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The wave propagation problems addressed in this paper involve aesldtivge and impenetrable sur-
face on which is posed a comparatively small penetrable heterogenmedarial. Typically the numerical
solution of such kinds of problems is solved by coupling boundary aitd ffement methods. However,
a straightforward application of this technique gives rise to some difficultfésh mainly are related

to the solution of a large linear system whose matrix consists of sparse asé blecks. To face such
difficulties, the adaptive radiation condition technique is modified by localiziegrimcation interface

only around the heterogeneous material. Stability and error estimatestabéished for the underlying

approximation scheme. Some alternative methods are recalled ore@sigiking it possible to compare
the numerical efficiency of the proposed approach.

Keywords Helmholtz equation, domain decomposition methods, finite element methodsdary ele-
ment method.

1. Introduction

Coupling dissimilar numerical schemes generally enhatieesolution process but may lead to specific
difficulties. For instance, such a coupling is particulaatjapted for dealing with the radiation or the
scattering of time-harmonic waves when the problem inha&terogeneous material. The boundary el-
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ement method (BEM) efficiently handles the truncation ofdbkition domain as a transparent radiation
condition, whereas the zones where the material presenfisigaharacteristics are approximated by a
finite element method (FEM) (cf., e.g., Johnson &dllec (1980); Costabel (1988); Bendali & Fares
(2008)). However a straightforward coupling of the two noet leads to a linear system, generally of
very large scale, with a matrix partly sparse and partly defiis kind of linear system is difficult to
solve, especially when the computation is performed on dlphpdatform (Boubendiret al. (2008)).
Domain decomposition methods (DDMSs) display distinct adages for overcoming such difficulties.
Indeed, non-overlapping DDMs were successfully appliedfe combination of a FEM with a BEM to
solve the Helmholtz equation (Boubendiral. (2008); Bendali & Fares (2008); Bendali al. (2007)).
However, the wave problems treated in these papers conbstaates where the heterogeneous region
completely encloses the impenetrable boundary.

In this work, we are interested in impenetrable surfaceb veiatively large size on which a hetero-
geneous object of relatively small size is posed. A widesgiastance of such a problem is met in the
numerical simulation of the radiation of an antenna posed lange metallic structure. In this case, the
non-overlapping domain decomposition developed in Beredall. (2007) and mentioned above is not
efficient any more mainly because of the slow convergenceeofittderlying iterative method. In this
work, we propose an alternative method derived from a madifio of the adaptive radiation condition
approach (Jin (2002); Alfonzetit al. (1998); Li & Cendes (1995)). In its standard form, this tdcie
consists of enclosing the computational domain by an ddifimuincating surface on which the adaptive
radiation condition is posed. This condition is expresssdglintegral operators acting as a correction
term of the absorbing boundary condition. Precisely, theenterations performed, the closer this con-
dition converges towards the transparent one. Howevelggng completely the computational domain
by an artificial surface in this range results in a too large pioblem. Even worse, approximating the
propagation of a wave along large distances by a FEM may bepreblematic because of the disper-
sion errors, which can severely damage the accuracy of theréisult. The difference with the method
we propose resides in the localization of the truncatingrfate only around the heterogenous region
(Zerbib (2006)). This truncation generates a relativelgkimunded domain dealt with by a FEM, and
suitably coupled with a BEM expressing the solution on thpenetrable surface. The resulting for-
mulation, based on a particular overlapping domain decaitipa method, is solved iteratively where
finite and boundary element linear systems are solved sephardhis way to proceed can hence be
called a localized adaptive radiation condition.

The main focus of this paper is on the numerical analysis ®REM-BEM coupling. We estab-
lish its well-posedeness and stability using Fredholnradtéve, and the theory of mixed formulations
(Brezzi & Fortin (1991)). In addition to this analysis, weopose alternative methods based mainly on
non-overlapping domain decomposition methods. The gadaldemonstrate that the proposed approach
performs well in comparison with these competing methodscehis study is of methodological inter-
est, for the sake of simplicity we limit ourselves in this pafo the two-dimensional case. The extension
to 3D problems governed by the Helmholtz equation does rbtag difficulty except a more intricate
notation. However, this is not the case with Maxwell systémyhich an application of this technique
is by no means straightforward. The description of the eelalgorithm and its implementation on a
parallel platform will be given in a forthcoming paper.

This paper is organized as follows. Section 2 consists ofsarg#ion of a model problem and its
appropriate functional setting. Section 3 is devoted todiaeelopment of the localized adaptive radia-
tion condition. In section 4, we begin by introducing the FB¥M coupling formulation and proving
its stability and convergence. Then, we detail its numénmplementation, and more particularly, how
suitably the iterative procedure avoids solving a lineateyn with a matrix partly sparse and partly
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FiG. 1. Non-overlapping decomposition of the exterior dom@imto Qp andQ;.

dense. Finally in section 5, we show how to use domain decsitipo principles to develop alternative
numerical procedures. Experiments validating the loedliadaptive radiation as well as comparing
its performances with the other competing methods are mesepted. Section 6 is reserved for some
concluding remarks.

2. The model problem

We are dealing in this paper with wave problems for which teeefogeneous media extends in a rel-
atively small part of the propagation domain. Precisely,consider the geometrical data depicted in
Fig. 1. The model problem we are looking at can be stated ksl

0. (xOu)+ xk?n’u=0 inQ,
Xohu=—fonrl, (2.1)
liM 0 [X|/2 (A u—ikU) =0,

whereQ is the complement of the impenetrable obstacle. We indicat®, a bounded domain filled
by a possibly heterogeneous material and posed on &glofThis slot is also part of the boundaryof
the impenetrable obstacle on which are applied the souroelsiping the radiated wave As a result,
the Neumann daté are zero on all of except ongor. The interface> separate€2; from the free
propagation domai2y, characterized by the wave number> 0. It is worth noting thatQy and Q1
constitute a non-overlapping decompositiondf According to the contexty will denote the normal
tol" orto X directed outwards respectively the impenetrable obstudtosed by~ or the domainQ;
(see Figure 1 for the geometric configuration of the problem).

The fact that the heterogeneous medium is confingg} tis expressed by assuming that the possibly
varying contrast coefficients satisfy=n=1in Q.
It will be convenient to express problem (2.1) in the formtwe following system consisting of two
boundary-value problems
Aug+ K%ug = 0in Q,
dhup =00nl NaQy, (2.2)
liM 1 se0 [X|¥/2(dUo — iKUo) = O,
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O- (xOuy) + xk2n?u; = 01in Qg 2.3)
XOhup = —fonlfNaQ;, '
coupled by means of the following transmission conditiong o
Up = Ui, Ohlp= XOnUy. (2.4)

Passing from one to the other formulation simply amountsritng up = u|q,, U1 = U|o; -

Model problem (2.1) is given in the general framework of tihegmonic wave propagation. In the
two-dimensional electromagnetic case, the variaglesdn can be expressed by means of the relative
dielectric permittivity and the relative magnetic permiégh The waveu represents the component of
the magnetic field normal to the plane of propagation. Fousiics, the variable is related to the
fluid density, andi can be either the potential of the velocity or the pressuce.bBth cases is the
refractive index inQ;. Usual energy considerations and physical properties méipable media ensure
that the following bounds

O<x: <OX<X', —X"<O0x<0,1<0On<n, 0<Ongn’ (2.5)

hold true almost everywhere d2;. We denoted bylzand[Jz the real and imaginary parts respectively
of the complex numbez.

All the considered domains are supposed lipschitzian ¢cfy,, McLean (2000)) with a boundary
being moreover piecewisg®. Notation and functional spaces, including Sobolev spasbgh are
standard in the partial differential equations theory aedwithout further comment (cf., e.g., Taylor
(1996); McLean (2000)).

The sources are assumed to be iA~Y2(Iyq), i.e., f € H"Y2(I") and is zero outsidég (Cf.
McLean (2000)). Adapting, for example, the techniques uis&tlilcox (1975) for the usual Helmholtz
equation, we readily get that problem (2.1) admits one arg one solutionu in the setting of the
following Fréchet space

Hec(Q) = {ve 2'(Q); pve HY(Q), Vp € 2(R?)}. (2.6)

3. The adaptive localized radiation condition
3.1 The derivation of the FEM-BEM coupling procedure

The method we propose resembles in its principle the onelass@ in Lenoir & Jami (1978) for the
Laplace equation and subsequently extended to Maxwellistéanps in Hazard & Lenoir (1996). The
standard method consists of enclosing completely the cles(aere meaning the complement of the
free propagation zon€p) using a fictitious boundarg. The step following this truncation resides
in approximating the problem by a combination of FEM and BEMeve the integral equations are
defined orSbut with densities on the boundaif2y, sometimes conveniently denotEgbelow. These
formulations require an explicit expression of the vamapl= d,ug|s which is not available in the
framework of an approximation of the problem in the domainl@sed byS by a nodal finite FEM.
Actually in Lenoir & Jami (1978),p is a given datum, and in Liu & Jin (2001), the authors resort
to a formulation whose unknowns are the electric and magfiefds respectively inside and outside
Q1. In the present context, the approach in Liu & Jin (2001) wduhve consisted in using a usual
nodal FEM outside; combined with a mixed one iQ; (see, e.g., Brezzi & Fortin (1991) for the
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FIG. 2. The bounded domaifds and the fictitious boundargon which is posed the adaptive radiation condition.

solution of second-order elliptic boundary-value prolseloy mixed FEMs). The method considered
below overcomes this difficulty.

The approach we propose in this work consists in localizigttuncation only around the penetra-
ble material. This is performed, as depicted in Fig. 2, byoticing a fictitious boundarg which in
turn produces the bounded domd#kg limited by Sand the impenetrable zone. It is worth mentioning
that Qs contains the domaif; in which the contrast coefficieryt and the refracting index may be not
setto 1.

The goal is to derive a formulation of problem (2.1) as a cedglystem composed of two equations
with two unknownslp andus where the functionis = u| o, is approximated by a FEM, ang, already
defined in the above section, is computed using an integratem onls. The treatment adopted
for up is based on an integral representation of this function im$eof a single- and a double-layer
potential created by densities 6p, and as a result can be seen as the restrictidpgtof the solution
of a transmission problem posed on all of the pl&fe(cf., e.g., Hsiao & Wendland (2008);édlec
(2001); McLean (2000)). In view of the equations that arersé&®s, we are in the case of a particular
decomposition with an overlap of the computational domaée @milar ideas in Ben Belgaceshal.
(2009); Ben Belgacemat al. (2005) for the usual adaptive radiation condition). Howees will be
clear below, it will be more convenient not to distinguighfrom us and to refer to them as the same
functionuin HL.(Q).

Simply by restrictingu to Qs, we get from (2.1) that satisfies

{ O-(xOu)+ xk°rPu=0, inQs, (3.1)

Xohu=—f onlNdQs.
In Qg, we use the integral representations of the solutions tdH#enholtz equation satisfying the

Sommerfeld radiation condition (cf., e.g.&belec (2001); Colton & Kress (1983, 1992); Bendali &
Fares (2008))

u(x) =V*Zp(x) —N*"zu(x), xe Qo, (3.2)

with i
V5% p(x) = /Z G(xy)p(y) ds, (3.3)
P=—X0nulx (3.9
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FIG. 3. Representation ng and its boundarys.

N*Tu(x) = — /r On, G(x,Y)u(y) ds, (3.5)

where the kernel is expressed in terms of the Hankel funciahe first kind of order O by

i
G(xy) = zHo (Klx—y). x#yeR’, (3.6)

In the sequel, the context indicates the curve to which sdfer arc lengtls.

The determination aii is therefore reduced to its tracesindu| . Observe that transmission conditions

(2.4) define these traces unambiguously. Moreover, it isrdfe(3.2) that the involved values afare

those corresponding to its tragg, avoiding the need of an explicit notation for the restristi&inally,

it is worth mentioning that integral (3.2) vanishes fof Qg , the domain enclosed b (Figure 3).
Problem (3.1), once solved, determinesn Qs only. The complete determination afon s is

obtained by writing an adequate integral equation outsideising the conditiord,u =0 on [, thus

yielding the FEM-BEM coupling approach.

REMARK 3.1 In the method of Jami-Lenoir (Lenoir & Jami (1978)), treubdarys is contained in
the interior ofQg so thatu can be obtained outsides by an explicit integral representation. This is in
contrast with the need here to solve an integral equationparteof/ .

The derivation of the FEM-BEM coupling procedure can be idticed starting from the following
Green formula

/Q X (DU~ Ov— K2n2uv) dX: <anu’V>H~’1/2(S).H1/2(S) + <f’V>ﬁ71/2<rslot)=H1/2<rslot) (37)
S

where(:,)g-1/2g y1/2(g) denotes the duality pairing betwebl 1/2(S) andH/%(S), andv is an arbi-
trary test function irH! (Q). The spacéi~1/2(S) is defined similarly tdH ~/2(Igy).

The adaptive appkr)gach consists mainly in solving problem) By means of an iterative method,
the termd,u at the right-hand side being assumed to be known before eaxahidgin and updated after
terminating it. However, in this form, there is no garanteat throblem (3.7) can be safely solved.
Usually the stabilization termik [suv ds corresponding to the crudest absorbing radiation canditi
is appended to both sides of (3.7) to alleviate this difficullowever,Sis here an open curve having
its end-pointsA andB on ™ (see Fig. 2). To avoid singular integrals near these poimsintroduce a
cut-off functionn € 2(R?) such that 0< n < 1, n = 1 onS, except small neighborhood of any Af
andB, n being moreover equal to 0 arouAcandB, and write (3.7) in the following form

/ X (Ou- Ov— k2nuv) dx— iK/nuv ds= (OnU,V)5-1/2() /2
s s ’

. (3.8)
_'K/s” UV St (1, V) /27 ). H1/2(
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To complete the coupling procedure, we then consider theedgrobtained by joiningsand the part of
I outsideQgs and note that we can express the fact that= 0 there outsid&variationally as follows

<anuav>ﬁ—l/2<s)1Hl/2(s) = <anu’V>H’1/2(I—S),H1/2(I—S)7 (39)

for all test functionv. We thus arrive to

/ X (Ou- Dv—Kznzuv)dx—iK/nuv ds=
Qs s

i (3.10)
(Ont V) sy~ [0V 9 (V) 3
where the traces in the right-hand side are expressed freintdgral representation (3.2) of
nuls=nVS*p—nN3'zu
{ 0nu\rsz0nV’—Sva_an’—svrzu (3.11)

Clearly, sincex andSshare no common point amgis zero in the proximity of the end-points §fif p
andu are sufficiently smooth functions, say for example contirgjmnly the integral corresponding to
d.N*"=uin (3.11) is an improper integral which can be expressed lynmef a weakly singular kernel
as follows

<aan'sJ'zu’ V>H—1/2([-S -,H1/2<I—S)
CAAEE dsui H-Y/2(rg) HY2(rg) ~

3.12
K2 VT VIS (UT) a2 g vz 242

from a slight adaptation of the case whére= I's (cf., e.g., (Hsiao & Wendland, 2008, p. 5)). The
superscripts in the integral operators indicate that tleeyespond to a potential created by a density on
s and evaluated of, andT is the unit tangent vector pointing in the growth directidthe arc length

s.

As indicated above, we need to deal with (3.4) in order to e &buse a nodal approximation
of (3.10). We use a standard technique for gluing finite elgnapproximations of different kinds or
associated with non-conforming meshes generally calledamBEM (cf., e.g., Ben Belgacem (1999)).
It is worth mentioning that here only standard meshes ane felément methods of the same kind are
used. This way to proceed is just considered as a tool proyidh approximation for the additional
unknownp in the framework of a nodal finite elemnt method. This techriqonsists in breaking the
continuity acros< thatu is compelled to satisfy a priori and to express it as a comstréhe Lagrange
multiplier corresponding to this constraint will be pregisthe unknowrp. It is hence more convenient
to denote by separate symbolg:for the restriction ol to Qp N Qs andl’s andu; for its restriction to
Q. More precisely, we will use the following functional framerk

Xo = {up defined (a.e.) o2y N Qs andls;
U € HY(Qo),U|r; = Uo|ry andU|gynos = Uolognos | (3.13)
Xl = Hl(_Ql), X = XO X Xl,

relation (3.4) and (3.10) to write
/‘ (Duo~Elvo—Kanuovo)dx—iK/nuov ds
JQsNQp S
“r/Q X (DU]_ -0Ovy — Kznzulvl) dx+ <p,V1 _V0>ﬁ*1/2(2).H1/2(Z) =

1
<anu’V0>H71/2(I—S)7H1/2(I—S> o IK/SrI UVO ds+ <f’V1>ﬁ_l/z(rslot>sH1/2(rslot)



8 of 24

for all (vo,v1) € X. Using then the integral represensatiordefi - andu|s given above in (3.11), we
readily arrive to the formulation effectively used to sopu@blem (2.1) numerically

(u,p) X xM, V(v,q) e XXM
(U,V) + d(UO,V()) + b( p, V) + r(p7 VO) = <f7V1>ﬁ—l/Z(rslot%Hl/Z([-slot) (314)
b(q,u) =0

with the following notation
ap(Up, Vo) :/ (Ouo - Ovo — K?UgVp) dX— iK/nuovods
QsNQp S

al(Ul,Vl):/Q X (Ouy - Ova — k2n2upvy ) dx,

1
a(u,v) = ag(uo, Vo) +az(ug,vi1),

_ (3.15)
d(uo, Vo) = (9nN's"zug, vo),, - Y2(rg) HY2(rg) 'K/’TVONS'ZUodS
r(p,vo) = / Vodn Vs pds+|K/nv0VSZp ds
b(p ) <p7Vl VO>H Y2(5) HY2(5) >
and B
M=HY?(5). (3.16)

For simplicity, an elementvp,v1) € X is denoted by a single symbual

3.2 Well-posedness and stability estimates

We first establish the coerciveness estimates and Brenf#i&p condition that reduce problem (3.14)
to a Fredholm alternative. Towards this end, we introduedidiiowing notation:

a(o)(u7v):/Q . (Duo~Dvo+uovo)dx+/Q X (Ouy - Ovg + ugvy) dx
S 0 1

0 _ 0
d (o, vo) = (N )UO’V°>H—1/2<rs>,H1/2<rs>

whereN©ug is the double-layer potentiel corresponding to the kerfighe Laplace equation and the
curvels created by the density

0= [ 5ronIn(x=y) to(y) ds.
Let us consider the following variational problem

(u, IO)GXXM V(v,q) € X x M,
al >(U V) + )(UO Vo) +b(r,v) = 2V, (3.17)
(qv = <Qv >H 1/2 Z)’H1/2(2> .

set with.Z e X/, the space of continuous linear formsXnand/ € HY/2(%). Clearly, usual properties
of boundary integral operators readily yield that probldf44) and (3.17) differ from each other by
compact bilinear forms only (cf., e.g., Buffa & Hiptmair @8); Hsiao & Wendland (2008); &tkelec
(2001)). For this poblem, we have the following well-poseskresult.
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LEMMA 3.1 Problem (3.17) admits one and only one solution and #rests a constari independent
of . and/ such that

lull + 1Pl-szs) < c( sup .2V + ||£||H1/z(z)> .

[VlIx<1

Proof. Problem (3.17) is a saddle-point problem. Its well-possdnill result from the following
Brezzi's conditions

IB>0: sup [b(p,v)| = Bpllg-1/25) (3.18)
[Vilx<1
Ay > 0:a9(u,1) +dO (up,Ug) > y||ull% (3.19)

for all u e V with
V ={veX; b(q,v)=0, Vqge M}

(see for instance Brezzi & Fortin (1991)). Sinbép,v) = <p7v1>ﬁ*1/2(2),H1/2(Z) for vo = 0, inf-sup
condition (3.18) is immediately obtained by noticing thit}/2(%) is the dual space di%/2(3) (cf.,
e.g., McLean (2000); see also (Steinbach, 2003, p. 79)). rdeep(3.19), we first remember that
u= (up,u1) € V means that ifv is defined byw|g,nos = Uo andw|q, = uy, then itis inH!(Qs). Then,
sinceN(@Quq is a double-layer potential associated to the Laplace amuaitiis an harmonic function
in Qo, i.e., ANOuy =0 in Qo, and satisfie?NQug € H! (QyNBRr) for any ballBr centered at 0 and
of radiusR (for this last property see, e.g., (McLean, 2000, p. 2080)wNet ¢ be a cut-off function
in 92 (RZ) equal to 1 on a balBg with R sufficiently large such tha®; U Qs C Br. Using Green’s
formula, we can write

© (up, W) = { 3N©
d (anuo)*<‘9nN UO’W>H*1/2(FS)7H1/2<"8)

- —/  ONOy, - OgTgdx
Q0\Qs

— [ ONOuw.O@w) dx+ [ ONOug-Ougdx
Qq QpNQs

sinceg is equal to 1 omMs. Using once more Green formula, we readily obtain
a® (u, 1) +d© (uo, Tg) = / x (10w + wi?) dx
J Qs

ONOus - Ous NO U T ]
+/Qomgs to uodx—|—<o"’n uo’UO>H—1/2(FZ),H—1/2(FZ)

Making use once more of the following properties of the dedbyer potentiahN(@uy = 0in QO+ U Qo,
+ - + -

(anN<0>u0) = <0nN(°>u0> — 0NOugon s, (N(°>uo) - (N(O)uo) = Uolr,., andINOug| o+ €

L2(Qg) andONOug|q, € L2(Qo), we can write

<o'?nN(°)uo7uT)> DN(O)UO’ZdX

2 n
|Z|N<O)uo‘ dx+/
Qo

H-2(rg) H-22(ry) /Qg
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We have denoted by a superscrpthe trace ors from the values of the corresponding function on
Qg and by a superscript this trace from the values ofdg. The end of the proof is obtained in a
straightforward way by noticing that

0 ON©@y, - Ougdx > — HDN<°>uO
_Qoﬂ_QS

L2(QoNQs) 1Bolliz(aynag

1 2
> -2 [ ||[ON©@
2 (H to L2(QoNQg

+ 100l 0 )

O
Keeping the above data and notation, we can now prove thenoly general stability result which
clearly reduces to a Fredholm alternative (cf., e.g., H&&endland (2008); Taylor (1996)).

THEOREM3.1 The variational problem

(up) XXM, V(v,q) € XxM
a(u,v) +d(uo, Vo) +b(p, V) +r(uo, Vo) = LV (3.20)
b(q7 U) = <q’é>|:|_1/2(2),H1/2(Z)

admits one and only one solution satisfying

Wl + Il 225, < c( sup |2V + ||f||H1/z<z>> (3.21)

IVllx <1
with C a constant independent &f and/.

Proof. We have seen right above that the well-posedness of prol8e20)(reduces to a Fredholm
alternative. We thus focus on the uniqueness and con@idpy a solution to (3.20) corresponding to
% =0and/ = 0. At first, we note that, sinde(q, u) = 0, ¥q e H Y/2(Z), we haveug|s = uy|s. Hence,

if we definew by w|o,nos = Up andw|g, = u1, we get thatv e H(Qs). The notatiorw will stand also
for the function defined ohs associated tog and which coincides withig on I's (see the definition of
Xp in (3.13)). To put problem (3.20) in a more concrete shapeajdentroduce the following function
zexpressed in terms of a single- and a double-layer potemtiath as well-known yield a solution to
the Helmholtz equation i U Qo outgoing at infinity

z(x) =V*Zp(x) = N*"2w(x), xeR2\Ts.

Let us denote by™ andd,z* the traces of on s where the signs- respectively indicate that the traces
are taken from inside (resp. outside) the don@jnenclosed by’s. Jump relations (cf., e.g., Colton &
Kress (1983); Bendali & Fares (2008))) connect these tractsat ofw on 2 as

zZ —Z'=w, 0,z —dz"=—p (3.22)

Let nowS be the part of s in Qs (see Fig. 2). Observing thdizhas no jump acrods \ S, by chosing
v € X such thaw; = 0 and suppp compact ins \ S, we directly obtain thad,z= 0 onlz \ &. In other
words, both 0,z andd,z~ are inH 1/2(S). As in the proof of lemma 3.17, sin@e= H1(Qy N BR)
for all R, and satisfiegdz+ k?z= 0 in QoU Qy, dnZr is well-defined inH~%/2(I's) and belongs to
ﬁ*l/z(S). Going back to problem (3.20), we can thus see thai andz satisfy

/ (Ow- Ovop — K?wWvp) dx—iK/nwvods+/ X (Ow- Ovy — k2w ) dx
Qo S Q

<pa Vi1 — VO>|.N|—1/2(Z)_H1/2(Z) - <anz, VO>HN_1/2(S),H1/2(S) + iKAndeS: 0
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for all vg € H® (Qp) andv; € H1 (Q1). Green formula then directly gives thad,w has no jump across
2, thatp = — xdnu and thatw satisfies

Ox0-w+ xk?nPw=0in Qs,
Xow=0o0onlNodQs,

that is, xd,w € H-Y/2(S). In the same way, we get also that
XOnW—iKNW= dnz—iKnzon$S

The crucial point in the proof is then to take advantage offloethaty andn are 1 inQq for getting
that

A2 2w 72 i C2de P N v
/Qoms(m(w 7)|"— K |w z|>dx IK/SI’]|W Z“ds <X¢9nW OnZ W z—>ﬁ71/2(S0)7H1/2(S0).

Then using jump relations (3.22) and the fact that it andd,z~ are inH /2 (S), we can write

. 00w 22— k2w 22 _-/ C2de + 27
[ o (1002 w2 axik [ w-zPds= (a2 7)o e

L
<0”Z 7Z+>H’1/2(/'z)7"'1/2("z)

As above, sincéz+ k?z=01in Q4 andze H1(Q ), Green formula then gives that

/ (|D(W—z)|2—K2|W—z\2) dx—iK/n\w—z|2ds+/ (|DZ|2—K2|Z|2> dx=0.
QoNQs S Qar

Taking the imaginary part of this equation, we obtain
/‘n lw—2?ds=0.
Js

Therefore, we have thah (w—2z) = w—z= 0 in a neighborhood of at least an interior pointSsince
we can find at least one interior point 8around whichy = 1. We then deduce that= zin QoN Qs
by using, for instance, the Holmgren theorem (cf. ChazagaRiriou (1982)). It is then possible to
extendw by zin all of Qy. The end of the proof follows from the uniqueness of problari) O

4. Discretization and numerical solution

After describing the coupling FEM-BEM approximation of ptem (3.14), we establish its stability and
convergence.

4.1 The FEM-BEM approximation

The domainQs is meshed in triangles according to the general matchirgs il conforming meshes of
the FEM and in a way compatible with its decomposition in tlve hon-overlapping domainQ; and
QpN Qs. Thisinduces a mesh in segmentsZofThe rest of s is also meshed in segments. An instance
of such a mesh is depicted in Fig. 4, which moreover exhihggibdes used either for the FEM and the
BEM.
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FIG. 4. Meshes and nodes d®s andls used for the FEM-BEM approximation.

Denoting byh > 0 the usual mesh size of FEM approximations, we can then cartsid FEM-BEM
discrete versioiX (resp. Xf, MM of Xo (resp. Xi, M). A function" in X§' (resp. Xf", M" is defined
such that! is globally continuous o9 N QsU s (resp. Q1, 2), and linear-affine on each triangle
or segment included in this set. It is worth mentioning theat ¢onditionM = H-/2(%) is taken into
account by compelling the nodal valuespﬁ‘fe M" to be zero at the end-points &t The FEM-BEM
spaceX" is associated wnh(é‘ and X1 in the same way aX with Xg and X; except that, in order to
avoid the usual difficulties raised by the cross-points @&f,, Bendali & Boubendir (2006)%} € Xg
andvh € Xh are assumed to share the same nodal value at the end-pontsToe norm orX" is that
onX, that is,

IV = Iy + Iy + B ey @)

4.2 Stability and convergence of the FEM-BEM scheme

The stability and the convergence of the above FEM-BEM sehara embodied in the following the-
orem. In the sequeC stands for various constants, not the same in all instaabeays independent
of h. We also neglect the consistency error coming from the ameation of curved interfaces and
boundaries by straight lines (see how such an error can lem tako account in Bendali & Souilah
(1994) for instance).

THEOREM4.1 Assume that the mesh Bfis globally quasi-uniform in the meaning
Minax/Mivin < C

wherehZ,,, and hﬁqm are respectively the lengths of the largest and the smal&gghent of>. There
existshy > 0 and a constar@ independent of & h < hy such that, if.%, and ¢y, are linear forms on
respectivelyX" andM", the problem

(wh, 21y e XM x MM, v (V1 g")
) A ) 7
)=

: (4.2)
b(q", w"
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admits one and only one solution such that

Wl g <o g i s dl) e
Vi<t ||qhHH*1/2<z)<1

Proof. The proofis obtained from the coerciveness propertiesebiinear form(w”, v") — a(w, v") 4
d(vv'a,vg), the usual stability estimates for the Galerkin approxioraif the problems whose well-
posedness is established from a Fredholm alternative, f(sgiastance, Chen & Zhou (1992)) and the
following Brezzi condition for saddle-point problems

Jy> 0independent dfi: sup
([l <2

All these properties can be established in a straightforwaag except the above stability condition
which is an immediate consequence of the following one

<ph’vh>ﬁfl/2(z),H1/2(z)

Fortin’s lemma (cf. (Brezzi & Fortin, 1991, p. 58)) directjyelds this estimate from the following
property: thel.2 projection ontov", the space of functions continuous &rand linear-affine on each
segment, is bounded uniformly mas a map fronH/2(5) into itself (cf., e.g., (Steinbach, 2003, p.
21)). O

The following corollary, proving the convergence of the FB#M approximation of the solution
to (2.1), is an immediate consequence of the above theorem.

Ja > 0independentodfi:  sup vp' e MM,

(R[PSS

h
a ~ )
- Hp HH*l/Z(Z)

COROLLARY 4.1 Under the general conditions of theorem 4.1, thereehjst- 0 such that, for G<
h < ho, the following estimate holds true

R

v — uH + inf
viexh X

thMh

q _pHH 125 ) (4.4)

where(u, p) is the solution to the continuous problem (3.14), & p") is the solution of the following
discrete one

(uM, pM e XM x M, v (V1 gN) € XN x MM,
a(uh7vh) + d(Ug,Vg) + b( ph7vh) + r(ph,vg) = <f’VIZ?.>ﬁ*l/z(rslot)»Hl/z(rslot) ’ (45)
b(g",u") = 0.

4.3 Numerical implementation

The general strategy for solving the discrete problem (4.5 use an iterative procedure to uncouple
the FEM and the BEM solutions in order to deal with linear eyst with either a sparse or a dense
matrix. Let us first describe the procedure as a successreximations method. The iterative process
is actually accelerated by means of a suitable Krylov teqmi For the sake of clarity, we use the
following projectorv® — I'Ivg obtained by setting to zero each nodal valuerg)lﬁot onQs. In matrix
form, IT just corresponds to a partitioning technique. The sup@tsiris removed to simplify the
notation.
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e Start withu@ = 0 andp© = 0.
e Form=0,1,... until convergence solve

(UMD pmtD)y e XM s MP, v (v, q) € XM x MP,
a(u™ D) v) +d((1— Mug™ " vo) +b(p™ Y, v) =

(4.6)
<f’"lf>H*1/2<rs|ot>,Hl/2(rslm> —d(rud™ vo) — r(p™, vo)

b(g,u™Y)=0

Actually, sinceag(ug, (1— IMT)vp) = bo(p, (1— M)vo) = 0, the problem (4.6) consists of two uncou-
pled problems

a0 (U™ V1) + ao(ITul™ Y, Mvo) + by (p™ D, vy) — bo(p™D), M) =

(D) vy 41172 — ATTUG™ TTV0) =1 (P™, FTvg) — (4.7)
1 1
ba(q,u™™") — bo(g, Mug™ ) = 0,

d((2—mug™™, (1= Mvo) = —d(MTug”, (1= M)vo) — 1 (p™, (1= M)vo). (4.8)
Moreover, problem (4.7) can be solved in two steps. The fitstie a simple FEM solution 0fs

that determines the nodal valuesuthere. This problem is obtained by compelling the test fiamot
to satisfy the constraint, that is, to be continuous alsb@nbdes in the interior &

g™l evh wevh
o(m+1) | _ k2pn20(m+1) i (m+1) _
/st (Du Ov—k“n<u v) dx IK/SI’]LI vds= (4.9)

(F ) /21y 22 g — (TG V) =1 (p™. MT0)

with
vh— {vh € ¢°(Qs); V' linear-affine on each triang}e

andt™ Y is such thati™ Y | ~os = U™ | ginas andd™ g, = U™ . The multiplierp™Y) is
next obtained by solving the variational system whose uypithey linear system is simply a boundary
mass matrix associated with the meshon

by(p™ Y, vy) = —ag (U™, vy), Wvi € M. (4.10)

In addition to designing a procedure which makes it posdibleolve separately sparse and dense
matrices, we also get the following theorem.

THEOREM4.2 The above iterative algorithm does not break down.

Proof. Itis sufficient to prove that the above three problems are-p@dled. Problem (4.9) corresponds
to a FE approximation of a boundary-value problem set in $esfra Helmholtz equation with variable
coefficients and a strictly absorbing impedance conditiom ipart of the boundary. In this way, it
satisfies strong coerciveness properties which yieldstkiwatelated linear system can be solved in a
stable way. Problem (4.10) is a linear system only posedrindef a mass matrix. Problem (4.8)
corresponds to an integral equation set on an open curvechretiby a BEM, whose well-posedness
is well-known (cf., e.g., Hsiao & Wendland (2008); Maiscletlal. (1997)). O

We will refer below to this approach as the LRC (Localized Ridn Condition) formulation.
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5. Alternative approaches

In this section, we consider alternative approaches foirsglproblem (2.1). The goal is to validate the
LRC formulation by first testing its accuracy through its garison with standard methods. Next we
compare its efficiency with methods based on other domaiardposition principles.

5.1 Direct methods

“Direct methods” means here that the underlying linear espstan be solved by usual Gaussian elimi-
nations.

5.1.1 Boundary elements formulationsWhen x andn are constant, the problem can be addressed
using only a BEM. We have chosen the reduction to a systemsvkiind Boundary Integral Equations
(BIE), as is done in von Petersdorff (1989), but with a monevemient way in expressing the constraints
on the unknowns of the BIE. When internal resonances do nattdffe well-posedness of such kinds of
formulations, they are known to deliver very accurate tssdihe formulation of this integral equation
makes use of the following space

X2 = {(vo,v1) € HY2(9Q0) x HY2(0.Qy);

5.1
v e Higo(R?),Vo = V]9, V1 = V]ga, } ®.1)

defined on the skeleton made of the boundaries and the icgésriiavolved in the problem. Conveniently,
we use the notatiod Qg to refer to the boundary dq. Clearly from (2.4), the traces of the solutian
to (2.1) are inX¥/2. In the same way, we denote the flux variables associatedweistfollows

Po = dn0U07 P1= an]_ul

wheren; (i = 0,1) stands for the unit normal ®Q; directed outward®2;. The Green formula directly
yields that(po, p1) satisfies
(Po,Vo)g + (P1,Va)y = (f,va)y (5.2)

for all (vo,v1) € X¥/2. For simplicity, we have denoted by subscript 0 or 1, the iuirackets be-
tweenH~Y2(d Q) andHY/2(dQp), and betweerH ~1/2(3Q;) andHY/2(9Q;) respectively. Clearly
this condition defines a closed linear-affine subspac’?(f) of H-1/2(9 Q) x H-12(3Q;) whose
underlying subspace is

X2 = {(do.q1) € HY/2(900) x H/2(000);
(0. Voo + (01, va); = 0,¥ (vo,va) € X2 (5.3)
Actually condition (5.2) expresses that
Pol=+P1lz =0, Polrrog, =0, Pilrrog, =T, (5.4)

and(qgo,q1) € X~ /2 that(qp, q1) satisfies (5.4) withf = 0. The matching on the traceswtan also be
expressed in a dual way as

X2 = {(vo,v1) € HY2(9Q0) x HY2(9);
<q07VO>H*1/2(17_QO)7H1/2(590) —+ <q1,V1>H—1/2(091)’H1/2(591) = 07 V(QOan) S Xfl/z} .
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Using the integral representationswefin Qg in terms ofpg anduo\,mo, and that ofu; in Q; from p;
andui|yo,

Uo(X) = Vopo(X) + Nolo(X) (X € Qp), Ur = X Vapr+Niug (x € Qy).

Here,\y andV; are the single-layer potentials for respectively the wawelbersk andk; = kn, and
No, N1 are the double-layer potentials defined usiggk andni, K1 respectively. We can readily solve
the BIEs system as

{ (uo,ur) € XY2, (pg, p1) € X~Y2(f), ¥ (vo,v1) € XV/2, ¥ (0o, 1) € X~/2 (5.5)

<dnoUOaVO>O - <q07 u0>0+ <an1ul7vl>1 - <q17 ul>]_ = <f7vl>1'

From usual trace formulas of single- and double-layer gakn(cf., e.g., Hsiao & Wendland (2008);
Bendali & Fares (2008); Colton & Kress (1983)), this systean be written in the explicit form

(Uo,up) € X¥2, (po, p1) € X-M2(f), ¥ (Vo,v1) € X2, V(qo, ) € X1/
(8noNolo, Vo) + (Xn; N1U1,v1); — (do,Nolo)o — (dlz, Nau1)4 (5.6)
— (Po, NoVo) g — (P1,N1va) 1 — (VoPo, Go)o — (X Vap1,au), = 3 (f,va); .

The discretization of this system by a BEM involving only lgédly continuous linear-affine functions
on each segment of the above skeleton is straightforwarésarad recalled here (cf., e.g., Chen & Zhou
(1992); Bendali & Fares (2008); von Petersdorff (1989)).

5.1.2 FEM-BEM coupling. Whenx or nvary in Q1, formulation (5.5) does not apply since the ex-
plicit representation afiy in terms of the Cauchy data |5o, andp; = XJn,U1|g0, is N0 more available.
However to obtain a FEM-BEM coupling, we keep the variati@ystem (5.5) in whichu; represents
the first trace ofi; ondQ, and expres;(dnluﬂml in terms of a Green formula

(Uo,u1) € X, (po, p1) € X~Y2(f), V (vo,v1) € X, V(qo, ) € X2
{GnoNolio, Vo) 5 — (0o, Nolo)o — (Po. NoVo)g — (oo, o) + 3 {Po, Vo)o (5.7)
+/Q X (Oug - Ovy — k2n2ugvy) dx— 3 (ga,un), = (f,va)4,
1

where
X= {(uo,ul) € HY2(0Q0) x HY(Q1); (uo,u1lsq,) € Xl/z}.

To solve this system, we meshy in triangles and Qg in segments, as was used in the case of the
LRC formulation. We also use the same type of approximafionirial and test function, as for the
FEM-BEM formulation. Clearly the linear system associatéth this formulation, referred to as the
FEBE formulation in section 5.3, has a matrix which is pasfarse and partly dense. It can thus lead to
specific difficulties when dealing with the huge size lineasteyns which is the inherent characteristic
to such a kind of problems in 3D.

However, to compare these kinds of formulations with thevabloRC formulation on the same
basis, we will also consider an adaptation of this FEM-BEMigimg by setting the problem with
varying coefficients ing after extendingy andn in the homogeneous part of this domain by 1. The
resulting method will be referred to as the FEBE2 formulatio
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5.2 lterative methods

We develop here some iterative methods, based on a suitsbkdf DDM techniques, that avoid solving
linear systems whose matrix is partly sparse and partlyalens

5.2.1 A primal domain decomposition methodThe domain decomposition method used here is
based on the non-overlapping partition of @finto Qy and Q1. The primal DDMs consists of op-
erating the Dirichlet-to-Neumann map for Q; (i = 0,1) (cf., e.g., Gosselet & Rey (2006)). These
maps are defined as follows

WO 6 H|J(5C(§O)a
Awg + K*Wo = 0 in Qo,

Wo = ¢ 0N 9 Qy, (5'8)
Iim‘th |X|l/2 (5‘X‘Wo — iKWo) =0,
W1 € Hl(_Ql),
0. xOwy + xk?mPwy = 0in Qq, (5.9)
Wi = ¢10n0Qy,
Todo = GnoWolog, € H 2(0Q0),  Tas = Xn,Walpo, € H H3(001). (5.10)

for ¢; given in Hl/z(aQi), and assuming that the corresponding Dirichlet problentHerHelmholtz
equation is well-posed. The equations, correspondingg@dmtinuous problem, can then be set using
the above framework

Ug,Uy) € X2,V (vg,vq) € XV/2,
{ (Uo, 1) (Vo,Vv1) (5.11)

(Touo, Vo)o + (Tauz,v1)1 = (f,v1);.
Obviously, the equations of this system are set in an intpliay only.

The discretization of the coupling FEM-BEM system is basedte following approximation of
the previous Dirichlet-to-Neumann maps. The approxinnaT@ of Tp is carried out by means of the
following BEM discretization of the Burton-Miller BIE (cfe.g., Bendali & Fares (2008))

o given inX{|a0,, Po = Td'do € XF|aq,, Yo € XHaq,

((3 —1KVo) Po, Vo) + (Po,Novo)o = ( (GhNo — ik (5 — No)) @0, Vo),
WhereX(§‘|,m0 is the space generated by the restrictiod @y, of the functionsvg belonging to the space
X{)‘ previously defined in the context of the LRC formulation.

The approximatiofT}" of Ty is obtained by a standard FEM static condensation perfoeséallows.
LetK be the sparse matrix defined by the following identification

{ up € X, vy e XD

/ X (Oug - Ovi — k?nupvp ) dx = va] " K [ug]
Q1

(5.12)

(5.13)

whereX!! is the FEM space introduced above for the LRC formulatiom, [af] is the column-vector
whose components are the corresponding nodal values dfet | andB be the sets of indices corre-
sponding to the interior and boundary nodal values resgegtiPartitioning

Ki K
K =
[ Kei Kgs }
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accordingly, we get the nodal valugs | of p; = T'¢; from those{¢] of @1 in two sweeps:

e solve the linear system (corresponding to a Dirichlet problvith [u1]5 = [¢1])

Ki [u1]; = —Kig [u1]g (5.14)
o form [py]
[p1] = Kai [ug]; - (5.15)
Denoting by
X3 :{(VOaVl) € X¢lagy x X{ Vo|z:V1\z}, (5.16)

we obtain the discrete system related to the primal DDM
(uo,up) € X, V' (vo,v1) € X1,
<T6‘U0,Vo>0 + <T1hU1,V1>1 = (f,v1);.

Effectively, it is not possible to formulate the equatiomsresponding to problem (5.17) as a linear
system. However, it is possible to perform a matrix-vectmdpict using the expression (5.15) and the
solution of (5.12). As a result, the system (5.17) can onlgdiged using a Krylov method. We will
refer to this procedure as the P-DDM approach.

The main flaw of the above DDM is that the solution of the linggstem (5.14) may be unsafe or
can even break down K corresponds to an internal resonanc&in The expression of the matching
conditions initiated by Dejrs Despés (1993) is generally used to cure this drawback for thid kih
wave propagation problems. Such an approach is gener&iyed to as mixed DDM in the literature
on domain decomposition methods (cf., e.g., Gosselet & R89K)). We have adapted this method
with a special handling of cross-points as in Bendali & Bautie (2006). However, because of the
type of geometry treated in this paper, several numerigaéements revealed that this method is the
most expensive and the slowest in converging. For thesensase do not consider it as an alternative
approach for the problem we are solving.

(5.17)

5.3 Numerical experiments

We end this section by some numerical experiments valigdtie LRC formulation. They consist of
demonstrating its efficiency over the alternative techefgdeveloped in section 5.

5.3.1 Description of the test-case.The geometry of the test-case considered here is depickag.ib.

It depends on a parameterused to set a large size for the impenetrable domain relatioghe zone
meshed in triangles as shown in Fig. 5. By varying this patam&e test each numerical technique
in terms of accuracy, CPU time, and convergence for thetiteranes. The lengths are expressed in
wavelength units. To be able to compare the LRC formulatidh the BE one, we supposeandn
constant inQq. More precisely, we choose= 1/4 andn = 2(1+ i), which correspond to a magnetic
material in electromagnetism. The sources are located @segmentx, =0, —0.25< x; < 0.25}
and are given by the Gaussian functibix;) = — exp(—(10x1)?).

The mesh used is of 20 points by wavelength in the free prdjmagaone and 15 points by wave-
length in the material for the FEM-BEM formulations. The Birhulation is meshed using 20 points
by wavelength for both the free propagation zone and thenmaht&ince it is well-established that the
BE approach is much less sensitive to the dispersion eraorttie FEM formulation, we use it here as
the reference solution to determine the accuracy for therattethods.
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FIG. 5. Geometry of the test-case

5.3.2 Numerical experiments. The accuracy of each formulation is measured by compariadath
field pattern with the one obtained using the BE approach.faihéeld is expressed in dB as follows

s(8) = 10logy (27T|a0(9)|2) , (5.18)
with ,
= (@) 1oL 5.19)
U(X)— \/Fao( )+0(\/F)’ ( .

(r,8) being the polar coordinates of the point R

All the iterative methods are solved using the GMRES albari{cf., e.g. Saad (1996)). Since this
procedure does not seem to be well-known, we sketch its lwotides. Assume that a linear problem
is solved through the linear iterative method

o x(9 being given,
e form=0,1,2, until convergence do
XM = Mx™ + b,

Clearly if these iterative methods converge, they will ange towards the solutiorof the following

linear system
(I—M)x=Db

wherel is the identity matrix. It is the above linear system thatatved by GMRES which only
requires the right-hand sideto be given and the way the matrix-vector— M)x is performed. It is
enough to observe thatcan be obtained by performing one iteration starting fodth = 0 and that
xM — x(m+1) — (] — M)x(™ if the data of the linear problem are set to zero.

The first test concerns the case of a moderately elongateehietable domain corresponding to
L =4 and the second, much more elongated, is obtaineld fo40. Table 1 summarizes the numerical
for each method in terms of accuracy and CPU time. For thetiterenethods, we also compute the
iteration number, noted “Iter” in Table 1, obtained by reidgahe residual by a factor 16. To measure
the accuracy, we use the quantity= max|s(6) — sge(0)| wheresge(0) is the far field computed by the
BE approach, known to be the less dispersive, using a vemneegfnesh of 30 points per wavelength.
All the iterative methods were solved using the GMRES atpariwith a Krylov space of dimension
50, the underlying linear system being of order 1400 whempliog FEM with BEM.
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L CPU & Iter
BE w | 18 | - | =
FEBE w0 | e | oes | -
FEBE2 | 40 | ve | om1 | -
LRC w0 | o | os | 10
PODM | 40 | 512 | o1 | 68

Table 1. Comparison of the various formulations in terms of esmyy CPU time, and number of iterations.

The results reported in Table 1 confirm the robustness of RR€ Eormulation for the problems
where the impenetrable zone is much larger than the onespameing to the heterogeneous material.
The number of iterations used by the LRC formulation to cogeés almost independent of the size of
the impenetrable zone. Far= 40, only the FEBE formulation required a lower CPU time. Mvisrth
noting, however, that the two-dimensional study given liepest of methodological interest.

Plots 6 and 7 show that the results provided by the LRC fortimaompletely agree with those of
the other methods.
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FiG. 6. Far field forL = 4.
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Finally, it is clear from the plots depicted in Fig. 8 and 9ttttee LRC formulation as an iterative
method outperforms the primal DDM approach.

6. Concluding remarks

We have designed a new coupling approach for solving waveggition problems, where the compu-
tational domain is composed of a large impenetrable objegitdch is posed some penetrable material
of relatively small size. The BEM is used to deal with the sioluon the impenetrable surface, and the
FEM approximates the solution in the heterogeneous reghmhave established uniqueness and sta-
bility estimates and provide a theoretical basis to the peettNumerical results validate this approach,
and have confirmed its effectiveness in practical computatio

However, some practical problems deserve further invasitigs. Indeed, the size of the elongated
impenetrable zone requires particular treatment becduke oorresponding dense matrix generated by
the BEM. One way to tackle this problem resides in using ad&ngubspace iterative method coupled
with an acceleration of the matrix-vector product by medres least Multipole Method (cf., e.g., Chew
et al. (2001); Fischeet al. (2004)) associated with a suitable preconditioning tespnaifor the whole
problem. A possible way is to use as a preconditioner an appation of the Dirichlet-to-Neumann
map, sometimes referred to as the On Surface Radiation Gamddf. Antoine (2008)). Another
approach regarding the design of a preconditioner consistslizing a thin layer of FE enclosing the
boundaryd Qg of the free propagation zon@y; and an accurate radiation condition on the truncating
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boundary (see Reinet al. (2006)).
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