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Abstract— This paper describes a nonlinear image-based
visual servo control algorithm for the pipeline tracking problem
of a fully-actuated underwater vehicle. The dynamic model of a
generic autonomous underwater vehicle (AUV), incorporating
all significant forces and torques is developed and a generic
velocity control strategy is proposed. The desired velocities in
the plane orthogonal to the direction of the pipeline along with
the yaw velocity are derived from the image sequence using
bi-normalised Plücker coordinates of the pipeline borders. The
desired velocity along the pipeline is specified by the operator
and finally the desired velocities in pitch and roll angles are
set to zero. The asymptotic stability of the visual servo control
strategy is proved and simulation testing is carried out to show
performance of the control approach.

I. INTRODUCTION

The application of Autonomous Underwater Vehicles
(AUVs) has improved the accessibility of scientific and
industrial data in several domains. From the initial goals of
data gathering in vast open spaces, the missions of these
vehicles are now expected to be executed in close proximity
of a complex sea bottom or submarine structures, given that
it can create revolutionary applications of AUVs in subsea
inspection and maintenance. The shift from simple inertial
navigation to sensor-referenced and model-based control
is prompting the development of new techniques. Proven
robustness and steady performance in the face of often noisy
data is a requirement for assuring safe operation of these
vehicles, often very expensive.

The main challenging problem when dealing with AUV
is inherently linked to the nonlinear dynamics of the system
and highly coupled in 6 d.o.f. The interaction with a dense
medium (water) has measurable effects due to friction and
dynamic surface pressure, bringing in the terms of added
mass and damping. There are several formulations of the
dynamics of an underwater vehicle taking all these effects
into consideration, notably by Fossen [1], Baileyet al. [2]
and Leonard [3], each of them with different merits and
certain considerations. The latter reference, based on the
change of momentum expression, provides good insight into
the energy of the system.

There is a vast array of designs and control system archi-
tectures for AUVs, well summarised by Yuh in [4]. Typically,
AUVs carry inertial sensors to estimate accelerations. The
estimation, inherently burdened by drift error, is improved
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by exploiting the measurements of a magnetic compass along
with a Doppler Velocity Log (DVL) which measures linear
velocities w.r.t the surrounding medium. An underwater
vehicle usually uses a sonar (scanning, multi-beam or side-
scan) or a video camera to sense its environment. Although
far from Global Positioning System (GPS) in performance,
there exist systems which allows positioning with respect to
some locally fixed beacons. Most vehicles share a couple of
types of common physical dynamics and similar tasks. The
control problem thus remains a universal and shared core for
most of the academic centers researching AUVs.

Results in non-linear control of AUV systems have been
achieved using a host of different techniques. Amongst the
approaches which exploit the nonlinearities are techniques
of direct Lyapunov control [5], sliding mode control [6],
adaptive control (LQ [7], H-∞ [8]), optimal control [9] and
a host of linearizing methods. Moreover, some developments
with respect to the sensor-based navigation, centered mostly
around sonar-based tracking and simultaneous localisation
and mapping (SLAM) have been recently proposed [10].
Notable examples of work where the sensor input is used
for structure-referenced navigation are [11] and [12], while
[13] and [14] focus on the task of pipeline tracking, with
little regards to the nonlinearity of the control problem.

While almost all techniques developed previously are
based on the reconstruction of the relative position of the
vehicle in its environment, this paper focuses on an image-
based visual servoing (IBVS). The advantage of IBVS
schemes over position-based visual servoing (PBVS) relies
on the fact that the relative position of the robot with
respect to its environment is not required and only 2D
image features are needed. Hence, IBVS techniques are
usually more suitable for real-time algorithms since they
exploit geometrical properties of the imaging systems and
their relations to the environment/robot. The image features
considered are the bi-normalised Plücker coordinates [15]
of the pipeline borders. The control design is split into two
parts: an inner-loop controller to stabilise the velocities of
the vehicle around a desired set point and an outer-loop to
derive the velocity desired set point from image features.

The paper is organized as follows: Section II presents
the developed dynamical system modelling an AUV. Section
III describes the chosen control problem along with the
visual features considered. Section IV derives the inner-loop
controller and analyses the stability of the system. Section V
describe the velocity desired set point from image features.
Section V-B analyses the stability of the full system. Section



VI applies the control strategy to a realistic model of an
underwater vehicle and exhibits some simulation results. The
final section provides a short conclusion and an indication
of future works.

II. SYSTEM MODELING

The following conventions of the reference frames are
used:A = {ea1 , e

a
2 , e

a
3} is the inertial reference frame and

B = {eb1, e
b
2, e

b
3} represents the body-fixed frame. The posi-

tion of the body-fixed frame inA is the center of buoyancy
(CB) and denotedbB ∈ A. The center of gravity (CG) is
denotedbG ∈ A and rG ∈ B (see Fig. 1). The orientation
of B with respect toA is denotedR ∈ SO(3),B 7→ A,
an element of the special orthogonal group. The remaining
state variables of the system are the velocities: linearV and
angularΩ, both expressed inB. Another important reference
frame is bound to the camera:C = {ec1, e

c
2, e

c
3} which is

displaced from the origin ofB by a vectorrC , keeping its
base vectors parallel to those ofB. Let {e1, e2, e3} denote
the canonical basis ofR3. Define:

ν =

[
V
Ω

]
=

[
u v w p q r

]T
=

[ surge
sway
heave
roll
pitch
yaw

]

Commonly used parameters of a rigid body are the total
massm and the moment of inertia tensorI0.

When characterised at an arbitrary point, for instanceCB
(CB 6= CG), the kinetic energy of the system is given by1:

ERB =
1

2
νT

[
mI3×3 −mrG×

mrG× I0

]
ν =

1

2
νTMRBν

whererG is the position of the center of gravity (CG) in the
body-fixed frame with the origin atCB.
According to Kirchhoff and Lamb theory [16], the kinetic
energy of the liquid surrounding the body is given by [3]:

EA =
1

2
νTMAν =

1

2
νT

[
M11

A M12
A

M21
A M22

A

]
ν

whereMA is known as the added mass matrix. Consequently,
the total of the kinetic energy of the body in its medium is:

ET = ERB + EA =
1

2
νTMT ν (1)

whereMT =
[

M M12

T

M21

T
I

]
=

[
mI3×3+M11

A
−mrG×+M12

A

mrG×+M21

A
I0+M22

A

]

All vehicles with three mutually perpendicular axes of
symmetry (em i.e. ellipsoid, box-shaped, . . . ) approxima-
tively have a diagonal form for the added mass matrixMA.
In practice, the diagonal terms ofMA are often significantly
larger that the other terms, and therefore the matrixMA

can be approximated by a diagonal matrix [1]. Consequently,
M21

T = −M12
T = D := mrG×.

Recalling the total kinetic energy of the body-liquid sys-
tem (1), one can derive the translational (P ) and rotational
momentums (Π) as follows [3]:

P =
∂ET

∂V
= MV +DTΩ

Π =
∂ET

∂Ω
= IΩ+DV

1The notation~v× =

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
is used to abbreviate the skew-

symmetric matrix multiplicative representation of vector product.

According to [3] and [17], the dynamics of the system can
be expressed as follows:

Ṙ = RΩ× (2)

ḃB = RV (3)

Ṗ = P × Ω+ (mg − FB)R
T e3 + FD + FC (4)

Π̇ = Π× Ω+ P × V +mgrG ×RT e3 +TD +TC (5)

The two first lines represent the kinematics of the system
while the other two lines describe the dynamics of the
vehicle. The term(mg−FB)R

T e3 is the contribution of both
gravitational and buoyancy forces. The cross termmgrG ×
RT e3 expresses the gravitational moment with respect to the
center of buoyancy. In any submerged vehicle the center of
mass lies under the center of buoyancy, it is straightforward
to verify that gravitational moment can be expressed as
mgle3 × RT e3, where l is the distance between CB and
CG, along the body-reference directioneb3. This cross term
plays an important role in the stabilization of the roll and
pitch angles of the vehicle. The expansion ofP × V in Eq.
(5), shows that the term(MV ) × V should not be ignored
due the added mass of the AUVs [3]. The termsFD and
TD represent the damping terms due to fluid pressure and
viscous drag. For underwater vehicles maneuvering at low
speed, the damping is given by [1, p.74]:

[
FD TD

]T
= −B(ν)ν, with B(ν) = Bl +Bn(ν) (6)

whereBl is a constant diagonal positive matrix andBn rep-
resents a nonlinear damping matrix here modeled asBn =
diag(du|u|, dv|v|, dw|w|, dp|p|, dq|q|, dr|r|) with d(.) > 0.
We assume hereafter and w.l.o.g that:

FD(V ) = −BV (V )V , TD(Ω) = −BΩ(Ω)Ω (7)

where BV and BΩ are two diagonal positive matrices.
Finally, FC ,TC ∈ R

3 represent the control inputs of the
system.

e3
a

e2
a

u1

u2

e1
a

Hi

y1
y1

y2 y2

1

1 2

2

U
A

C

Fig. 1. Reference frames relationships

III. V ISUAL SERVO CONTROL PROBLEM

This section describes the control problem considered
to perform autonomous pipeline tracking for fully-actuated



AUV using visual servo control. The visual features con-
sidered are the images of the pipeline borders assumed to
be parallel in the horizontal plane of the inertial frame. The
unit direction vector of the pipeline is denotedu ∈ A in
the inertial frame andU = RT

u ∈ C in the camera frame.
We assume the image features remain in the camera field of
view throughout the motion, a reasonable assumption given
the nature of the manoeuvre considered.

A position-like and yaw related orientation error terms are
derived from the visual features. The first one is based on the
bi-normalised Pl̈ucker coordinates of the observed parallel
lines and is used to align the camera at a desired height with
respect to the pipeline. The second is based on the alignment
of the forward velocity with the pipeline direction. Given
that the observed lines are known to be parallel, their Plücker
coordinates(hi, U) ∈ C, i = {1, 2} can be measured directly
from the image features [17]:

hi =
y1i × y2i
|y1i × y2i |

=
y1i × U

|y1i × U |
=

y2i × U

|y2i × U |
;U = ±

h1 × h2

|h1 × h2|
(8)

wherey1i andy2i ∈ C are two specific points on the linei =
{1, 2}. The direction of the pipelineU ∈ C is specified up
to a sign that should be fixed by the operator. The proposed
visual servo scheme is based on centroid vectors designed
from the image features (8) as follows:

q = h1 + h2

The visual position error with respect to the set of the linear
features can then be defined as:

δ1 = q − q∗ (9)

where q∗ is the value of theq vector for a reference
configuration of the features. It is considered as constant
in A. Therefore, the dynamics ofq∗ is equivalent to the
dynamics ofU : q̇∗ = −Ω×q∗. To regulate the velocity of the
vehicle in the direction of the pipeline, a reference velocity α
is specified. The yaw related-orientation error can be defined
by specifyingeb1 as the “reference forward direction” for the
vehicle. Let defineU2 as the second component ofU , one
can define the yaw related orientation error byU2e3.

Finally, it is worth noting that the external torque due
to gravity and buoyancy in a bottom-heavy vehicle (CG
is below CB) ensures a pendulum-like movement around
the gravitational directionea3 . Moreover, if the damping is
included, the system looses rotational kinetic energy and
naturally comes back to equilibrium set point, ensuring that
RT e3 converges toe3 and the first two components ofΩ
(Ω1 = p,Ω2 = q) converge to zero as long as the external
torque due to gravity and buoyancy is not compensated.

According to [17], the time derivative ofδ1 defined by Eq.
(9) can be expressed as follows:

δ̇1 = −Ω× δ1 −Q(VC × U) , (10)

where VC is the velocity of the camera expressed in the
body-fixed frameB and is given by

VC = V − Ω× rC (11)

The matrix Q is symmetric positive definite matrix and is
defined by

Q :=

2∑

i=1

1

|Hi|
πhi

with |Hi| the norm of the closest point on linei (i = {1, 2})
andπx = (I3 − xxT ) is a projection onto the tangent space
of the sphereS2 of a pointx ∈ S2. Given that the term|Hi|
is unknown it follows thatQ is also unknown. In practice,
one can use different clues like depth gauge readings or
camera autofocus information to estimate the upper-bound
and lower-bound of its eigenvalues that will be exploited in
the control design. It is of interest to study the structural
properties of Eq. (10). The time derivative of the storage
function 1

2 |δ1|
2 is:

1

2

d

dt
|δ1|

2 = −δT1 Q(VC × U).

Since the matrixQ > 0, choosingVC × U = δ1 acts to
decrease|δ1|2. Analogously, in order to stabilizeU about
e1, consider the following storage positive function

Ly = ky(1− UT e1), ky > 0 , (12)

whose time-derivative satisfies

L̇y = ky(Ω×U)T e1 = kyΩ
T (U × e1) (13)

To give the control insight, assume that the first two compo-
nents ofΩ are equal to zero and chooseΩ3 = r as

Ω3 = kUU2, kU > 0,

One can ensure thatLy is decreasing

L̇y = −kykUU
2
2 .

Since Vc and Ω3 cannot be chosen as control input, the
approach taken in this paper is split into two parts. The
first part termed inner-loop controller allows stabilization
the velocities to a desired set point and the second one,
termed outer-loop controller, is specifically designed from
image feature to define the desired set point.

IV. I NNER-LOOP CONTROL DESIGN

Since the external torque due to gravity and buoyancy
ensures a pendulum-like movement aroundea3 , we consider
here the objective of stabilizing the velocities(V,Ω) at the
reference(Vr,Ωr) with Ωr = Ω3re3, defined by the outer-
loop controller. Let us define the velocity error variables

Ṽ := V − Vr , Ω̃ := Ω− Ωr. (14)

Then, the control objective is equivalent to the stabilization
of (Ṽ , Ω̃) to zero. Using Eqs. (4), (5), and (14), and the fact
that DΩr = DΩ̇r = 0, the velocity error system can be
written as




M
˙̃
V −D

˙̃
Ω=(MV −DΩ)×Ω̃+(MṼ −DΩ̃)×Ωr

+ Fr + (mg−FB)RT e3 + FD(V ) + FC

I
˙̃
Ω+D

˙̃
V =(IΩ+DV )×Ω̃ + (MV −DΩ)×Ṽ

+ (IΩ̃ +DṼ )×Ωr + (MṼ −DΩ̃)×Vr

+mgle3×R
T e3 +Tr +TD(Ω) + TC

(15)

with the new variables

Fr := −MV̇r + (MVr)×Ωr

Tr := −IΩ̇r−DV̇r+(IΩr+DVr)×Ωr+(MVr)×Vr



For control design purposes, let us introduce some defini-
tions of saturation functions

σχ(x) := min(|x|, χ)sign(x), ∀x ∈ R (16)

sat∆(x) := [σχ1
(x1), σχ2

(x2), σχ3
(x3)]

T
, ∀x ∈ R

3 (17)

with a constant positive vector∆ = [χ1, χ2, χ3]. The first
control result of this paper is stated next.

Proposition 1 Let KV , KΩ, ∆V , ∆Ω denote some positive
diagonal matrices and apply the control law



FC = − sat∆V
(KV Ṽ )−(MṼ )×Ωr+M(Ω̃×Vr)

− Fr − (mg − FB)R
T e3 − FD(Vr)

TC = − sat∆Ω
(KΩΩ̃)− (IΩ̃)×Ωr+(DΩ̃)×Vr

− Tr − TD(Ωr)

(18)

to the error system(15). Assume thatVr, Ωr and their time-
derivative are bounded. Then

1) The error state(Ṽ , Ω̃, R⊤e3) converges to(0, 0,±e3)
for all initial conditions.

2) The equilibrium (Ṽ , Ω̃, R⊤e3) = (0, 0, e3) is
locally exponentially stable and the equilibrium
(Ṽ , Ω̃, R⊤e3) = (0, 0,−e3) is unstable.

Proof: Consider the following Lyapunov candidate
function

Lvel =
1

2
W̃⊤MT W̃ +mgl(1−eT3R

Te3)

=
1

2
Ṽ TMṼ+

1

2
Ω̃TIΩ̃−Ṽ TDΩ̃+mgl(1−eT3R

Te3)
(19)

with the positive-definite matrixMT defined in Eq. (1). The
time-derivative ofLvel satisfies

L̇vel= Ṽ T (M
˙̃
V−D

˙̃
Ω)+Ω̃T (I

˙̃
Ω+D

˙̃
V )−mglΩTe3×RTe3

= Ṽ T (M
˙̃
V−D

˙̃
Ω)+Ω̃T (I

˙̃
Ω+D

˙̃
V )−mglΩ̃Te3×RTe3

Then, using system (15) and the propertiesDΩr = 0 and
D(a× b) = (Da)×b− (Db)×a, ∀a, b ∈ R

3, one has:

Ṽ T (MV −DΩ)×Ω̃ + Ω̃T (MV −DΩ)×Ṽ = 0,

and the control law (18) one deduces

L̇vel = Ṽ T (FC + Fr + (mg − FB)RT e3 + FD(V )

+ (MṼ −DΩ̃)×Ωr)

+ Ω̃T (TC +Tr +TD(Ω)

+ (IΩ̃+DṼ )×Ωr+(MṼ −DΩ̃)×Vr)

= Ṽ T(FC + Fr + (mg − FB)RT e3 + FD(V )

+(MṼ −DΩ̃)×Ωr−M(Ω̃×Vr)+D(Ω̃×Ωr))

+ Ω̃T
(
TC +Tr +TD(Ω) + (IΩ̃)×Ωr − (DΩ̃)×Vr

)

= −Ṽ T sat∆V
(KvṼ )− Ω̃T sat∆Ω

(KΩΩ̃)

+Ṽ T (FD(Ṽ +Vr)− FD(Vr))+Ω̃T (TD(Ω̃+Ωr)−TD(Ωr))

≤ −Ṽ T sat∆V
(KvṼ )− Ω̃T sat∆Ω

(KΩΩ̃)

where the last inequality is obtained using the following
property:x(|x+y|(x+y)−|y|y) ≥ 0, ∀x, y ∈ R. SinceL̇vel

is negative semi-definite, the velocity errors̃V and Ω̃ and,
thus, the control variablesFN andTN are bounded. From
here, one easily verifies the uniform continuity ofL̇vel via the
boundedness of̈Lvel. By application of Barbalat’s lemma,

one deduces the convergence ofL̇vel and, thus,Ṽ and Ω̃
to zero. Then, by application of Barbalat’s lemma again one

deduces the convergence of˙̃V and ˙̃
Ω to zero. Finally, from

the last equation in (15) one deduces the convergence of
e3 × RT e3 to zero which implies thatR⊤e3 converges to
eithere3 or −e3. The proof of local exponential stability of
the equilibrium(Ṽ , Ω̃, R⊤e3) = (0, 0, e3) and the proof of
instability of the equilibrium(Ṽ , Ω̃, R⊤e3) = (0, 0,−e3) are
based on the lineazired systems which are not difficult but
are omitted here due to space limitation.

Note that in the calculation oḟLvel, we have developed
a string of mathematical manipulations so as to obtain the
control law (18) in a simple form which does not contain
many terms depending oñV . The main reason is that
in practice the measurement of the vehicle’s translational
velocity is more difficult to obtain and is less precise than
that of the angular velocity. Note also that the saturation
terms in the control law (18) are useful to account for the
constraints of the actuators.

Remark 1 The knowledge about the time-derivative of the
reference velocitiesVr and Ωr are prerequisite to compute
the feedback controlFC and TC . In the next section, we
will show how this fact influences the visual servoing control
design.

V. OUTER-LOOP CONTROLLER: V ISUAL SERVO CONTROL

DESIGN

The control design is based directly on the quantities
estimated by the visual sensor. The control objective consists
in stabilizing the visual error termδ1 about zero, the vector
U aboute1, andV TU about a the reference valueα.

In view of Eqs. (10), (4), and (5), the system of interest
has a cascaded structure. This may lead one to define the
reference velocitiesVr andΩr of the inner-loop as functions
of δ1 andU respectively to stabilize(V,Ω) about(Vr,Ωr).
This strategy requires the explicit knowledge of the time-
derivative ofVr which in turn implies that the time-derivative
of δ1 must be known. Since the matrixQ is unknown in
(10), we introduce a new variableδ2 satisfying the following
dynamics:

δ̇2 = −Ω×δ2−k1δ2+k2δ1, δ2(0) = δ1(0), k1,2 > 0 (20)

Note thatδ2 and its time-derivativeδ̇2 are known. Analo-
gously toδ1 (9), δ2 is also orthogonal toU .

Lemma 2 The vectorδ2, solution to system(20), is orthog-
onal toU for all time t.

Proof: The time-derivative of the following Lyapunov
candidate functionV := 1/2(δT2 U)2 satisfies

V̇ = (δT2 U)(−δT2 (Ω× U) + UT (−Ω× δ2 − k1δ2 + k2δ1))

= −k1(δ
T
2 U)2 = −2k1V

Thus,V is non-increasing and remains null for all time since
V(0) = 0. This concludes the proof.



A. Definitions of reference velocities

The next step consists in defining the reference velocities
Vr andΩr. The following definitions ofVr andΩr essentially
follow the insights given in [17] with few modifications.

Define the reference translational velocity for the camera
VCr as

VCr = kδU × δ2 + αU , (21)

with kδ some positive gain. Intuitively, ifVC ≡ VCr and
Ω ≡ 0 one hasV TU ≡ α. This justifies the termαU in
the definition (21) ofVCr. Using Lemma 2 and Eq. (21) one
verifies that

VCr × U := −kδ(U×)
2δ2 = −kδδ2

The reference angular velocityΩr is defined based on the
heading control objective. In order to stabilizeU aboute1,
recall the time derivative (13) of the storage function (12)
and choose:

Ωr := kUU2e3, kU > 0, (22)

one obtains

L̇y = kyΩ̃
T (U × e1)− kykUU

2
2 . (23)

Finally, in view of Eq. (11) we define the reference
translational velocityVr as

Vr := VCr +Ωr × rC . (24)

Note that δ̇2 and U̇ are known, hencėVr and Ω̇r are also
known2.

B. Stability analysis

Since the reference velocities are specified, i.e. Eqs. (24),
(22), (21), one can apply the control law (18) proposed in
Section IV in order to stabilize(V,Ω) about(Vr,Ωr). Using
the fact thatṼ , Ω̃ converge to zero and from (12) and (23) it
is straightforward to verify thatU2 converges to zero. Since
RT e3 converges toe3 along withU2 = 0 one can verify that
U converges toe1. It remains to show the convergence of
δ1 andδ2 to zero. Recalling Eqs. (10) and (20), one verifies
that: {

δ̇1 = −kδQδ2 + ǫδ1

δ̇2 = k2δ1 − k1δ2 + ǫδ2
(25)

with ǫδ1 := −Ω×δ1−Q((Ṽ +Ω̃×rC)×U), ǫδ2 := −Ω×δ2
The termsǫδ1 and εδ2 converge to zero wheñV , Ω̃, and
U2 converge to zero. Therefore, they can be treated as
singular perturbations of system (25). As a consequence,
by application of singular perturbation theory, in order to
prove thatδ1 and δ2 converge to zero, it suffices to prove
the exponential stability of the equilibrium(δ1, δ2) = (0, 0)
of the zero dynamics of system (25), corresponding toǫδ1 ≡
ǫδ2 ≡ 0. This zero dynamics is a linear time-varying (LTV)
system

d

dt

[
δ1
δ2

]
=

[
0 −kδQ

k2I3×3 −k1I3×3

]

︸ ︷︷ ︸
A(t)

[
δ1
δ2

]
. (26)

2Due to the space limitation their expressions are not given inthe paper.

Lemma 3 Consider the LTV system(26). If Q is uniformly
bounded and positive definite, and if

k21
k2kδ

> min

(
λmax,

(λmax − λmin)
2

4λmin

)
(27)

whereλmax andλmin are the upper-bound and lower-bound
of the eigenvalues of Q, then the equilibrium(δ1, δ2) =
(0, 0) is exponentially stable.

Proof: Introduce positive constantsp1 andp2 satisfying

p1p2 > 1, (28)

which serve to build a matrixP :=
[
p1I3×3 −I3×3

−I3×3 p2I3×3

]
(con-

stant, symmetric, positive definite) and matrixW(t) :=
A(t)TP+PA(t) with A(t) defined in (26).

To prove the exponential stability of the LTV system (26),
it suffices to show the existence ofp1 andp2 such that

∃ε > 0, ∀t, W(t) ≤ −εI6×6 (29)

Note that condition (28) is necessary forP to be positive
definite. One verifies that

W =

[
−2k2I3×3 −p1kδQ+(k1+k2p2)I3×3

−p1kδQ+(k1+k2p2)I3×3 2kδQ−2p2k1I3×3

]

For all X =
[
x1 x2

]T
with x1, x2 ∈ R

3, one has
1

2
XT

WX =− k2|x1|
2 − xT

2 (p2k1 − kδQ)x2

+ (k1 + p2k2)x
T
1 x2 − p1kδx

T
1 Qx2 (30)

Let λ1, λ2, λ3(> 0) denote the eigenvalues ofQ. One has
λmin ≤ λi ≤ λmax. SinceQ is symmetric, there exists a
matrix RQ ∈ SO(3) such thatQ = RT

QΛQRQ, with ΛQ =
diag(λ1, λ2, λ3). Denoting x̄i = RQxi with i = 1, 2, one
deduces from Eq. (30) that

1

2
XT

WX =−

3∑

i=1

(k2x̄
2
1,i + (p2k1 − kδλi)x̄

2
2,i

− (k1 + p2k2 − p1kδλi)x̄1,ix̄2,i) (31)

We have to prove that there exists some positive constantε
such thatXT

WX ≤ −ε|X|2. From here, the proof proceeds
by considering two possible cases.⊲ Case 1 : Consider

the case whereλmax ≤ (λmax−λmin)
2

4λmin
. Eq. (27) implies the

existence of a constantcλ > 0 such that
k21
k2kδ

= λmax + cλ . (32)

From Eq. (31), using Cauchy-Schwartz inequality one en-
sures thatW ≤ −εI6×6 if for all i ∈ {1, 2, 3}

(k1 + p2k2 − p1kδλi)
2 ≤ 4

(
k2 −

ε

2

)(
p2k1 − kδλi −

ε

2

)

⇔ Fi(p1) := (k2δλ
2
i )p

2
1 − 2kδλi(k1 + p2k2)p1

+ (k1 + p2k2)
2−4

(
k2−

ε

2

)(
p2k1−kδλi−

ε

2

)
≤0 (33)

Choosep2 = k1/k2 and 0 < ε < min(2k2, 2kδcλ). Then,
it is easy to verify from this choice and Eq. (32) that the
determinant ofFi(p1) is positive. Thus, inequality (33) is
satisfied for alli ∈ {1, 2, 3} if



max
λi

p−1 (λi) ≤ p1 ≤ min
λi

p+1 (λi)

p±1 (λi) :=
2k1
kδλi

±

√
4 (k2 − ε/2) (k21/k2 − kδλi − ε/2)

kδλi
(34)



It is straightforward to verify that



lim
ε→0

(
min
λi

p+1 (λi)

)
≥

2k2

k1 −

√
k21 − k2kδλmax

>
k2

k1
=

1

p2

lim
ε→0

(
max
λi

p−1 (λi)

)
≤

2k2

k1 +
√

k21 − k2kδλmax

Thus, by continuity there exists some positive thresholdε̄1
close enough to zero and smaller thanmin(2k2, 2kδcλ) such
that for all ε < ε̄1 one has

min
λi

p+1 (λi) > max

(
max
λi

p−1 (λi),
1

p2

)
,

which implies the existence of some constantp1 > 0 such
that (28) and (34) are satisfied. This concludes the proof.

⊲ Case 2 :Consider the case whereλmax > (λmax−λmin)
2

4λmin
.

Assume that one can choose somep1 andp2 such that

p2k1 > kδλmax (35)

k1 + p2k2 ≥ p1kδ
λmax + λmin

2
(36)

Then, from Eq. (31) and the fact that|xi| = |x̄i|, with i =
1, 2, one deduces

1

2
X⊤

WX ≤− k2|x1|
2 − (p2k1 − kδλmax)|x2|

2

+ (k1 + p2k2 − p1kδλmin)|x1| |x2|
From here, using Cauchy-Schwartz inequality one ensures
thatW ≤ −εI6×6 if

(k1+p2k2−p1kδλmin)
2 ≤ 4

(
k2−

ε

2

)(
p2k1−kδλmax−

ε

2

)

⇔ (k2δλ
2
min)p

2
1 − 2kδλmin(k1 + p2k2)p1

+(k1+p2k2)
2−4

(
k2−

ε

2

)(
p2k1−kδλmax−

ε

2

)
≤0 (37)

There exists a positive constantε close enough to zero such
that (37) is satisfied if we have the following strict inequality

G1(p1) := (k2δλ
2
min)p

2
1 − 2kδλmin(k1 + p2k2)p1

+ (k1 + p2k2)
2−4k2 (p2k1−kδλmax) < 0 (38)

It is easy to verify from Eq. (35) that the determinant of
G1(p1) is positive. Thus, inequality (38) is satisfied if




p−1 ≤ p1 ≤ p+1

p±1 :=
k1 + p2k2
kδλmin

±

√
4k2 (p2k1 − kδλmax)

kδλmin

(39)

Combining Eqs. (28) and (36) one obtains
1

p2
< p1 ≤

2(k1 + p2k2)

kδ(λmax + λmin)
(40)

One easily verifies from Eq. (35) that
1

p2
<

k1

kδλmax

<
2(k1 + p2k2)

kδ(λmax + λmin)
< p+1

Thus, the existence of somep1 > 0, such that Eqs. (39) and
(40) are satisfied, is ensured if

2(k1 + p2k2)

kδ(λmax + λmin)
> p−1

⇔ (k1+p2k2)
2

(
λmax−λmin

λmax + λmin

)2

< 4k2(p2k1 − kδλmax)

⇔G2(p2) :=

(
λmax−λmin

λmax+λmin

)2
k22p

2
2

− 2k1k2

(
2−

(
λmax−λmin

λmax+λmin

)2)
p2

+ k21

(
λmax − λmin

λmax + λmin

)2

+ 4κ2kδλmax < 0

The determinant ofG2(p2) is ensured to be positive from the
condition (27). This in turn ensures the existence of some
p2 > 0 such thatG2(p2) < 0. We have proved the existence
of some positive constantsp1 and p2 satisfying conditions
(28), (35), and (36) such that inequality (29) holds for some
positive constantε. This concludes the proof.

VI. SIMULATION RESULTS

The controller has been implemented and tested together
with the dynamics of a realistic AUV. The simulated vehicle
belongs to the family of fully-actuated underwater vehicles
which possess full control over all components of the control
forces and torques. The physical parameters of the vehicle
are shown in Table 1. Two border lines of the tracked pipe
stay in a horizontal plane (withZ=0) in the inertial frame.
The direction of the linesu is parallel to theX-axis of the
inertial frame (i.e.,u=e1), where theirY-coord areyL1=1m
and yL2=3m. The initial position of the vehicle has been
chosen asbB(0)= [0, −5, 7]T , 5m aside and7m above
the tracked pipe. The initial orientation of the vehicle is75◦

rotated from vectoru. The initial roll and pitch angles of
the vehicle are null. The reference values, the control gains
and parameters are given in lower part of Table 2.

In order to show the robustness of the method to model
errors, a different set of parameters are used in the controller,
reflecting usually approximative knowledge of the real AUV
dynamics. They are given in the upper part of Table 2

Fig. 3. Perspective view of the simulation
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m = 1000kg M11
A =103diag(0.2, 4.5, 4.5)kg

volume= 0.97 m3 M22
A =103diag(1.5, 20, 15)kg.m2

l = 0.15 m, rC = [1, 0, 0]T BV =103diag(0.2, 1.0, 1.0) kg
s

I0=



500 −15 25
−15 3000 1
25 1 3000


kg.m2

BΩ=105diag(0.5, 1.2, 1.0) kg
s

∆V = [1000, 1000, 1000]TN

∆Ω = [200, 3000, 6000]TN

Tab. 1: Physical parameters of the simulated vehicle

The simulation results reported in Fig. 2 show the stabi-
lization of the visual errorδ1 to zero, as well as the regulation
of the orientation the desired values. The forwarding velocity
converges rapidly to the given valueα = 0.5m/s. The
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Fig. 2. Numerical results of the simulation. 1st column: error variables ofδ1 and δ2; 2nd column: body-referenced velocitiesV andΩ; 3rd column:
control forces and torques

Î0=diag(550, 3200, 3300)kg.m2

∆̂V = [1100, 1100, 1100]TN

∆̂Ω = [250, 3100, 6100]TN

M̂11
A =103diag(0.18, 4.3, 4.4)kg

M̂22
A =

103 diag(1.6, 18, 14) kg.m2

k1 = 1, k2 = 1 kδ = 1, kU = 1
KV = M, KΩ = I α = 0.5m

s
, q∗ = [0, 1.79, 0]T

Tab. 2: Estimated vehicule parameters, desired values and
simulation gain settings
vehicle does not experience large pitch and roll angular
velocities during the transient period, while only the yaw
angular velocity has a visible transient before reaching zero.

The control saturation occured during a short period and
did not significantly affect the overall performance of the
controller. The values of∆V and∆Ω reflect a realistic thrust
that real-life propellers could have, with a visible handicap
in the pitch regulation - which is the case on several existing
AUVs, where pitch is regulated by a separate system, eg.
underwater gliders [18]. Thus, the saturation variables can
prevent the controller from setting the actuator output to
unrealistic or dangerous levels.

VII. CONCLUSIONS

In this paper we developed a nonlinear visual servo control
for tracking linear pipelines by fully-actuated underwater
vehicle. More precisely, the controller directly uses the image
features as feedback information without explicit of the
relative pose of the vehicle with respect to the environment.
The stability of the closed-loop system is proved and the
control algorithm has been tested within a realistic simulation
framework. Certain properties of the real-world vehicles
which are not part of the generalized approach taken in the
theoretical section can be exploited for further refining ofthe
control scheme. Notably, typical AUV hull often resembles
a torpedo shape which implies that one of the principal
dimensions is significantly bigger than the others. Associated
streamlining also causes that one of the coefficients both
of the added mass (MA) and the form drag (B) are of a
different order of magnitude than the others. This can be
exploited to further enhance the mathematical expression of
the controller. The implementation of this scheme on a real
system is now envisaged.

REFERENCES

[1] T. I. Fossen,Marine Control Systems. Marine Cybernetix AS, 2002.
[2] P. Bailey, W. Price, and P. Temarel, “A unified mathematical model

describing the maneuvering of a ship travelling in a seaway,”Trans-
actions The Royal Institution of Naval Architects, pp. 131–149, 1997.

[3] N. E. Leonard, “Stability of a bottom-heavy underwater vehicle,”
Automatica, vol. 33, no. 3, pp. 331–246, 1997.

[4] J. Yuh, “Design and control of autonomous underwater robots: A
survey,” Autonomous Robot, vol. 8, no. 1, pp. 7–24, 2000.

[5] L. Lapierre, D. Soetanto, and A. Pascoal, “Robust nonlinear path-
following control of an AUV,” IEEE Journal of Oceanic Engineering,
vol. 33, pp. 89–102, april 2008.

[6] T. M. Josserand, “Optimally-robust nonlinear control ofa class of
robotic underwater vehicles,” december 2006.

[7] W. Naeem, R. Sutton, and S. M. Ahmad, “LQG / LTR control
of an AUV using hybrid guidance law,” inProceedings of GCUV
Conference, april 2003.

[8] D. Fryxell, P. Oliveira, A. Pascoal, C. Silvestre, and I.Kaminer,
“Navigation, guidance and control of AUVs: An application to the
MARIUS vehicle,”Control Engineering Practice, vol. 4, pp. 401–409,
march 1996.

[9] I. Spangelo and O. Egeland, “Trajectory planning and collision avoid-
ance for underwater vehicles using optimal control,”IEEE Journal of
Oceanic Engineering, vol. 19, pp. 502–511, october 1994.

[10] J. Aulinas, C. S. Lee, J. Salvi, and Y. R. Petillot, “Submapping SLAM
based on acoustic data from a 6-DOF AUV,” in8th IFAC Conference
on Control Applications in Marine Systems, september 2010.

[11] T. Palmer, “A short range vision based navigation systemfor au-
tonomous docking on subsea intervention panels,” june 2008.

[12] F. Maurelli, S. Krupinski, Y. Petillot, and J. Salvi, “Aparticle filter
approach for AUV localization,” inProc. of MTS/IEEE OCEANS,
2008.

[13] P. K. Paim, B. Jouvencel, and L. Lapierre, “A reactive control approach
for pipeline inspection with an AUV,” inProceedings of MTS/IEEE
OCEANS, vol. 1, 2005, pp. 201–206.

[14] P. Rives and J.-J. Borrelly, “Underwater pipe inspection task using
visual servoing techniques,” inProceedings of ICRA, 1997.

[15] Julius Pl̈ucker, “On a new geometry of space,”Philosophical Trans-
actions of the Royal Society of London, vol. 155, pp. 725–791, 1865.

[16] H. Lamb,Hydrodynamics. Cambridge University Press, 1932.
[17] R. Mahony and T. Hamel, “Image-based visual servo controlof aerial

robotic systems using linear image features,”IEEE Transactions on
Robotics and Automation, vol. 21, no. 2, pp. 227–239, April 2005.

[18] J. G. Graver and N. E. Leonard, “Underwater glider dynamics and con-
trol,” in 12th Int. Symp. on Unmanned Untethered Submersible
Techn., 2001.


