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We investigate the momentum distribution of weakly interacting 1D Bose gases at thermal equi-
librium both experimentally and theoretically. Momentum distribution of single 1D Bose gases is
measured using a focusing technique, whose resolution we improve via a levitation scheme. The mo-
mentum distribution compares very well with quantum Monte Carlo calculations for the Lieb-Liniger
model at finite temperature, allowing for an accurate thermometry of the gas that agrees with (and
improves upon) the thermometry based on in situ density fluctuation measurements. The quasi-
condensation crossover is investigated via two different experimental situations, each lying on either
side of the crossover. Classical field theory is expected to correctly describe the quasi-condensation
crossover of weakly interacting gases. We derive the condition of validity of the classical field theory,
and find that, in typical experiments, interactions are too strong for classical field to be accurate.
This is confirmed by a comparison between the classical field predictions and the exact quantum

Monte Carlo results.

PACS numbers: 03.75.Hh, 67.10.Ba

I. INTRODUCTION

Correlation functions are essential to describe many-
body systems. In particular, the first-order corre-
lation function, or equivalently its Fourier transform,
the momentum distribution, is an important observ-
able, since it witnesses various phenomena such as the
Bose-Einstein condensation transition, the Berezinskii-
Kosterlitz-Thouless transition [1] or the Mott transi-
tion [2]. In the case of one-dimensional (1D) homoge-
neous gases, although one does not expect phase tran-
sitions, the correlation functions contain valuable infor-
mation about the system. While the equation of state of
1D homogeneous Bose gases has been extensively stud-
ied in various regimes [3-6] and compared with exact
theories [7], the momentum distribution has remained
largely unexplored. It was measured for quasi-1D quasi-
condensates using Bragg spectroscopy [8-10], and more
recently it was investigated using the focusing technique
for quasi-1D Bose gases in the crossover from the ideal
Bose gas to quasi-condensate regimes [4, 11|. Density
ripples that appear at the near field of a freely ex-
panding quasi-1D quasi-condensate have also been stud-
ied [12, 13]. Although related to the second-order cor-
relation function, they also provide information about
the first-order correlation function within the quasi-
condensate theory. The momentum distribution of an
array of strongly correlated 1D Bose gases [14] consti-
tutes the only measurement on a truly 1D system to
our knowledge. From a theoretical point of view, the
momentum distribution of 1D Bose gases with repulsive
contact interactions is not known exactly over the entire
phase diagram, but a few results have been established:
the mean kinetic energy can be extracted from the ex-
act Yang-Yang thermodynamics [11], and the short-range

correlations are responsible for a momentum tail scaling
as 1/p* [15-17]. The momentum distribution is known in
the asymptotic regimes such as the ideal Bose gas and the
quasi-condensate regimes, and a classical field approxi-
mation has been proposed to account for the crossover
between them [11, 18-20].

In this work we investigate the momentum distribution
of weakly interacting, purely or almost purely 1D Bose
gases in various regimes around the quasi-condensation
crossover. On the theory side, we find a criterion for
the classical field theory without cut-off [18, 19] to be
accurate at the quasi-condensation crossover. Interac-
tions are however too strong in our experiment to fulfill
this criterion, and we implement exact Quantum Monte
Carlo (QMC) simulations for the equilibrium behavior of
the Lieb-Liniger model. We find that the measured mo-
mentum distribution agrees very well with QMC calcu-
lations. Moreover, the temperature extracted from a fit
of the momentum distribution to the QMC calculations
is in agreement with that obtained from in situ density
fluctuation measurements [3, 6].

This paper is organised as follows. In Sec. II we re-
call the classical field approximation and investigate the
conditions under which it is valid to describe the quasi-
condensation crossover. We show that, in most experi-
mental situations, the gas is too strongly interacting for
this description to be accurate. We then present our
QMC calculations, and compare them with the classical
field prediction in the asymptotic limit. In Sec. III, we de-
scribe the experimental setup and the focusing technique
we use to measure momentum distribution. We discuss
how we improve the resolution of this technique by means
of a levitation scheme. In Sec. IV, we present our ex-
perimental results that span both the quasi-condensate
regime (purely 1D) and the degenerate ideal Bose gas



regime (almost 1D), and compare them to QMC results.
We conclude and discuss the prospective work in Sec. V.

II. THEORETICAL PREDICTIONS
A. Model Hamiltonian and exact solution

We consider a 1D homogeneous Bose gas with repul-
sive contact interactions, described by the Lieb-Liniger
Hamiltonian, whose grand-canonical expression is
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where z is the position, ¥ = W(z) is the field operator,
g is the coupling constant, m is the mass of one boson
and p is the chemical potential. The thermal equilib-
rium state of the system is completely characterised by
the density p and the temperature T', or by the dimen-
sionless interaction parameter, v = h29 , and the reduced

2h%kpT .
temperature, ¢ = =8 The phase diagram [3] in the
parameter space (v, t) is given in Fig. 1, where lines
should be understood as crossovers. In this article, we
focus on the quasi-condensation crossover, which occurs,
for v < 1, around the line 7., = t~2/3 (solid line). The
Lieb-Liniger model has the remarkable property of be-
ing integrable, giving access to exact results valid over
the entire phase diagram. For example, the equation of
state is known exactly through the Yang-Yang theory [7].
Yet, the calculation of the first order correlation function
g (z) = (IH(2)¥(0)) from the Bethe-Ansatz solution
for finite v and at finite temperature is still a subject of
active research. Approximate analytic theories for the
correlation functions exist in the limiting cases of ideal
Bose gas regime (where the ideal Bose gas theory applies)
and quasi-condensate regime (where the Bogoliubov the-
ory applies [17]). However, the behavior of g(!)(z) at the
crossover between those two regimes lacks a quantitative
description.

B. Classical field theory

The full quantum many-body problem of Eq. (1) is
notoriously complex. However, since thermal fluctua-
tions are expected to dominate at the quasi-condensation
crossover, it seems appropriate to simplify the problem
using a classical field approximation, where the quantum
field operators W(z) and W'(z) are replaced by the com-
plex fields ¥(z) and U*(z) [18, 19]. This strategy has
been pursued in [11, 20, 22]. Such an approach is partic-
ularly attractive for 1D homogeneous gases: contrary to
higher dimensions, no ultraviolet divergence occurs when
calculating ¢(!)(2), so that no energy cut-off is required
for this particular quantity. This problem can then be
mapped onto a time-independent 2D Schrédinger prob-
lem, describing a single particle evolving in imaginary
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FIG. 1: Phase diagram of the 1D Bose gas in the param-
eter space (v,t). The ideal Bose gas to quasi-condensation
crossover occurs for v ~ . = 1=2/3 (solid line). Within
the ideal Bose gas regime (light gray area), the crossover
from the classical to the degenerate sub-regime occurs for
v ~ ~4 = t~'/? (dashed line). The region v,t > 1 (dark
gray area) is the fermionised regime. The segments corre-
spond to the regions explored by the two sets of experimental
data (see Sec. IV). Note that the effect of quantum fluctua-
tions on the ¢'¥) function in the quasi-condensate regime are
noticeable only for extremely low temperature [21], which is
experimentally irrelevant.

time [18], thus leading to fast and easy-to-implement cal-
culations.

The classical field model is parameterised by a sin-
gle dimensionless variable v = /v, = ~t2/3, pro-
vided that lengths are rescaled by the correlation length
le = h?p/(mkpT) [18, 23]. Simple analytic formulas are
found in the two limits of the ideal Bose gas regime
(v > 1) and the quasi-condensate regime (v < 1):
the momentum distribution is Lorentzian in both lim-
its, with its full width at half maximum (FWHM) being
Ap = 2h/l. in the ideal gas limit and Ap = h/l. in the
quasi-condensate limit. Omne recovers here the expres-
sions derived from the highly degenerate ideal Bose gas
model and the high-temperature Bogoliubov theory [17]
respectively. Results of numerical calculations spanning
the crossover between those two regimes are reported in
Fig. 2, where one assumes a fixed value t = 1000 and
parameterises the system with + instead of v. We define
the crossover region as the domain for which Ap (shown
in Fig. 2(a) as the dashed line), differs by more than 10%
from both asymptotic limits (A/l. and 2Ah/l.), and we
find that the crossover extends over about one order of
magnitude in v, or equivalently in v at fixed t. Looking
at the shape of the momentum distribution, we recover
the Lorentzian distribution in both asymptotic regimes
and, for any value of v, we find momentum tails decreas-
ing as 1/p?, as expected from the analog single-particle
problem [24].



C. Validity of the classical field theory at the
quasi-condensation crossover

The classical field theory is valid only if the population
of the relevant modes is large. Within the ideal Bose
gas regime, this requires p > pg = VmkpT/h, i.e. a
highly degenerate gas. This condition writes equivalently
v < 74 where 4 = t~1/2 is the interaction parameter at
degeneracy. Thus, the classical field theory only correctly
describes the quasi-condensation crossover (which occurs
at ¥ ~ v.,) provided that ., < v4. The last condition
translates into ¢'/6 > 1. Since crossovers span typically
about one order of magnitude in 7, one requires that
t > 105. This value is very difficult to achieve experi-
mentally on cold-atoms experiments while maintaining a
temperature sufficiently low to ensure the 1D condition,
kpT < hw,, unless extremely weak atomic interactions
are reached, using for instance a Feshbach resonance [25].

In the experiment presented here, we have t < 1000. In
this case, according to the above argument, the classical
field approach is expected to be inaccurate at the quasi-
condensation crossover. This can be seen in Fig. 2(a),
which shows the FWHM of the momentum distribution
as a function of v according to the ideal Bose gas theory
and the classical field prediction for ¢t = 1000. The ideal
Bose gas theory is parameterised by x = v/va ~ pa/p,
which quantifies the level of degeneracy: the FWHM of
the momentum distribution within this theory goes from
the Maxwell-Boltzmann prediction for x > 1 to 27/l for
x < 1, and this crossover spans more than one order of
magnitude in x, or equivalently in v at fixed t. The classi-
cal field theory correctly describes the quasi-condensation
crossover only if it shares a common plateau with the
ideal Bose gas theory at Ap = 27/, in the degenerate
ideal Bose gas regime, where 7., < 7 < 74. As seen
in Fig. 2(a), this is not the case at all for ¢ = 1000: the
highly degenerate ideal Bose gas regime is not very well
identified for such a small value of ¢ as far as the momen-
tum distribution is concerned, so that the classical field
theory does not correctly describe the quasi-condensation
Crossover.

D. Quantum Monte Carlo approach

For t < 10%, one needs therefore a more accurate treat-
ment than the above-mentioned classical field approxi-
mation. We make use of QMC simulations to provide
numerically exact results for the Lieb-Liniger model at
finite temperature. Bosons in continuous space can be
efficiently simulated making use of Monte Carlo tech-
niques. Variational and diffusion Monte Carlo results for
the first-order correlation function at 7" = 0 are reported
in Ref. [26]. At finite temperature, one can in princi-
ple make use of path-integral Monte Carlo simulations
[27, 28], although we are not aware of explicit calcula-
tions for the Lieb-Liniger model. This latter technique
requires the discretization of the imaginary-time dimen-

sion (Trotter approximation), and its influence on the
simulation results has to be carefully removed. Here, we
adopt a rather complementary approach, discretizing the
spatial dimension instead. Indeed, bosonic lattice models
lend themselves to efficient QMC simulations free of any
Trotter approximation. By discretizing the field operator
WT) (2) =~ IA)E-T)/\/E, where a is the lattice spacing, Bj, l;;f
are bosonic operators at site j, and z ~ ja, we obtain
the Bose-Hubbard Hamiltonian

Hpp =) { —J (B}HBJ- +h.c.) + %ﬁj(ﬁj ~1)
j

(= v5) 75 |, (2)
with 7; = l;;l;j, and parameters J = h%*/(2ma?), U =
g/a, i = p— 2J. We also include the presence of an

external potential V' (2), discretized to give v;. The Lieb-
Liniger parameters v and t read
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where n = (f;) = pa is the lattice filling.

We study the Bose-Hubbard approximation to the
Lieb-Liniger Hamiltonian by making use of Stochastic Se-
ries Expansion (SSE) QMC [29, 30|, extensively used to
investigate lattice bosons. The Lieb-Liniger model is cor-
rectly recovered when the lattice spacing is much smaller
than the correlation length in the system. In the classical
ideal Bose gas regime, this condition amounts to require
Aap/a = /4w J/(kgT) > 1. On the other hand, in the
degenerate ideal Bose gas regime and quasi-condensate
regime, we need [./a > 1, implying 2.J/(U~t) > 1 and
4J/(U~t) > 1 respectively. The first-order correlation
and the momentum distribution are efficiently sampled
with SSE-QMC during the directed-loop update [29, 30].
The lattice simulation reproduces faithfully the momen-
tum distribution of the Lieb-Liniger model for momen-
tum p < hi/a.

Fig. 2 shows QMC calculations for a homogeneous
gas at t = 1000, for values of + that span the quasi-
condensation crossover. In Fig. 2(a) the FWHM of the
momentum distribution calculated with QMC is com-
pared to that of the classical field and of the ideal Bose
gas models. The QMC results follow the ideal Bose gas
prediction almost until the FWHM of the ideal Bose gas
prediction crosses that of the classical field prediction,
which occurs for v = 7., and then converges towards the
classical field prediction. The disagreement to the re-
spective theories never exceeds 20%. These results miti-
gate the “failure” of the classical field approximation: as
long as the FWHM is concerned, an approximate model
where one uses the ideal Bose gas prediction for v > .
and the classical field prediction for v < ., would give
the correct predictions within 20% error. Investigation
of the full momentum distribution is shown in Fig. 2(b)
for three different values of 7. On the ideal Bose gas side
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FIG. 2: Momentum distribution of a homogeneous gas at a t = 1000. (a) FWHM according to the classical field theory (dashed
line), ideal Bose gas theory (solid line), Maxwell-Boltzmann prediction (dash-dotted line) and QMC calculations (stars). The
arrows show the interaction parameter at the quasi-condensation crossover (yeo = t=2/ 3) and at the degeneracy crossover
(ya = t~?). (b) momentum distribution in log scale for three different value of v. Shown are QMC results (solid lines),
classical field predictions (dashed lines) and ideal Bose gas prediction (dotted lines).

of the quasi-condensation crossover, for v = 57.,, the
QMC momentum distribution follows closely the ideal
Bose gas behaviour. The classical field result is recovered
for v & vc0/3, while the momentum width is still about
10% above the Bogoliubov prediction. For v = 7., we
find that the tails of the momentum distribution agree
well with the ideal Bose gas prediction, while the width
of the distribution is narrowed by about 20%. Finally,
note that, although the highly degenerate ideal Bose gas
prediction Ap = 2h/l. has not been reached before the
gas undergoes the quasi-condensation transition, the mo-
mentum distribution at v ~ 7., is much narrower than
the Maxwell-Boltzmann prediction (dash-dotted line in
Fig. 2(a)), so that the effect of degeneracy within the
ideal Bose gas regime is already substantial.

E. Local density approximation

While the previous results hold for homogeneous infi-
nite systems, in the experiment described below, the gas
is trapped longitudinally in a harmonic confinement of
frequency w. /(27). As long as the correlation length . is
much smaller than the cloud size L, however, a local den-
sity approximation (LDA) is valid: at a given position z,
the local value of an observable is that of a homogeneous
gas at the chemical potential pu(2) = g —m(w.z)?/2, and
the global value for a trapped system can be obtained by
adding the contributions of each slice of the gas, i.e.,

1 < dp -
Otrap (W2, pt) = —F—— — Onom(p—p) . (4
t P(w M) \/W/O i h (M M) ( )

Therefore, within this approximation and for a given
peak density, the normalized momentum distribution is
independent of w,, while the total atom number scales
as 1/w. For a gas whose peak linear density lies in the
crossover from the degenerate ideal Bose gas regime to
the quasi-condensate regime, the LDA condition [, < L

writes w, < (77”ngl<:12E3T2/715)1/3 [25]. At much higher

densities, when almost the whole cloud lies within the
quasi-condensate regime, the LDA condition gives w, <
kpT+/2mg/p/h? |8]. Both conditions are fulfilled in the
data shown below, so that LDA is expected to be valid.
Using QMC, we compute the momentum distribution of
a harmonically trapped gas for different peak chemical
potentials (i.e. different peak linear densities) and tem-
peratures. To shorten the computational time, calcula-
tions are performed for trapping frequencies five times
larger than the experimental values, while still satisfying
the LDA condition, as verified numerically. Linear in-
terpolation between the calculated distribution permits
the calculation of momentum distribution for any chem-
ical potential po and temperature 7', and enables us to
perform fits to the measured distribution.

III. EXPERIMENTAL TECHNIQUES

One-dimensional atomic clouds are realised in our ex-
periment using an atom-chip setup [31]. More specifi-
cally, we load 8 x 10* Rb®" atoms in the modulated guide
described in [3]. The longitudinal harmonic potential has
an oscillation frequency of about 8 Hz and is obtained by
DC currents running through wires I3 and I, (see Fig. 3).
The transverse potential is provided by three wires car-
rying a 200 kHz sinusoidal current. The transverse oscil-
lation frequency can be varied from a few hundred Hz
to tens of kHz by changing the current amplitude. An
important feature of this design is the independence be-
tween the longitudinal and transverse confinements. Af-
ter 1200 ms of radio-frequency evaporation, we let the
cloud reach thermal equilibrium for 400 ms, after which
no remaining breathing can be observed. To characterise
the atomic cloud, we perform in situ density fluctuation
measurements, analysing the noise in an ensemble of ab-
sorption images as described in [5].

To measure the momentum distribution, one can moni-
tor the free expansion of the gas after all confining poten-
tials have been turned off. The rapid transverse expan-



(@ (b . d0Hz

imaging

LIff I I,
0.2 mm
© 20w trick ty :ingmg
f: e 0 Hz ‘
i _decompression :
fi e 3
N 700 Hz ;
Lo p 0Hz :
SO ' t
trick t ly=717—1

FIG. 3: (a) Wire configuration: currents I1, I, Is and I4 re-
alise the longitudinal trapping potential of frequency f.. The
transverse confinement of frequency f, is ensured by the three
wires carrying a current modulated at 200 kHz. (b,c) Focus-
ing sequences. The focusing potential, harmonic to order 5 in
z, is applied during txicx before the longitudinal potential is
turned off. After a free evolution during the focusing time 7,
an absorption image is taken. Without levitation, see (b), the
transverse confinement is removed during the whole focusing
time, though a 1 ms ramp down to f; = 700 Hz is carried
out to decrease the transverse expansion. In the presence of
levitation, see (c), f1 is kept at 700 Hz for a time ¢;, during
which the cloud does not fall. Numerical values in (b) and (c)
correspond to data of Fig. 5 and 4 respectively.

sion amounts to an effective instantaneous suppression
of the interactions, so that the longitudinal expansion
reflects faithfully the initial momentum distribution in
the trap. However, reaching the far field regime where
the longitudinal density profile is homothetic to the mo-
mentum distribution requires unrealistically large field of
view and long expansion time for our experimental pa-
rameters. We thus use the so called focusing technique,
already applied to 1D [11, 32, 33| and 2D systems [34].
Its principle is described below. A strong longitudinal
harmonic potential is applied for a very short time dur-
ing which atoms do not have time to move but acquire
a longitudinal momentum shift ép = — Az, proportional
to their distance z to the trap center. Then, the atomic
interactions are suppressed by switching off the trans-
verse confinement, and the longitudinal confinement is
removed so that the cloud starts a free evolution. After
a focusing time 7 = m/A, the longitudinal density distri-
bution f(z) is homothetic to the initial momentum dis-
tribution n(p) = (m/7)f(pr/m) [35]. More precisely, the
time sequence we use is drawn in Fig. 3. The longitudinal
focusing potential is realized by a four-wire configuration
that cancels out the non harmonic terms up to the 6th
order, thus minimizing aberrations. It has an oscillation
frequency wiick/2m = 40 Hz and it is applied for about
tkick = 0.6 ms. After the focusing pulse, we ramp the
transverse frequency down to 700 Hz in 1 ms before com-
pletely turning off the transverse trapping potentials and
letting the cloud evolve freely. The 1 ms transverse ramp
is used to limit the transverse velocity spread, so that the
transverse final expansion of the cloud is reduced and the

signal to noise ratio (SNR) is increased. We verified that
this ramp is however quick enough to leave the longitudi-
nal velocity distribution unchanged. After free evolution
during the focusing time 7 ~ 1/wi  tiicx ~ 27 ms, we
take an absorption image of the cloud and extract the
longitudinal density distribution, from which we deduce
the initial momentum distribution. The focusing time 7
is adjusted by minimising the width of the density dis-
tribution of cold samples. Moreover, the width of very
cold clouds saturates at a value that gives us the mo-
mentum resolution Ap/h = 0.2 um~!. This resolution is
significantly smaller than the width of the data in Fig. 5.

On the other hand, a better resolution may be neces-
sary for a momentum distribution that is much narrower.
This can be achieved by a longer focusing time 7. How-
ever, the depth of field of our optical system limits the
maximum free fall under gravity to about 3 mm, corre-
sponding to a free fall time of about 25 ms. Nevertheless,
larger focusing times can be obtained if a transverse po-
tential is maintained during the focusing time, strong
enough to overcome gravity (which acts in the trans-
verse plane in our experiment), but weak enough so that
atomic interactions are negligible. More precisely the lev-
itation scheme we use is the following. After having per-
formed the longitudinal focusing pulse and switched off
the longitudinal potential, we ramp the transverse fre-
quency down in 1 ms, similar to the procedure described
before. The final transverse frequency is f; = 700 Hz,
which is the lowest value that allows the atoms to remain
transversally trapped. We then hold the cloud for a levi-
tation time ¢;, at the end of which we switch off the trans-
verse confinement and let the cloud fall freely for t;. The
levitation does not affect the longitudinal free evolution
as long as the effect of interactions stays negligible. We
have checked that this is indeed the case for the explored
parameter range by measuring the longitudinal density
profile at focus f(z) of identical clouds, either without
levitation and a focusing time 7 =ty = 24.7 ms, or with
the above levitation scheme and 7 = t; + ¢ty = 43.3 ms,
where ¢; = 20.6 ms and ty = 22.7 ms. The functions
f(mz/7), shown on Fig. 4 for a cloud of 7000 atoms at
T ~ 95 nK, give indeed the same momentum distribu-
tion. The validation of this technique paves the way to-
wards high resolution measurements of momentum dis-
tribution of 1D gases.

IV. EXPERIMENTAL RESULTS

Fig. 5 shows experimental results referring to two dif-
ferent parameter sets (particle number, temperature and
trapping potential). In both cases, the momentum dis-
tribution is obtained without the levitation scheme, with
a focusing time of 27 ms.
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FIG. 4: Momentum distribution of a gas of about 7000 atoms
at thermal equilibrium, in a 7.5 Hz longitudinal trap, and
4.6 kHz transverse trap. The solid distribution is obtained
without levitation and with a free fall of 24.7 ms. The circles
are the momentum distribution of the same sample, but with
a levitation time of 20.6 ms followed by a free fall of 22.7 ms.

A. On the quasi-condensate side of the crossover

Data in Fig. 5(A) correspond to a cloud ini-
tially trapped with a transverse oscillation frequency
wy/(2r) = 6.4 kHz and a longitudinal frequency of
8.3 Hz, measured using parametric heating and dipole os-
cillations respectively. Since the cloud temperature and
chemical potential are much smaller than the transverse
energy gap, the system is well described by a 1D gas with
a coupling constant ¢ = 2hw, a5, where a; = 5.3 nm
is the 3D scattering length [36]. In Fig. 5 (A,1-2), we
show the measured momentum distribution (points) with
a QMC fit (solid lines) that yields 7" = 72 nK, corre-
sponding to t = 76. Note that the shape is reproduced
up to a few per cent. We report in Fig. 1 the segment
[(Ym, ), (Yar, )] corresponding to the domain explored by
the data: 7, corresponds to the peak density, and the
segment length is such that 80% of the atoms lie in a
region of density larger than that associated to v5;. We
find that vy, ~ Yeo/2, where 7., = t~2/3 is the interaction
parameter at the quasi-condensation crossover. Thus the
cloud lies quite deeply in the quasi-condensate regime.
However, the measured momentum distribution is sub-
stantially broader than that predicted using the quasi-
condensate Lorentzian n(p) o« 1/(p* + (h/l.)?) together
with the LDA, shown as the dashed line in Fig. 5(A,1).
On the other hand, for such a value of ~,,, the momen-
tum distribution shows slowly decreasing tails, compati-
ble with a Lorentzian behavior within a few percent in a
wide range of momenta. This is seen in Fig. 5(A,2) where
the dashed-dotted line shows a 1/p? decrease. For our
SNR of about 80, data are compatible with a Lorentzian
behavior at large p.

As shown in [3, 6], an independent and reliable ther-
mometry can be carried out using in situ density fluc-
tuations, provided the pixel size A is both much larger
than the correlation length of density fluctuations, and
much smaller than the typical length scale of the vari-
ation of the mean density profile : the atom number
fluctuations are then given by the thermodynamic re-
lation (§N?) = kgTAdp/Op, where p(u,T) is the equa-
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FIG. 5: Data for atoms confined in a harmonic trap of trans-
verse oscillation frequency of (A) 6.4 kHz and (B) 2.1 kHz,
and a longitudinal oscillation frequency of (A) 8.3 Hz and
(B) 7.6 Hz. The pixel size for in situ data is A = 2.7 pm.
1),2) momentum distribution in linear and log scales. QMC
fits are shown in solid lines, yielding (A) 7" = 72 nK and
(B) T = 84 nK. The dashed line in (A,1) is the prediction
using the LDA and the Lorentzian momentum distribution
in the quasi-condensate limit. In 2), the dashed-dotted lines
give the 1/ p? behavior, while the momentum associated with
the healing length { = i/ /mpg indicates that sample (A)
is more in the quasi-condensate, with Ap <« h/¢, and sam-
ple (B) is more in the ideal Bose gas, with Ap > h/¢. In
addition, the dotted lines indicate the contribution from the
transverse excited states, which is insignificant for data (A)
and hence neglected in our analysis. 3) in situ density fluc-
tuations, with Yang-Yang prediction in solid lines, evaluated
at the above-mentioned temperatures. The gray dashed and
dotted lines shows Yang-Yang predictions with 30% tempera-
ture deviations. The dash-dotted lines indicate the poissonian
fluctuation level. 4) in situ profile, with the QMC profile in
dashed lines. The dotted lines again show the contribution
from transverse excited states. We also plot in solid lines the
density profile fitted with Yang-Yang calculation, which yields
(A) T =111 nK and (B) T'= 76 nK.

tion of state of homogeneous 1D gases, known exactly
using the Yang-Yang calculation [6], and the derivative
is computed for p such that p(u,T) = (N)/A is the lo-
cal density. The above criterion is well fulfilled in our



experiment and the measured density fluctuations are
shown in Fig. 5(A,3). For linear densities larger than
25 atoms per pixel, fluctuations are almost independent
of the density, which confirms that the center part of the
gas lies within the quasi-condensate regime. Indeed, in
this regime i ~ gp, so that the thermodynamic relation
reduces to (§N?) = AkgT/g, which does not depend on
(N). The fluctuations computed using the thermody-
namic relation and the Yang-Yang equation of state, for
the temperature T' = 72 nK (obtained by fitting the mo-
mentum distribution with the QMC results) are shown
as solid line. The data are in agreement with this predic-
tion. With our SNR, the density fluctuations based ther-
mometry has a precision of about 20% (see gray curves in
Fig. 5(A,3)), less precise than the thermometry obtained
by fitting QMC calculations to the momentum distribu-
tion.

Finally, we compare in Fig. 5(A,4) the measured in situ
density profile to the QMC deunsity profile (within LDA)
for T'= 72 nK (dashed line). We find a good agreement
for most of the profile, although the measured data show
higher wings. Since the central part of the cloud lies
deep in the the quasi-condensate regime, a large part of
the cloud follows the Thomas-Fermi profile, and all the
information on the temperature lies in the small wings.
This renders Yang-Yang thermometry based on density
profile less precise and extremely sensitive to the shape
of the wings. Here, a Yang-Yang fit to the density pro-
file gives T' = 110 nK, a value 40% higher than that
extracted from the QMC fit, incompatible with the mea-
sured momentum distribution or the density fluctuation
measurements. This discrepancy, and thus the presence
of the inflated wings, may come from the anharmonicity
of the potential due to its residual roughness [37]. Al-
ternatively, it may also indicate a lack of perfect thermal
equilibrium.

B. On the ideal Bose gas side of the crossover

While the previous results probe mainly the quasi-
condensate regime, we also probe the ideal Bose gas
side of the quasi-condensation crossover, i.e. data with
Ym > Yeo = t~2/3. The ideal Bose gas regime show a very
different behaviour from the trivial Maxwell-Boltzmann
prediction only for a large t parameter, for which the
quasi-condensation crossover occurs for an already highly
degenerate gas. If one wishes to preserve the 1D condi-
tion kT < hw,, large t parameters can be accessed
only by decreasing the transverse confinement [25]. We
thus reduced the transverse confinement to 2.1 kHz.
Data are shown in Fig. 5(B). No saturation of the den-
sity fluctuations is seen on the in situ fluctuation mea-
surements, which indicates that the gas does not lie in
the quasi-condensate regime. Fluctuations however rise
well above the poissonian level (shown as dashed-dotted
line on Fig. 5(B,3)) so that the gas is highly degener-
ate. Contrary to the data of Fig. 5(A), we now have

kpT/(hwy) = 0.8 which is of the order of unity, so that
the transverse excited states contribute to the measured
fluctuations and momentum distribution. We take into
account the population of transverse excited states, as-
suming that they behave as independent ideal 1D Bose
gases, while the ground state is treated with QMC cal-
culation. This modified QMC model has been used with
success to describe density profiles [4] and density fluctu-
ations [6], and has been applied to predict the rms width
of momentum distribution [11]. A fit using the above
strategy reproduces well the measured momentum dis-
tribution (see Fig. 5(B,1)), and yields the temperature
T = 84 nK, corresponding to ¢t = 840. The segment
in the phase space (v,t) explored by the data is shown
in Fig. 1: the peak linear density is close to the quasi-
condensation crossover density and most of the cloud lies
in the degenerate ideal Bose gas regime. The contribu-
tion of the excited states to the momentum distribution
is seen in Fig. 5(B,1): it is only 10% in the center but it
rises to almost 50% in the wings around |p|/h ~ 5 pm~!.
Fig. 5(B,2) shows that the theoretical momentum dis-
tribution decreases faster than 1/p? at large momenta.
This is mainly due to the contribution of the excited
states, which have approximately Gaussian momentum
tails. However, with our SNR of about 50, no devia-
tion from a 1/p? behavior can be identified. We report
in Fig. 5(B,2) the fluctuations expected for the tempera-
ture T' = 84 nK (obtained from the fit of the momentum
distribution with QMC). They are in agreement with the
measured fluctuations. Note however that, for these pa-
rameters, the uncertainty of thermometry based on fluc-
tuations is about 30% (see gray lines in Fig. 5(B,3)). The
density profile expected for T' = 84 nK is not far from the
measured one (see Fig. 5(B,4)). In contrast to case (A),
Yang-Yang thermometry based on the profile is less sen-
sitive to tiny modifications of the wings, since the profile
of the high-density regions is also affected by the tem-
perature. Thus, a thermometry based on the profile is
expected to be quite precise and the potential roughness
is expected to have a smaller effect. A Yang-Yang fit to
the experimental profile yields a temperature of 76 nK,
different only by 10% from the temperature deduced from
the momentum distribution.

V. CONCLUSION AND PROSPECT

We have shown that for ¢ < 10%, a simple 1D classi-
cal field approximation without cut-off fails to describe
the momentum distribution of weakly interacting 1D
Bose gases in the crossover from ideal Bose gas to quasi-
condensate. Thus, we performed QMC calculations to in-
vestigate the crossover. Experimentally, we measure mo-
mentum distribution with the focusing technique, which
is improve by a levitation scheme for enhanced resolu-
tion. We show that the temperatures deduced from the
momentum distribution is in agreement with an indepen-
dent fluctuation-based thermometry. We find that the



naive Bogoliubov result is not appropriate for parame-
ters that are close to the ones relevant to this article, even
when the cloud lies quite deeply in the quasi-condensate
regime. In [11], it has been proposed to use the mean
kinetic energy deduced from measured momentum dis-
tribution in order to extract the temperature using the
modified Yang-Yang calculation. For the data presented
in this article, with a SNR of about 50, the measured mo-
mentum distribution shows tails compatible with a 1/p?
behavior both in the quasi-condensate regime and in the
degenerate ideal Bose gas regime. Therefore, extraction
of the mean kinetic energy from the data is impossible.
We argue that this technique was applicable in [11] be-
cause of the more 3D nature of the gas: for quasi 1D
gases, as discussed in section IV B, the contribution of
the transverse excited states leads to fast decaying tails,
which enable the extraction of the mean kinetic energy
per particle. We also remark that neither our measure-
ments nor the QMC calculations we perform display the
asymptotic behaviour of 1/p*, which only appears at even
larger momenta for our parameters. On the other hand,
we believe that this behaviour could be more readily dis-
cernable in the strongly interacting regime, where the
1/p* tail should contain a larger proportion of atoms.
This work opens many perspectives for the study of
1D gases. First of all, we show that momentum distri-
bution measurements provide a precise thermometry for
1D Bose gases. While in this article we use QMC cal-
culations to fit the temperature of experimental data, a
rough estimate of the cloud temperature could be per-
formed with a lower numerical cost. Indeed, the compar-
ison with the exact QMC momentum distribution show

that a model which combines the ideal Bose gas theory
and the classical field approximation gives the correct
width within 20% precision. Second, momentum distri-
bution measurements are essential to characterize more
complex systems. For instance, in the presence of a lat-
tice, it enables the investigation of the correlation prop-
erties at the Mott and/or pinning transitions. Contrary
to Bragg spectroscopy [10, 14|, where a single momentum
component is probed at each shot, the focusing method as
well as time of flight method gives access to the whole dis-
tribution at the same time, which allows for noise correla-
tion measurements in momentum space [23, 38]. Finally,
recording the time evolution of the momentum distribu-
tion is essential to monitor out of equilibrium dynamics
and address the questions about thermalisation in 1D.
For example, the dynamics resulting from a quench of
the 1D coupling constant can be investigated. The mea-
sure of the momentum distribution of impurities would
also permit the study of impurity dynamics, which is cur-
rently under intense investigation [39].
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