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Predictive Control of Chained Systems:

a Necessary Condition on the Control Horizon

Estelle Courtial, Matthieu Fruchard, Guillaume Allibert

Abstract— This paper deals with state feedback control of
chained systems based on a Nonlinear Model Predictive Control
(NMPC) strategy. Chained systems can model many common
nonholonomic vehicles. We establish a relation between the
degree of nonholonomy and the minimum length of the control
horizon so as to make the NMPC feasible. A necessary condition
on the control horizon of NMPC is given and theoretically
proved whatever the dimension of the chained system consid-
ered. This relation is used to design a NMPC-based control
strategy for chained systems. One of the advantages of NMPC
is the capability of taking into account the constraints on state
and on control variables. The theoretical results are illustrated
through simulations on a (2,5) chained system, describing a
car-like vehicle with one trailer. Difficult motion objectives that
require a lateral displacement are considered.

I. INTRODUCTION

The interest in chained systems stems from the fact

that the kinematic model of many common nonholonomic

vehicles (unicycle, car, car-like vehicle with n trailers,

etc.) can be converted into this form [1]. The stabilization

problem of nonholonomic vehicles has been largely

investigated in the literature [2], [3]. Two control tasks

can be distinguished: trajectory tracking and fixed point

asymptotic stabilization. While the trajectory tracking is

a rather simple problem (at least under the persistence

of motion assumption), point-stabilization is far from

straightforward when full-state stabilization (position and

orientation) is considered. Albeit intrinsically controllable, a

nonholonomic system has a linearized model which loses its

controllability property at any fixed point. Therefore, linear

control techniques cannot be used to stabilize this system

at a given configuration. Moreover Brockett [4] showed

that no continuous time-invariant feedback control could

asymptotically stabilize this class of systems. Time-varying

[5], [6], [7], discontinuous [8] and hybrid [9] feedbacks have

been proposed. Recently, practical full-state stabilization

has been addressed via the use of transverse functions

[10]. This control approach uses additional virtual control

inputs through a dynamic extension, providing practical

stabilization along any (even non admissible) trajectory or

fixed point with a priori bounded error.
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Model Predictive Control implicitly provides a discontinuous

feedback thereby bypassing Brockett’s condition. Indeed,

the NMPC strategy is based on the receding horizon

principle and is formulated as solving on-line a nonlinear

optimization problem, see [11] for a survey. The basic

concepts of NMPC are the explicit use of a model to

predict the process behavior over a finite prediction horizon

Np and the minimization of a cost function with respect

to a sequence of Nc controls where Nc is the control

horizon. If NMPC is often applied to trajectory tracking of

nonholonomic systems, only a limited number of studies

deals with stabilization [12], [13], [14]. In [14], the authors

studied the stability of unconstrained discrete-time systems

controlled using NMPC. Under assumptions of detectability

and boundedness of the cost function, a prediction horizon

length was determined to ensure stability. In [12], the authors

relaxed the restrictive terminal constraint by using a time-

varying (exponential) weighted matrix to ensure stability. It

was not sufficient to guarantee the full-state control from

any initial configuration. In all the aforementioned papers,

the control horizon was chosen equal to the prediction

horizon. Nevertheless the control horizon plays a crucial

role by providing a sequence of controls, similar to a

manoeuvre, to drive the nonholonomic vehicle to its desired

position. The question is to know how many controls are

needed and therefore what is the minimal length of the

control horizon Nc sufficient to make the NMPC feasible?

The objective of this paper is to point out and illustrate how

the control horizon can be appropriately chosen in order to

guarantee the feasibility of the predictive control for chained

systems. We establish a relationship between the degree

of nonholonomy and the minimum length of the control

horizon. This necessary condition of NMPC feasibility is

theoretically proved whatever the dimension of the chained

system considered.

The paper is organized as follows: section II is devoted

to a brief recap of NMPC design, nonholonomic vehicles

and chained systems. In section III, the problem is stated:

how can we determine the minimal control horizon Nc that

will ensure the NMPC feasibility ? A necessary condition

on Nc is given for the state feedback control of chained

systems. In section IV, the NMPC design is detailed. In

section V, simulations on a (2,5) chained system, describing

a car vehicle with one trailer, highlight the decisive role of

the control horizon. Constraints on state and control variables

are also taken into account. Conclusions are finally given.



II. BACKGROUND

A. NMPC

The control objective is usually to steer the state to the

origin or to an equilibrium state. A suitable change of

coordinates transforms the second problem into the first

which, therefore, we consider in the sequel. Consider the

state x at the time k, the cost function is defined by:

J(x,u) =
k+Np

∑
j=k

L(x( j),u( j))+F(x(k+Np)) (1)

where L is a quadratic function and x(k+Np)) is a terminal

constraint added to ensure the stability of the closed-loop

system. The classical NMPC formulation can be written as

follows:
min

ũ
J(x,u). (2)

The cost function J is minimized over the prediction hori-

zon Np with respect to the control sequence. The control

sequence ũ = u(k),u(k+1), ...,u(k+Nc), ...,u(k+Np −1) is

composed of Nc different controls where Nc is the control

horizon. From u(k+Nc +1) to u(k+Np −1), the inputs are

constant and equal to u(k +Nc). Only the first element of

the computed optimal sequence of controls is really applied

to the process. At the next sampling instant, the prediction

horizon moves one step forward and the whole procedure is

repeated with the updated measurements.

The main advantage of NMPC is its ability to handle

constraints. Constraints on states, inputs or outputs can easily

and explicitly be added to the optimization problem (2).

B. Modeling of nonholonomic vehicles

This section recalls some properties of nonholonomic

vehicles. For notions on Lie algebras and differential

geometry, see [15], [16].

Wheeled robots are characterized by non completely inte-

grable velocity constraints resulting from the rolling without

slipping assumption < ai(z), ż>= 0, i= 1, · · · ,q, where z∈N

is the configuration of the vehicle in an n differentiable man-

ifold N, and the ai’s are assumed smooth and independent

[17]. Nonholonomic vehicles can hence be modeled by a

kinematic driftless control system:

ż =
m

∑
i=1

uiZi(z), z(0) = z0 (3)

where m = n−q < n, z0 is the initial configuration, the ui’s

denote control variables and the Zi’s are smooth independent

vector fields over N. The solution at time t of (3) is denoted:

z(t) = e
t

m

∑
i=1

uiZi

(z0). (4)

Let Z (N) be the Lie algebra of all vector fields on N and

g = L (Z1, · · · ,Zm) the Lie subalgebra of Z (N) generated

by the vector fields Z1, · · · ,Zm. We assume that system (3)

satisfies the Lie algebra rank condition on N:

dim(span{Z(z) : X ∈ L (Z1, · · · ,Zm)}) = n. (5)

Under assumption (5), Chow’s theorem implies that system

(3) is controllable [16].

In order to classify nonholonomic systems, we recall the

concept of nonholonomic degree defined in [18].

Definition 1 Let g1 = span{Z1, · · · ,Zm} and recursively

gk = gk−1 +[g1,gk−1], k ≥ 2

where [g1,gk−1] = span{[X ,Y ] : X ∈ g1,Y ∈ gk−1}. Assuming

the system is regular, we define the degree of nonholonomy

as p = min{i ∈ N : gi = g}.

The degree of nonholonomy is an image of the difficulty

in controlling the system. Since the longer the Lie bracket

is, the more difficult it is to move in its direction, the

difficulty is the greatest when moving in the direction of

the vector fields that belong to g\gp−1. This degree is an

intrinsic property of the system, i.e. it does not depend on

the coordinate system the control is written in.

Concerning the kinematic modeling of a wide class of

wheeled robots, such as a unicycle with n− 3 trailers, [1]

gives a feedback change of coordinates (z,u1,u2) 7→ (x,v,w)
converting system (3) in natural coordinates (i.e. defined on

SE(2)×M with M denoting a (n−3)-dimensional manifold)

into a (2,n) chained form, which is a particular case of

system (3).

Definition 2 A (2,n) chained system is a kinematic system

in the form (3) with two control inputs and the following

vector fields:




ẋ = X1(x)v+X2w, x = (x1, · · · ,xn) ∈ R
n

X1 = (1,0,x2, · · · ,xn−1)
X2 = (0,1,0, · · · ,0)

(6)

The degree of nonholonomy of system (6) is p = n−1.

Example 1 Let us illustrate the modeling of a nonholonomic

vehicle in a chained form. The car-like vehicle is commonly

expressed in natural coordinates, i.e. it is modeled by system

(3) with configuration z = (xc,yc,θ ,φ) ∈ SE(2)× (−π
2
, π

2
),

and vector fields given by:

Z1(z) = (cosθ ,sinθ ,
tanφ

l
,0), Z2 = (0,0,0,1). (7)

(xc,yc,θ) denotes the location of the rear wheels and orien-

tation, and φ , l are respectively the front steering angle with

respect to the car’s body and the wheelbase. The kinematics

of the car are given by system (3) with control vector fields

(7) where u1,u2 are the linear and steering velocities of the

vehicle. The car-like vehicle can be written in chained form

(6) as:

x =




xc
tanφ

l cos3 θ
tanθ

yc


 ,

(
v

w

)
=

(
u1 cosθ

u2

l cos3 θ cos2 φ
+3

tan2 φ
l2

sinθu1

cos4 θ

)
. (8)



We thus obtain the system (6) on the (2,4) chained form,

nilpotent of order 3, defined on the Lie group N = R
4, with

vector fields:
X1(x) = (1,0,x2,x3)
X2 = (0,1,0,0).

(9)

Note that the feedback (8) induces a singularity, since it

is clear that defining the control input w as well as tanθ in

the state x requires that θ ∈ (−π
2
, π

2
).

III. PROBLEM STATEMENT AND MAIN RESULT

A. Problem Statement

Problem 1 Let Nc denote the control horizon of a predictive

control law and (v,w) ∈ R
2, the control input of system (6).

Consider a piecewise constant control family {vk,wk}k≤Nc

over Nc sampling periods Te. With notations of section II-B,

let:

s : ν̃ 7→ x f = eYNc ◦ · · · ◦ eY2 ◦ eY1 ◦ x0 (10)

where Yk(x) = Te(X1(x)vk +X2wk) and ν̃ = (ṽ, w̃) is the con-

trol sequence with ṽ = (v1, · · · ,vNc) and w̃ = (w1, · · · ,wNc).
What is the minimal control horizon Nc such that there exists

a control sequence ν̃ solving equation (10) for any desired

final configuration x f , i.e. such that s is surjective?

Solving Problem 1 is not always simple. Since the vector

fields of system (6) are left-invariant1 on a Lie group, then

equation (10) can be expressed as a product of exponen-

tials, whose direct calculation is provided either using the

Campbell-Hausdorff formula or using the group operation2

of the Lie group. For more generic systems in the form (3),

producting the exponentials using the Campbell-Hausdorff

formula will result in an infinite number of bracketings.

If possible, it is thus preferable to feedback nilpotentize

system (3) in order to avoid errors induced by the truncation

of brackets longer than a given order [19]. Note however

that feedback nilpotentization may induce singularities, thus

limitating reachable points for a given control horizon.

B. Solution to Problem 1 for chained systems

Proposition 1 Solving Problem 1 for any (2,n) chained sys-

tem (6) generically requires a control horizon Nc = p+1= n.

The detailed proof is given in Appendix.

Remark 1 Proposition 1 gives a sufficient and necessary

condition on Nc for the wide class of nonholonomic vehicles

modeled by the (2,n) chained form, so as to ensure the

existence of solutions to Problem 1 given arbitrary initial

and final configurations.

Remark 2 In the scope of optimization-based control, there

are slight differences with the formulation of Problem 1.

Firstly, the goal in NMPC is not explicitly to regulate to zero

1A system is left-invariant if its vector fields are left-invariant, i.e. if
dLσ (τ) ◦ X(τ) = X(Lσ (τ)) with L denoting the left-translation operator:
Lσ (τ) = στ .

2Note that, in general, the group operation may be difficult to determine
explicitly.

the error between the reference and the model output config-

uration obtained by applying Nc control steps, but rather to

minimize a weighted sum of errors over a prediction horizon

Np ≥ Nc. Secondly, the handling of constraints either on the

control inputs and/or on the states may reduce the set of

solutions. Restrictions imposed using a NMPC approach thus

result in relaxing the sufficient and necessary condition for

solving the theoretical Problem 1 into a necessary condition,

in practice, for solving the NMPC optimization problem

formulated in the next section.

Let us discuss the case Nc = p= n−1, where s is surjective

for any motion along gp−1\gp−2, but is no longer surjective

on g\gp−1. This lack of solution is due to the nilpoten-

tization, which is illustrated hereinafter by the significant

example of the car in natural coordinates, and therefore

should not be regarded as an intrinsic property of the system,

but rather as a consequence of the choice of the coordinate

system the nonholonomic system is written in.

Remark 3 Any translation along g\g2, corresponding to

a pure transversal motion (along X4 = [X1, [X1,X2]] =
(0, 0, 0, 1)), is clearly feasible by a car-like vehicle modeled

by system (3) with vector fields (7) and Nc = p = 3, but

it requires that the orientation reach values forbidden by

the nilpotentization (8) (namely θ = ±π
2

). That is why this

motion is impossible to achieve for the car modeled in

the chained form (6) with Nc = 3. The same problem was

reported in [20] using the nilpotent approximation of the

unicycle. Nevertheless, it should be noted that any motion

along g2\g1 (along X3 = [X1,X2] = (0, 0, −1, 0)), i.e. a

pure rotation around the location of the rear wheels, can

be achieved with Nc = 3, whatever the coordinate system the

car-like vehicle is written in.

IV. NMPC DESIGN FOR STATE FEEDBACK CONTROL OF

CHAINED SYSTEMS

The NMPC framework is now described in detail.

ǫ
+

- -

-

Process

yref
Optim.

yd

+ +

u yp

ymym

ǫ

Model

Fig. 1. Control Structure

1) The Internal Model Control (IMC) structure (see Fig.

1) is chosen to take into account modeling errors and

disturbances [21]. The tracking of the reference trajectory

yre f by the process output yp is equivalent to the tracking

of the desired trajectory yd by the model output ym. At

time t = kTe where the sampling period is Te = 1s, the

desired trajectory is defined by yd(k) = yre f (k)− ε(k).
The signal error ε(k) = yp(k)− ym(k) includes modeling

errors and measurement noises. The error is assumed to

be constant over the prediction horizon but is updated at

each new measurement.
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(a) Simulation 1: State variables.
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(b) Simulation 2: State variables.
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(c) Simulation 3: State variables.
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(d) Simulation 4: State variables.
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(e) Simulation 1: Control inputs.
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(f) Simulation 2: Control inputs.
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(h) Simulation 4: Control inputs.

Fig. 2. States and control variables of the chained system. Simulation 1: without constraints. Simulation 2: with control constraints. Simulations 3 and
4: with state and control constraints.

2) The model has to predict the process behavior over the

prediction horizon.
{

ẋ(t) = X1(x(t))v(t)+X2w(t) , x(0) = x0

ym(k+ j | k) = x((k+ j)Te).
(11)

The variables x ∈R
n, (v,w)∈R

2 and ym ∈R
n are respec-

tively the state, the input and the output of the model. The

output is sampled at each Te and the computed input is

kept constant over a sampling period: ∀ j ∈ [1;Np],

v(t) = v(k+ j−1 |k) for (k+ j−1)Te < t < (k+ j)Te,
w(t) = w(k+ j−1 |k) for (k+ j−1)Te < t < (k+ j)Te.

(12)

The model output ym(k), needed for the prediction, is

initialized with the updated measure of the process output

y(k) that guarantees an implicit feedback of the IMC

structure.

3) The quadratic function L (1) is defined as:

L =[yd(k+ j|k)− ym(k+ j|k)]
T Q( j)[yd(k+ j|k)− ym(k+ j|k)] (13)

where Q( j) is a symmetric definite positive matrix.

4) The prediction horizon Np should satisfy a compromise

between closed-loop stability (long horizon) and numer-

ical feasibility in terms of computational time required

(short horizon). If Np tends to infinity, the control prob-

lem becomes an optimal control known to ensure closed-

loop stability [11].

5) The control horizon Nc plays a crucial role by proposing

Nc different controls at time k comparable to a ma-

noeuvre. According to Proposition 1, the control horizon

will be chosen equal to or greater than the degree of

nonholonomy of the chained system: Nc ≥ p+1.

6) The time-varying matrix Q( j) weights the tracking error

at each iteration more and more over the prediction

horizon. It reinforces the role of the terminal constraint.

Giving a heavy weight at the end of Np, which corre-

sponds to the final objective, makes the NMPC problem

(2) tend to the theoretical Problem 1. The time variation

of the weighted matrix Q( j) is given by:

Q( j) = αQ( j−1), with α ≥ 1. (14)

7) The resolution method: a sequential quadratic program-

ming (SQP) is used (function fminunc from Matlab opti-

mization toolbox) to solve the optimization problem (2)

with (11)-(14). We have deliberately chosen a standard

algorithm to show that the efficiency of the NMPC for

full-state control is due to the control horizon and does

not depend on the optimization algorithm.

V. SIMULATIONS

We first illustrate the role of Nc as a necessary condition

for the state feedback of chained systems without constraints.

We consider a (2,5) chained system, described by the

following vector fields:

X1(x) = (1, 0, x2, x3, x4), X2 = (0, 1, 0, 0, 0). (15)

The degree of nonholonomy is given by p = n−1 = 4. The

prediction horizon and the control horizon were respectively

set to Np = 10 and Nc = 5. The time variation of Q( j) is

given by (14) with α = 5 and Q(1) = I.

We study the particular case where the initial state is

(0,0,0,0,1) and the desired one is (0,0,0,0,0), correspond-

ing to the difficult motion that requires a lateral displacement.

With Nc < 5, the final position is not reached. With Nc = 5,

in accordance with Proposition 1, the control strategy is

able to determine a control sequence such that the full-

state converges to the desired state (see Fig. 2(a) and 2(e)).

Constraints handling is one of the advantages of NMPC



design. In simulation 2, the control inputs of the (2,5)

chained system are constrained to ±2. We can notice that the

convergence is still obtained while the control constraints are

satisfied (see Fig. 2(b) and 2(f)). The time of convergence is

a bit longer and the amplitude of the state evolution is also

greater. In Fig. 2(c) and 2(g), the state variables are also

constrained to ±4. The control objective is always achieved.

From a different initial state (0.2,−0.6,0.25,−0.3,0.5), the

control strategy finds a control sequence satisfying the same

constraints and the task (see Fig. 2(d) and 2(h)).

Remark 4 For all the presented simulations performed on

a PC intel Core 2 duo, 3.06 GHz under Matlab, the com-

putational time required to solve the optimization problem

was about 2 seconds. This computational time is composed

of the Matlab function call, the differential equations and the

optimization solving. The over-all computational time can be

greatly reduced by using a discrete-time model of the mobile

robot (simulations have already been performed and required

50ms) and by using a more efficient minimization algorithm.

It is worth mentioning that the computational load relative to

the usual choice of Nc = Np is divided by 3 approximately

by using the appropriate choice of Nc = p+1.

VI. CONCLUSION

An NMPC strategy has been applied to the state feedback

control of chained systems. From a theoretical point of

view, we have established a necessary condition on the

length of the control horizon to ensure the NMPC feasibility.

To achieve this, we have combined tools from differential

geometry with NMPC approach. The link to the degree

of nonholonomy provides a useful lower bound for the

control horizon. Based on differential geometry, the proof

of the necessary condition is given whatever the dimension

of the chained system. From a practical point of view, the

appropriate choice of the control horizon makes it possible to

optimize the computational time. The theoretical results were

illustrated on a car-like vehicle with one trailer, modeled by

a chained system.

APPENDIX

PROOF OF PROPOSITION 1

Proof: The proof consists in four steps. The first step

aims at reformulating the Problem 1 using the properties

of the (2,n) chained systems. The second and third steps

are devoted to the study of cases where s(ν̃) = eX (0), X ∈
g\g1 and s(ν̃) = eX (0), X ∈ g\gNc−2, that is motions in the

direction of vector fields of increasing length, and thus of

increasing difficulty. The last step concludes the proof.

1) First, we can make the Problem 1 more explicit for the

(2,n) chained system. The nilpotent algebra generated

by the vector fields of (6) underlies the following group

operation on the Lie group N = R
n:

xy = exp(Ay1)x+ y (A.16)

where A is the square matrix of dimension n which

nonzero entries are only ai+1,i = 1,∀i ≥ 2.

Since the vector fields of system (6) are left-invariant

with respect to the group operation given by (A.16), (10)

can be expressed as a product:

s : ν̃ 7→ x f = x0eY1(0)eY2(0) · · ·eYNc (0) (A.17)

with 0 denoting the identity element of N = R
n. As the

final configuration x f is any element of N, the initial

condition can be set to x0 = 0 without loss of generality.

Thus (A.17) becomes s : ν̃ 7→ x f = x(1)x(2) · · ·x(Nc),
where x( j) = eY j(0) is the solution of equation (6) for

the jth control input pair (v j,w j) and initial condition

0. Let Te = 1s so as not to burden notations, then using

direct integration of (6), we get:

x( j) =
(

v j, w j,
v jw j

2
, · · · ,

vn−2
j w j

(n−1)!

)
. (A.18)

Using the group operation (A.16) on R
n, the solution to

a succession of Nc iterations is thus given by:

s(ν̃) =
Nc

∏
j=1

x( j) =
Nc−1

∑
j=1

exp
(
A

Nc

∑
i= j+1

vi

)
x( j)+ x(Nc)

Using (A.18) in the previous equation leads to:

s(ν̃) =




1 · · ·1 0 · · ·0
0 · · ·0 1 · · ·1

0n−2,Nc B(ν̃)


 ν̃ , (A.19)

with matrix B elements bi,Nc = vi
Nc
/(i+1)! and

bi, j =
i

∑
r=0

( Nc

∑
q= j+1

vq

)i−r

vr
j

(i− r)!(r+1)!
, ∀ j ≤ Nc −1. (A.20)

2) If s(ν̃) = eX (0), X ∈ g\g1, i.e. the shift’s two first com-

ponents are null while the others are not, (A.19) gives:

(s3, . . . ,sn)(ν̃) = B̄(ν̃)w̃, (A.21)

with, ∀i ≤ n−2,∀ j ≤ Nc −1, coefficients of B̄ given by:

b̄i, j =

(−1)i+1

[
(

Nc−1

∑
r=1

vr)
i −

i

∑
q=0

(
i+1

q

)
v

i−q
j (

j−1

∑
r=1

vr)
q

]

(i+1)!
.

(A.22)

Using (A.22), we get
Nc−1

∑
j=1

v j b̄i, j = 0, ∀i, and (A.21) gives:

(s3, . . . ,sn)(ν̃) = D(ν̃) λ , (A.23)

where D denotes the Nc − 2 first columns of B̄, and

λ = (λ1, . . . ,λNc−2) with λ j = w j − v jwNc−1/vNc−1.

3) We will now show that, with a control sequence of

length Nc, having s(ṽ) = eX (0) with X ∈ g\gNc−2 implies

that sNc(·) divides sNc+1(·), · · · , sn(·).

Let s(ṽ) = eX (0) with X ∈ g\gNc−2. We have si(·) = 0,

∀i ≤ Nc −1 and (A.23) can be decomposed as:



01,Nc−3

sNc

...

sn


(ν̃) =




C E

b̄Nc,1 RNc

...
...

b̄n,1 Rn


(ν̃) λ , (A.24)



where the matrix D is partitioned in blocks C, RNc+q

and E respectively denote (Nc − 3) column and raw

vectors and a (Nc−3)×(Nc−3) matrix. Using the Schur

complements for sNc+q(·), ∀q = 0, · · · ,n−Nc, we get:

sNc+q(·) = (b̄Nc+q,1 −RNc+qE−1C)λ1. (A.25)

With the block matrix FNc+q defined by:

FNc+q =

(
C E

b̄Nc+q,1 RNc+q

)
, (A.26)

the equation (A.25) leads to:

sNc+q =
detFNc+q

(−1)Nc−3 detE
λ1. (A.27)

The determinants in the latter equation are determined

using a LU decomposition with a unit triangular matrix L.

Let FNc+q = LNc+qUNc+q, then the diagonal matrix Unc+q

coefficients are given using (A.22):

Ui,i =





(−1)i+1

(i+1)!

( Nc−1

∑
j=i+1

v j

) i−1

∏
j=1

( i

∑
r= j

vr

)
, if i ≤ Nc −3

(−1)Nc−1

(Nc−1)! vNc−1

Nc−3

∏
j=1

(Nc−2

∑
r= j

vr

)
PNc,q, if i = Nc −2

(A.28)

with PNc,q given by:

PNc,q =
(−1)q(Nc−1)!
(Nc+q−1)! ∑

|I|=q

(
Nc+q−2

I1

)(
Nc+q−3−I1

I2

)

· · ·
(q+1−

Nc−3

∑
j=1

I j

INc−2

)
v

I1
1 · · ·v

INc−1

Nc−1 (A.29)

where the sum is done for multiindex I = (I1, · · · , INc−1)

such that |I| = q, i.e. for every I j such that
Nc−1

∑
j=1

I j = q.

Combining (A.28) and (A.29), we finally obtain:

detFNc+q =
(−1)

Nc(Nc−1)
2

−1
vNc−1

Nc−1

∏
i=1

i!

Nc−2

∏
i=2

[Nc−i

∏
j=1

( j+i−1

∑
r= j

vr

)]
PNc ,q.

(A.30)

In the same way, we obtain detE:

detE = (−1)
Nc(Nc−1)

2
+1

Nc−2

∏
i=1

i!

{
Nc−3

∏
i=2

[Nc−1−i

∏
j=2

( j+i−1

∑
r= j

vr

)]}

{
Nc−3

∑
i=0

[ i

∏
j=1

(
j

∑
r=1

vr)
Nc−3−i

∏
j=1

(−
j

∑
r=1

vNc−r)
]}

.

(A.31)

Using (A.30) and (A.31), (A.27) is simplified as:

sNc+q(·) =

(−1)Nc−1vNc−1

Nc−2

∏
i=2

[
(

i

∑
j=1

v j)(
i

∑
j=1

vNc− j)
]
PNc,qλ1

(Nc−1)!
Nc−3

∑
i=0

[ i

∏
j=1

(
j

∑
r=1

vr)
Nc−3−i

∏
j=1

(−
j

∑
r=1

vNc−r)
] .

(A.32)

As PNc,0 = 1, the equation (A.32) implies that

sNc+q(ṽ) = sNc(ṽ)PNc,q(ṽ), ∀q = 1, · · · ,(n−Nc). (A.33)

Consequently, s(ṽ)= eX (0) with X ∈ g\gNc−1 will involve

that s(ṽ)= 0. Hence, s is not surjective for Nc ≤ p= n−1.

4) For Nc = p+ 1 = n, s(ṽ) = eX (0) with X ∈ g\gp−1 will

have solutions provided that the numerator in (A.32) is

not null, that is if vNc−1 6= 0 and no sum of strictly less

than Nc − 2 successive controls vi is null. As a result, s

is surjective for Nc = p+1.
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