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Microcanonical initial distribution strategy for classical simulations in strong field

physics
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Classical models in strong field physics typically require a careful selection of initial conditions
which correspond accurately to the state selection. We compare two such procedures, the (many)
pilot atom technique and the microcanonical strategy. We show that for some range of parameters,
the pilot atom strategy may lead to artifacts due to the correlations between the different initial
conditions. On the other hand, the microcanonical strategy is, by design, free of such artifacts for
all admissible parameters.

PACS numbers: 05.45.Ac, 32.80.Rm, 32.80.Fb

I. INTRODUTION

Despite their vastly different temporal and spatial
scales, celestial mechanics and atomic physics have much
in common due to the similarity between the gravita-
tional and Coulomb interactions [1]. As a consequence,
many tools of celestial dynamics can be applied to atomic
physics and vice versa. The best-known such instance,
the Bohr model of the hydrogen atom is, of course, a
miniature solar system [2]. It is remarkable that in the al-
most hundred years that have passed since the inception
of this model, analogies between celestial and atomic sys-
tems continue to be discovered and exploited. For exam-
ple, the Restricted Three-Body problem (RTBP) (made
up of Sun-Jupiter-Asteroid), is closely related to Rydberg
atom ionization in microwave fields [1–3]. The basic the-
ory of chemical reactions, Transition State Theory [4–6],
has turned out to be relevant for asteroid capture [7–9]
and may one day be useful for the design of spacecraft
missions [10]. More recently, the celestial-atomic analogy
has been extended to the ionization properties of atoms
subjected to strong and short circularly polarized (CP)
laser fields [11].

When atomic and molecular systems interact with
strong and short laser pulses, many outcomes are pos-
sible. One of these, which has attracted a great deal of
interest, is correlated double ionization: It gives access
to the electronic properties of matter such as experimen-
tal imaging of molecular orbitals [12] . Conventionally,
for near-infrared linearly polarized laser fields, two main
routes to double ionization have been identified [13]. The
first one, which is also the most straightforward, is se-
quential double ionization (SDI) where the two electrons
are ionized independently of each other in an uncorre-
lated way. An alternative route to SDI is the so-called
nonsequential double ionization (NSDI) pathway where
inter-electronic correlations are deeply involved in the
ionization process. The mechanism behind NSDI is now
fairly well understood, at least in its broad lines, and fol-
lows the recollision scenario [14, 15]: First, an electron is
ionized by the field, travels in the field absorbing energy,

and then, upon reversal of the field direction, it is driven
back to the core region where it interacts and exchanges
energy with the other electron (recollides). Finally un-
der the impact of the preionized electron, both electrons
are ionized in a correlated way. Note that the recollision
mechanism, by itself, is of great theoretical and experi-
mental interest as one of its byproducts are HHG spectra
currently reaching into the XUV and VUV regions [16]
which provide sub-femtosecond pulses and unprecedented
time resolution.

A signature of NSDI (and thus recollision) with linearly
polarized (LP) laser fields is the characteristic “knee”
shape in the double ionization probability versus laser
intensity [13, 17]. The curve typically exhibits an en-
hancement, roughly speaking a bump, in the intermedi-
ate range of intensities that departs by several orders of
magnitude from what the SDI mechanism predicts. This
knee shape has been the first experimental evidence of
an alternative route to double ionization from SDI and is
now regarded as one of the most dramatic manifestation
of electron-electron correlation in nature [13].

Once the recollision mechanism was understood for lin-
ear polarization, it was natural to ask whether it persists
as the ellipticity of the external field is varied. From
the atomic physics point of view, the very same models
that explain recollision with linear polarization so well
predict its suppression as the ellipticity is increased, and
that it would be completely eliminated for circular po-
larization [14, 18]. On the other hand, from the celestial
mechanics point of view, the persistence of recollisions is
not much of a surprise since asteroid capture – the coun-
terpart of recollision – is well known and understood by
now [1–3]. As a consequence, the question of recollision
with CP fields was left open with apparently contradic-
tory experimental results until that is the absence of a
knee shape for He and Xe [19, 20], which tends to val-
idate the absence of recollision, while a knee shape has
been observed for the double ionization of Mg [21] and
nitrogen oxide [22] in CP fields. Recently, it was shown
that recollision is indeed possible for circular polarization
but it is not accessible to all atoms due to their ground
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state configurations [11].
Entirely classical interactions turn out to be adequate

to generate the strong two-electron correlation needed
for double ionization [13, 23]. Therefore we work with
the classical Hamiltonian model of pseudo-two electron

atoms with soft Coulomb potentials [24, 25]. We con-
sider a two active electron model atom subjected to a
strong and short circularly polarized laser field. In the
dipole approximation and considering soft Coulomb po-
tentials [24], the corresponding Hamiltonian reads

H (x1,x2,p1,p2, t) =
|p1|2
2

+
|p2|2
2

+
1

√

|x1 − x2|2 + b2
− 2

√

|x1|2 + a2
− 2

√

|x2|2 + a2

+(x1 + x2) · f (t)E0 (ex sinωt+ eyǫ cosωt) , (1)

where x1 and x2 are the positions of the electron (the nu-
cleus is assumed fixed at the origin) in R

d (d ∈ {1, 2, 3}),
p1 and p2 their canonically conjugated momenta, ex and
ey are the unit vectors in the x- and y-directions respec-
tively and |·| and · denote the Euclidean norm and scalar
product in R

d. Unless specified otherwise, atomic units
are used throughout the paper. We consider a laser with
an envelope f , amplitude E0, frequency ω and elliptic-
ity ǫ. For numerical simulations, we consider a trapezoid
shape f with two laser cycle ramp up and down and
four laser cycle constant plateau. The frequency is set
to ω = 0.0584, corresponding to a 780 nm wavelength.
Linear polarization corresponds to ǫ = 0 and circular
polarization corresponds to ǫ = 1.
Once the model atom is chosen, i.e., for a given value of

ground state energy Eg (defined as the sum of the first and
second ionization potentials [26]), the softening param-
eters have to be determined such that Hamiltonian (1)
models it well. For the actual selection of the softening
parameters we consider the two constraints:

• Without laser excitation, the atom must be “sta-
ble”, or, in other words, the model must not al-
low for self-ionization: We impose the ground state
energy surface {H = Eg} to be bounded in phase
space for E0 = 0.

• One should be able to actually generate initial con-
ditions with energy Eg: The ground state energy
surface must not be empty {H = Eg} 6= ∅.

By definition, the ground state energy is negative
(Eg < 0). As a consequence, the first constraint (no self-
ionization) is equivalent to

− 2

Eg
< a.

Note that this constraint only involves the electron-
nucleus softening parameter. On the other hand, the
second constraint (that the ground state energy surface
is not empty), involves the relative magnitude of both a

and b. We define the two electron potential as

V (x1,x2) = − 2
√

|x1|2 + a2
− 2

√

|x2|2 + a2

+
1

√

|x1 − x2|2 + b2
. (2)

The minimum potential energy is reached when each elec-
tron is located on a symmetric (mirror) position about
the nucleus at

|x1,2| =
√

max (a2 − b2, 0)

3
.

As a consequence, in order to have a non-empty ground
state energy surface, the softening parameters must sat-
isfy

b >
a

4 + aEg
for a ≤ b,

and

b >

√

4a2 − 27

E2
g

otherwise.

We give an illustration of the range of accessible values
for the softening parameters (a, b) in Fig. 1.
For a given atom, we select the electron-nucleus soften-

ing parameters a such that all values of b are admissible,
i.e.,

− 2

Eg
< a < −3

√
3

2Eg
,

and we usually set the electron-electron softening param-
eter to unity (b = 1). In figure 2 we display the corre-
sponding range of parameter a for commonly used atoms.
The softening parameter a enables one to model dif-

ferent atoms while, the parameter b controls the colli-
sion strength of the two electron when they pass by each
other. As a consequence, one can expect a different or-
ganization of the dynamics depending on the chosen pa-
rameters, for a given atom (i.e., a given a but different
values of b). In figure 3 we display several Poincaré sec-
tions [27] for Hamiltonian (1) with one spatial dimension
and without laser excitation (E0 = 0). For each panel,
we consider the Poincaré section of equation

x2 = −
√

max (a2 − b2, 0)

3
, and dtx2 > 0.

The figures highlight two main observations:
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FIG. 1. Accessible range of softening parameters (colored
area) for a given atom (i.e., ground state energy Eg) in the
(a, b) parameter plane.

FIG. 2. Accessible range of electron-nucleus softening pa-
rameter a (see text) for the first rare gas and alkaline earth
elements.

• For a given atom (i.e., chosen a and Eg), the topol-
ogy of the accessible part of phase space to the
field-free dynamics varies significantly. In particu-
lar, we note that the neighborhood of the nucleus
is not always accessible to the dynamics.

• Varying the softening parameters changes signif-
icantly the organization of the dynamics, for in-
stance

– For a = 3 and b = 0.1 (lower left panel) we ob-

serve a mostly regular dynamics, where phase
space is almost completely foliated with in-
variant structures.

– For a = 1 and b = 0.1 (upper left panel) we
observe a mixed dynamics, with coexistence of
chaotic seas with regular regions.

– For a = 1.5 and b = 1 (central panel) we ob-
serve a mostly chaotic dynamics, with a sin-
gle chaotic sea and barely any invariant struc-
tures.

As we shall see in what follows, this observation has a
concrete consequence in the way one chooses initial con-
dition for a statistical analysis of the dynamics.
The limit of a large electron-electron softening param-

eter (b) corresponds to the uncorrelated dynamics [28].
It has a limited physical interest such that we do not
comment more on it. On the other hand, the limit of a
small electron-electron softening parameter (b) forces the
electrons to stay away from each other.

II. INFLUENCE OF THE CHOICE OF INITIAL

CONDITIONS ON DOUBLE IONIZATION

YIELDS

Several methods have been considered to generate ini-
tial conditions in the ground state energy for classical
simulations as given by Hamiltonian (1). In this sec-
tion, we consider and compare two of them. The first
one, called the (many) pilot atom strategy, takes advan-
tage of the property of conservation of the energy for
autonomous Hamiltonian system. On the other hand,
a microcanonical initial distribution can be considered
using a rejection sampling method.
The pilot atom strategy [23, 25, 29–35] (first intro-

duced in Ref. [36] for Rydberg atoms) first chooses a
point on the ground state energy surface. Then, using
the field-free dynamics [Hamiltonian (1) with E0 = 0],
the corresponding trajectory is propagated in time and
points (in phase space) are picked along the pilot tra-
jectory. Some variations of the strategy use several pi-
lot trajectories to generate the pool of initial conditions.
For the numerical simulations we consider in this sec-
tion, we consider a single sampling trajectory and initial
conditions are chosen every 10 a.u. (in time). Since the
field-free dynamics corresponds to an autonomous Hamil-
tonian system, the total energy is conserved by the dy-
namics such that all the points along the pilot trajectory
have the same energy, corresponding to the ground state
energy.
The microcanonical strategy [28, 37] decomposes

Hamiltonian (1) with E0 = 0 into a kinetic energy T
plus potential V where

T =
|p1|2
2

+
|p2|2
2

,
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FIG. 3. Poincaré section for Hamiltonian (1) with one spatial dimension. For each panel, we consider the section of equation

x2 = −
√

max (a2 − b2, 0)/3, dtx2 > 0. The first row corresponds to neon (a = 1, Eg = −2.3), the second to argon (a = 1.5,
Eg = −1.6) and the third to magnesium (a = 3, Eg = −0.83) [26]. The first column corresponds to b = 0.1, the second to b = 1
and the third to b = 2. Colored areas in the upper left panel correspond to the initial set visited by the pilot atoms considered
in Fig. 5.

and V is given by Eq. (2), such that H = T + V . First
we generate a uniform distribution over the subspace
V =

{

(x1,x2) ∈ R
2d s.t. V (x1,x2) ≤ Eg

}

. By hypoth-
esis, the subset V is bounded and we find convenient to
use a rejection sampling method [38] to obtain a uni-
form distribution: We consider a distance dcrit such that
V ⊂ [−dcrit, dcrit]

2d. Then, we pick up an initial posi-

tion for the two electrons (x1,x2) in [−dcrit, dcrit]
2d

with
a uniform distribution. If V (x1,x2) > Eg, a new position
is chosen randomly with the same uniform distribution
(actually we iterate the process until we find a suitable
position). Finally, the momenta p1 and p2 are chosen
with a uniform distribution over the sphere (in R

2d) of

radius
√

2 (Eg − V (x1,x2)). Note that the final step is
straightforward (it can be performed by choosing ran-
domly 2d− 1 angles). We give a sketch of the algorithm
we use to generate a microcanonical initial distribution
on the ground state energy surface in Fig. 4.

In figure 5 we compare the statistical results obtained
with a microcanonical distribution (continuous curve)
and different pilot atom strategies (markers). A first
surprise is that, depending on the way the pool of ini-
tial conditions is generated, double ionization curves de-
part dramatically from each other showing (up to) orders
of magnitude of difference. In addition, the pilot atom
method exhibits a significant sensitivity to the selected
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FIG. 4. Sketch of algorithm used to compute the microcanon-
ical initial distribution on the ground state energy surface.
The diamond block labels a logical test.

pilot trajectory.

Going back to the ionization probability with the pilot
atom strategy, by looking for instance at the red squares
in Fig. 5 (right panel), one would have missed the exis-
tence of the knee and thus conclude the absence of recol-
lisions with CP fields and Mg. To some extent the same
conclusions would be reached with green dots in the same
figure. On the other hand, considering the microcanoni-
cal distribution, we observe a well-defined knee. Finally,
looking at the blue diamonds (yet another pilot atom),
we see that the double ionization probability is signifi-
cantly overestimated in a wide range of intensities.

The rationale behind the discrepancies obtained with
the (many) pilot atom strategy can be explained with

the dynamical organization of the accessible phase space
of the field-free dynamics. In particular for some set of
parameters, phase space is partially (or even almost en-
tirely) covered by regular invariant structures. This has
a direct impact on the way initial conditions are gener-
ated for a statistical analysis of the dynamics (including
the excited dynamics).

III. CONCLUSION

For (even partially) regular dynamics, the many pilot
atom method takes the risk of having initial condition
that do not cover the entire accessible ground state en-
ergy surface, with a strong correlation between the dif-
ferent initial conditions (if the pilot trajectory is stuck on
an invariant torus for instance). It is what is observed
in Fig. 5 (left panel), where the pilot trajectory is con-
fined to a small portion of the accessible phase space, as
shown in Fig. 3 (colored areas in the upper left panel).
On the other hand, for a chaotic dynamics, a typical tra-
jectory fills very quickly the whole accessible region in
phase space. In this case the two kinds of initial sets lead
to approximately similar results if the integration time as
well as the number of points are sufficiently large [28]. In
any case, in order to avoid artifacts due correlation effects
between the initial conditions, a microcanonical strategy
is best to consider.
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