deduce that

|F̄k(t, y, z)− F̄k(t, y
′, z′)| ≤ Ly|y − y′|+Kz(1 + 2k)|z − z′| , k ∈ N ,

for any (t, y, z, y′, z′) ∈ [0, T ]× [R×R
d]2. Hence, for any k ∈ N, F̄k is a Lipschitz function

and (H0) provides the existence of a unique solution (Y k, Zk) ∈ S2 ×H2 to the BSDE

Y k
t = ξ +

∫ T

t
F̄k(s, Y

k
s , Z

k
s )ds−

∫ T

t
Zk
s · dBs , 0 ≤ t ≤ T .

Observe that Proposition 2.4 ensures that (Y k, Zk) ∈ S∞ × S∞, for any k ∈ N. More
importantly, ‖Y k‖S∞ and ‖Zk‖S∞ are upper-bounded by a constant which does not depend

on the Lipschitz constant with respect to z of Fk, and therefore does not depend on k, for
any k ∈ N. Hence, we can fix k∗ > supk∈N ‖Zk‖S∞ and we observe that

Fk∗(s, Y
k∗

s , Zk∗

s ) = F (s, Y k∗

s , Zk∗

s ) , 0 ≤ s ≤ T ,

since k∗ > ‖Zk∗‖S∞ . Therefore (Y k∗, Zk∗) is in fact solution of the BSDE (2.1), which
thereby admits a solution in S∞ × S∞. ✷

We now extend this result and prove that the quadratic BSDE (2.1) admits a solution

for any bounded terminal condition ξ. The line of proof follows from a density argument
together with the stability property for quadratic BSDEs derived in Proposition 2.3.
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Theorem 2.2 Under Assumptions (H0) and (Hq), the quadratic BSDE (2.1) admits a

solution in S∞ ×H2
BMO.

Proof. First observe that the terminal condition ξ can be approximated by a sequence of
random variables of the form ξn = Φn(Bt1 , . . . , Btn), where (Φn)n is valued in C∞

b and pn

goes to infinity, as n goes to infinity. Since ξ is bounded, the sequence (ξn)n can be built
in such a way that (ξn)n converges to ξ in probability and in any L

p space, p ≥ 1, see [12].

Up to replacing Φn by Φn ∧ ‖ξ‖∞, we can suppose ‖ξn‖∞ ≤ ‖ξ‖∞ ≤ K0 so that ξn and
F satisfy (H0), for any n ∈ N. The regularity of ξn together with Lemma 2.1 ensures the
existence of a solution (Y n, Zn) ∈ S∞ × S∞ to the quadratic BSDE

Y n
t = ξn +

∫ T

t
F (s, Y n

s , Zn
s )ds−

∫ T

t
Zn
s · dBs , 0 ≤ t ≤ T , n ∈ N . (2.16)

Furthermore, a direct application of the stability property in Proposition 2.3 provides

‖Y n − Y m‖S2p + ‖Zn − Zm‖Hp ≤ Cp‖ξ
n − ξm‖L2p , n,m ∈ N ,

where p > 1 and Cp > 0 are suitable constants which do not depend neither on n nor on
m, since they only rely on T , Ly, Kz and K0. Since it converges, the sequence (ξn)n is

Cauchy in L
2p, and we deduce that (Y n, Zn)n∈N is a Cauchy sequence in S2p ×Hp. But

the sequence (Y n, Zn)n∈N is valued in the Banach space S∞×H2
BMO and therefore admits

a limit (Y,Z) ∈ S∞ × H2
BMO. Letting n go to infinity in (2.16), we observe that (Y,Z)

solves indeed (2.1) and conclude the proof. ✷

3 Quadratic BSDEs with delayed Y variable

We consider now BSDEs, whose driver depends on the recent past of the Y component

of the solution. As recently observed in [6], there exists a unique solution for functional
Lipschitz BSDEs with drivers depending on the past of solution, as soon as the maturity

or the Lipschitz constant of the driver is small enough. We choose here to focus instead on
BSDEs with driver depending only on the recent past of the Y component of the solution,

i.e. (Y.+u)−δ<u<0 where δ > 0 is a given delay. Adapting the line of argument presented
in the previous section, we verify hereafter that there exists also in this framework a
unique solution for quadratic BSDEs (with respect to the Z-component of the solution),

as long as the time delay δ remains small enough. This framework provides hereby a nice
application of the innovative approach presented in the previous section. We verify also

that the solution of the delayed quadratic BSDE converges to the classical solution of the
corresponding un-delayed quadratic BSDE as the delay vanishes to zero.
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3.1 The framework of interest

For a given delay parameter δ > 0, we now consider a delayed BSDE, whose dynamics are

given by

Yt = ξ +

∫ T

t
Fδ

(

s,Gδ
s(Y ), Zs

)

ds−

∫ T

t
Zs · dBs , 0 ≤ t ≤ T , (3.1)

where the parameters ξ and Fδ satisfy the assumptions (H0) and (Hq) given above and,

for any 0 ≤ t ≤ T , Gδ
t : CT → R is a function. We suppose that the sequence of functions

G satisfies the following assumption.

(Hδ) For any 0 ≤ t ≤ T , δ > 0 and y, ȳ ∈ CT , we have Gδ
t (0) = 0 and

Gδ
t (y) = Gδ

t ({ys∧t}0≤s≤T ) , lim
δ→0+

Gδ
t (y) = yt ,

∣

∣

∣Gδ
t (y)−Gδ

t (ȳ)
∣

∣

∣ ≤ sup
(t−δ)+≤u≤t

|yu − ȳu| .

Remark 3.1 Observe for later use that, under assumption (Hδ), the sequence of functions

(Gδ)δ>0 satisfies

|Gδ
t (y)| ≤ sup

(t−δ)+≤u≤t

|yu| ≤ ‖y‖∞ , y ∈ CT , 0 ≤ t ≤ T , δ > 0 . (3.2)

Remark 3.2 Under (Hδ), for a given y ∈ CT , δ > 0 and 0 ≤ t ≤ T , Gδ
t (y) roughly

speaking only depends on the past of y on the time interval [(t − δ)+, t] and converges to

the identity function as δ vanishes to 0. Typical examples of interest are cases where the

dynamics of the BSDE depend on :

• the delayed value of the solution, Gδ
t : y 7→ y(t−δ)+ ;

• the recent maximum of the solution, Gδ
t : y 7→ sup(t−δ)+≤u≤t yu ;

• the averaged recent value of the solution, Gδ
t : y 7→ 1

δ

∫ t
(t−δ)+ yu .

To our knowledge, no result of existence or uniqueness of solution for quadratic BS-

DEs with delayed generator is available in the literature. Using ideas similar to the one
developed in the previous section, the purpose of the next section is to fill this gap.

3.2 Existence and Uniqueness property

In order to derive the existence of a unique solution for the delayed quadratic BSDE, we

require hereafter that the driver depends only on Z and the recent past of the solution Y .
Namely, we consider only delays δ smaller than a benchmark delay δ0 defined by

δ0 :=
1

L2
yeT

. (3.3)
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Theorem 3.1 Let the parameters f , ξ and G satisfy assumptions (H0) (Hq)and (Hδ).

Then, for δ < δ0, there exists a unique solution in S∞ ×H2
BMO to the BSDE (3.1).

Proof. Let introduce the function φ : S∞ 7→ S∞, such that, for any U ∈ S∞, φ(U) is the

first component of the solution of the following BSDE

Yt = ξ +

∫ T

t
Fδ

(

s,Gδ
s(U), Zs

)

ds−

∫ T

t
Zs · dBs , 0 ≤ t ≤ T , (3.4)

for some fixed delay δ < δ0. We intend to show that φ is a contraction.

We consider (U,U ′) ∈ S∞×S∞ and denote by (φ(U), V ) and (φ(U ′), V ′) the solutions to
the associated BSDEs of the form (3.4). Observe that the BSDE (3.4) does not exactly fit

in the framework developed in the previous Section since the corresponding driver function
is random. Nevertheless, the existence of uniqueness of solution is ensured by [11] and one

easily verifies that the arguments developed in Proposition 2.1 apply as such, so that V

and V ′ are BMO martingales satisfying
∥

∥

∥

∥

∫ .

0
Vs · dBs

∥

∥

∥

∥

BMO

+

∥

∥

∥

∥

∫ .

0
V ′
s · dBs

∥

∥

∥

∥

BMO

≤ C0 , (3.5)

for some constant C0.

In the following, we denote ∆φ(U) := φ(U ′)− φ(U), ∆U := U ′ −U and ∆V := V ′ − V .
Introducing λ := 1/δ and applying Ito’s lemma to eλ.|∆φ(U)|2, we compute

eλt|∆φ(Ut)|
2 +

∫ T

t
eλs|∆Vs|

2ds+ λ

∫ T

t
eλs|∆φ(Us)|

2ds

=

∫ T

t
2eλs∆φ(Us)

(

Fδ

(

s,Gδ
s(U), Vs

)

− Fδ

(

s,Gδ
s(U

′), V ′
s

))

ds−

∫ T

t
2eλs∆φ(Us)∆VsdBs ,

for 0 ≤ t ≤ T . Observe that (Hδ) together with (3.5) ensure that the process

b̂s :=
Fδ

(

s,Gδ
s(U

′), Vs

)

− Fδ

(

s,Gδ
s(U

′), V ′
s

)

|Vs − V ′
s |

2
(Vs − V ′

s )1|Vs−V ′
s |>0 , 0 ≤ s ≤ T ,

is a BMO martingale, so that B b̂ := B +
∫ .
0 b̂sds is a Brownian Motion under the new

probability P
b̂. Hence, we deduce that

eλt|∆φ(Ut)|
2 + λ

∫ T

t
eλs|∆φ(Us)|

2ds

≤

∫ T

t
2eλs∆φ(Us)

(

Fδ

(

s,Gδ
s(U), Vs

)

− Fδ

(

s,Gδ
s(U

′), Vs

))

ds−

∫ T

t
2eλs∆φ(Us)∆VsdB

b̂
s ,

for 0 ≤ t ≤ T . Since 2xy ≤ λx2 + y2/λ, we deduce from (Hδ) and (Hq)that

eλt|∆φ(Ut)|
2 ≤

1

λ
E
P
b̂

[
∫ T

t
eλs
∣

∣

∣Fδ

(

s,Gδ
s(U), Vs

)

− Fδ

(

s,Gδ
s(U

′), Vs

)∣

∣

∣

2
ds | Ft

]

≤
L2
y

λ
E
P
b̂

[

∫ T

t
eλs sup

(s−δ)+≤r≤s

|∆Ur|
2ds | Ft

]

, (3.6)
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for 0 ≤ t ≤ T . Since δ > 0, we compute

eλs sup
(s−δ)+≤r≤s

|∆Ur|
2 ≤ eλδ sup

(s−δ)+≤r≤s

eλr|∆Ur|
2 ≤ eλδ‖eλ.|∆U |2‖S∞ ,

for 0 ≤ s ≤ T . Plugging this estimate in (3.6) and taking the maximum over t ∈ [0, T ]

leads to

‖eλ.|∆φ(U)|2‖S∞ ≤
L2
yTe

λδ

λ
‖eλ.|∆U |2‖S∞ .

Since λ = 1/δ, observe that L2
yTe

λδ < λ since δ is smaller than δ0 given in (3.3). Thus, φ
is a contraction on S∞ so that there exists a unique solution in S∞×H2

BMO to the delayed

quadratic BSDE (3.1). ✷

3.3 BSDE asymptotics for vanishing delay

We now intend to identify the limit of the solution (Y δ, Zδ)δ>0 of the BSDE (3.1) as the

delay vanishes to 0. For this purpose, we introduce (Y 0, Z0) ∈ S∞ × H2
BMO the solution

of the following classical quadratic BSDE

Y 0
t = ξ +

∫ T

t
F0

(

s, Y 0
s , Z

0
s

)

ds−

∫ T

t
Z0
s · dBs , 0 ≤ t ≤ T . (3.7)

In order to verify that (Y δ, Zδ)δ>0 converges to (Y 0, Z0) as δ goes to 0 whenever Fδ

converges to F0, we first observe the following stability property allowing to control the

distance between the solutions of the BSDEs (3.1) and (3.7).

Proposition 3.1 Let the sequence of parameters (Fδ)δ≥0, ξ and (Gδ)δ≥0 satisfy Assump-

tions (H0) (Hq) and (Hδ). Then, for δ < δ0/4, we have

∥

∥

∥
eβ.|Y δ − Y 0|

∥

∥

∥

S∞
+
∥

∥

∥
eβ.|Zδ − Z0|

∥

∥

∥

H2
≤ C̄

∥

∥

∥
eβ.
[

Fδ

(

., Gδ(Y 0), Z0
)

− F0(., Y
0, Z0)

]∥

∥

∥

Hp̄

with β := 2L2
yeT and (C̄, p̄) constants which do no depend on δ.

Before providing the proof of the proposition in the next Subsection 3.4, let first present
a direct corollary ensuring the convergence of the solutions of the BSDE (3.1) to (Y 0, Z0)

as the delay vanishes.

Corollary 3.1 Let the sequence of parameters (Fδ)δ≥0, ξ and (Gδ)δ≥0 satisfy Assumptions

(H0) (Hq)and (Hδ). If (Fδ)δ>0 converges uniformly to F0 as δ goes to 0, then (Y δ, Zδ)δ>0

converges to (Y 0, Z0) in S∞ ×H2.
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Proof. Observe from Proposition 3.1 that, since β > 0, we have
∥

∥

∥Y δ − Y 0
∥

∥

∥

S∞
+

∥

∥

∥Zδ − Z0
∥

∥

∥

H2

≤ C̄ E





(
∫ T

0
eβs
∣

∣

∣Fδ

(

s,Gδ
s(Y

0), Z0
s

)

− F0(s, Y
0
s , Z

0
s )
∣

∣

∣

2
ds

)

p̄
2





1

p̄

,

for δ smaller than δ0/4. Therefore, the uniform convergence of (Fδ)δ>0 to F0 ensures that
all the terms of the previous expression go to 0 as δ vanishes. ✷

3.4 Uniform estimates and stability property

This section is dedicated to the proof of Proposition 3.1. For this purpose, we first need to

establish uniform estimates with respect to δ on the solution (Y δ, Zδ) of the BSDE (3.1).

Lemma 3.1 Let the sequence of parameters (Fδ)δ≥0, ξ and (Gδ)δ≥0 satisfy assumptions

(H0) (Hq)and (Hδ). Then, there exists a constant C0 such that

∥

∥

∥Y δ
∥

∥

∥

S∞
+

∥

∥

∥

∥

∫ .

0
Zδ
sdBs

∥

∥

∥

∥

BMO

≤ C0 , 0 ≤ δ < δ0/2 .

Proof. We omit the immediate case where δ = 0 and pick δ in (0, δ0/2). Theorem 3.1

ensures the existence of a unique solution (Y δ, Zδ) to the BSDE (3.1) and control the
norms on Y δ and Zδ separately.

1. Control on
∥

∥Y δ
∥

∥

S∞

The proof follows mainly from similar arguments as the one presented in the proof of
Theorem 3.1 above. We pick β = 2/δ0 and apply Ito’s formula to (eβt|Yt|

2)t in order to

derive

eβt|Y δ
t |

2 + β

∫ T

t
eβs|Y δ

s |
2ds ≤ eβT |ξ|2 +

∫ T

t
eβs∆Y δ

s Fδ

(

s,Gδ
s(Y

δ), 0
)

ds−

∫ T

t
eβs∆Y δ

s ∆Zδ
s · dB

b̃
s ,

where B b̃ := B −
∫ .
0 b̃sds and b̃ is given by

b̃s :=
Fδ

(

s,Gδ
s(Y

δ), Zδ
s

)

− Fδ

(

s,Gδ
s(Y

δ), 0
)

|Zδ
s |

2
Zδ
s1|Zδ

s |>0 ≤ Kz(1 + |Zδ
s |) ,

for 0 ≤ s ≤ T . Since Zδ ∈ H2
BMO,

∫ .
0 b̃sdBs is a BMO martingale and therefore B b̃ is a

Brownian motion under the new probability P
b̃. Hence (Hq) together with the inequality

2xy ≤ βy2 + x2/β implies

eβt|Y δ
t |

2 ≤ eβT ‖ξ‖2∞ +
1

β

∫ T

t
eβs|Fδ(s, 0, 0)|

2ds+
L2
y

β

∫ T

t
eβsEPb̂

[

sup
(s−δ)+≤r≤s

|Y δ
r |

2 | Ft

]

ds

≤ eβT
(

‖ξ‖2∞ +
T

β
‖Fδ(., 0, 0)‖

2
∞

)

+
L2
yTe

βδ

β
‖eβ.|Y δ|2‖S∞ ,

17



for any t ∈ [0, T ]. Since β = 2/δ0 = 2L2
yeT and δ < δ0/2, combining (H0) and the previous

estimate leads to

1

2
‖Y δ‖2S∞ ≤

1

2
‖eβ |Y δ|2‖S∞ ≤ e2T/δ

0

(

‖ξ‖2∞ ++
Tδ0
2

K2
0

)

. (3.8)

Hence ‖Y δ‖S∞ admits an upper-bound which does not depend on δ.

2. Control on
∥

∥

∫ .
0 Z

δ
sdBs

∥

∥

BMO

We simply observe from (2.2) together with (3.2) that (H0), (Hq) and (Hδ) imply

|Fδ(s,G
δ
s(Y

δ), Zδ
s )| ≤ K0 +

Kz

2
+ Ly‖Y

δ‖S∞ +
3Kz

2
|Zδ

s |
2 ,

for 0 ≤ s ≤ T . Following the lines of the proof of Proposition 2.1, this estimate together

with (3.8) provides the expected control on
∥

∥

∫ .
0 Z

δ
sdBs

∥

∥

BMO
. ✷

With these sharper estimates in hand, we are finally in position to turn to the proof of
Proposition 3.1.

Proof of Proposition 3.1.

We fix δ < δ0/2 and introduce the notation ∆Y := Y δ −Y 0, ∆Z := Zδ−Z0 together with

∆Fs := Fδ

(

s,Gδ
s(Y

0), Z0
s

)

− F0

(

s, Y 0
s , Z

0
s

)

, 0 ≤ s ≤ T ,

so that the estimate of interest rewrites
∥

∥

∥eβ.∆Y
∥

∥

∥

S∞
+
∥

∥

∥eβ.∆Z
∥

∥

∥

H2
≤ C̄

∥

∥

∥eβ.∆F
∥

∥

∥

Hp̄
, (3.9)

with β = 2L2
yeT and (C̄, p̄) constants which do no depend on δ. We control hereafter each

term separately.

1. Control of
∥

∥eβ.|∆Y |
∥

∥

S∞.

Ito’s formula yields

e2βt|∆Yt|
2 +

∫ T

t
e2βs|∆Zs|

2ds + 2β

∫ T

t
e2βs|∆Ys|

2ds+ 2

∫ T

t
e2βs∆Ys∆Zs · dBs

= 2

∫ T

t
e2βs∆Ys

[

Fδ

(

s,Gδ
s(Y

δ), Zδ
s

)

− F0

(

s, Y 0
s , Z

0
s

)

]

ds , (3.10)

for 0 ≤ t ≤ T . Observe from Assumption (Hq) and (Hδ) that

Fδ

(

s,Gδ
s(Y

δ), Zδ
s

)

− F0

(

s, Y 0
s , Z

0
s

)

≤ bδs ∆Zs + Ly sup
(s−δ)+≤r≤s

|∆Yr|+∆Fs ,

for 0 ≤ s ≤ T , where bδs is given by

bδs :=
Fδ

(

s,Gδ
s(Y

δ), Zδ
s

)

− Fδ

(

s,Gδ
s(Y

δ), Z0
s

)

|∆Zs|2
∆Zs1|∆Zs|>0 ≤ Kz

(

1 +
∣

∣Z0
s

∣

∣+
∣

∣

∣Zδ
s

∣

∣

∣

)

.
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Since Z0 and Zδ belong to H2
BMO,

∫ .
0 b

δ
sdBs is a BMO martingale, and Lemma 3.1 provides

a uniform in δ upper-bound for its BMO norm. In particular the process Bδ := B−
∫ .
0 b

δ
sds

is a Brownian motion under the new probability P
δ. Hence, plugging the previous estimate

in (3.10) leads to

|eβt∆Yt|
2 +

∫ T

t
|eβs∆Zs|

2ds+ 2β

∫ T

0
|eβs∆Ys|

2ds+ 2

∫ T

t
e2βs∆Ys∆Zs · dB

δ
s

≤ 2Ly

∫ T

t
e2βs∆Ys sup

(s−δ)+≤r≤s
|∆Yr|ds + 2

∫ T

t
e2βs∆Ys∆Fsds

≤ 2β

∫ T

t
|eβs∆Ys|

2ds+
L2
y

β
e2βδ

∫ T

t
sup

(s−δ)+≤r≤s
|eβr∆Yr|

2ds+
1

β

∫ T

t
|eβs∆Fs|

2ds ,

for 0 ≤ t ≤ T . Observing that β = 2L2
yeT and βδ < 1, this implies directly

|eβt∆Yt|
2 +

∫ T

t
|eβs∆Zs|

2ds + 2

∫ T

t
e2βs∆Ys∆Zs · dB

δ
s (3.11)

≤
1

2

∥

∥

∥eβ.|∆Y |
∥

∥

∥

2

S∞
+

1

β

∫ T

0
|eβs∆Fs|

2ds , 0 ≤ t ≤ T .

Since Bδ is a Brownian Motion under P
δ, we deduce

∥

∥

∥
eβ.∆Y

∥

∥

∥

2

S∞
≤ C sup

0≤t≤T
E
P
δ

[∫ T

0
|eβs∆Fs|

2ds | Ft

]

.

Arguing as in Step 1 of the proof of Proposition 2.3 and observing that the BMO norm
of bδ does not depend on δ, we deduce the existence of q > 0 and Cq > 0 which do not

depend on δ such that the Doleans-Dade exponential of bδ denoted Eδ satisfies

E

[(

Eδ
T

)q
| Ft

]

≤ Cq

(

Eδ
t

)q
, 0 ≤ t ≤ T .

Combining Cauchy-Schwartz inequality together with this estimate and Doob’s maximal

inequality, we derive

∥

∥

∥
eβ.∆Y

∥

∥

∥

2

S∞
≤ C Cq E



 sup
0≤t≤T

E

[

(
∫ T

0
|eβs∆Fs|

2ds

)p

| Ft

]
1

p



 ≤ C
∥

∥

∥
eβ.∆F

∥

∥

∥

2

H2p
,

where p denotes the conjugate of q. Picking p̄ := 2p directly leads to the expected control
∥

∥

∥
eβ.∆Y

∥

∥

∥

S∞
≤ C

∥

∥

∥
eβ.∆F

∥

∥

∥

Hp̄
. (3.12)

2. Control of
∥

∥eβ.|∆Z|
∥

∥

H2.

The estimate (3.11) computed at time t = 0 provides

E

∫ T

0
|eβs∆Zs|

2ds ≤
1

2

∥

∥

∥
eβ.∆Y

∥

∥

∥

2

S∞
+

1

β
E

∫ T

0
|eβs∆Fs|

2ds+ 2E

∫ T

0
e2βs∆Ys∆Zs · b

δ
sds .
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Using the relation 2|xy| < 2y2 + x2/2, we deduce

1

2
E

∫ T

0
|eβs∆Zs|

2ds ≤

(

1

2
+ 2E

∫ T

0
|bδs|

2ds

)

∥

∥

∥eβ.∆Y
∥

∥

∥

2

S∞
+

1

β

∥

∥

∥eβ.|∆F |
∥

∥

∥

2

H2
.

Since the L
2 norm of

∫ T
0 bδsdBs is dominated by the BMO norm of

∫ .
0 b

δ
sdBs, it is upper-

bounded by a constant which does not depend on δ. Hence, plugging (3.12) in the previous
estimate provides

E

∫ T

0
|eβs∆Zs|

2ds ≤ C

(

∥

∥

∥
eβ.∆F

∥

∥

∥

2

Hp̄
+
∥

∥

∥
eβ.∆F

∥

∥

∥

2

H2

)

.

Classical norm inequality leads to the expected control on
∥

∥eβ.∆Z
∥

∥

H2 which, together with

(3.12), provides (3.9) and concludes the proof. ✷
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