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Abstract— This paper describes a nonlinear image-based by exploiting the measurements of a magnetic compass along
visual servo control algorithm for the pipeline tracking problem  wijth a Doppler Velocity Log (DVL) which measures linear
of a fully-actuated underwater vehicle. The dynamic model of a g |ocities w.rt the surrounding medium. An underwater
generic autonomous underwater vehicle (AUV), incorporating . . . .
all significant forces and torques is developed and a generic vehicle usua”y Uses a sonar (scan.nlng, multl—beam or side-
velocity control strategy is proposed. The desired velocities in SCan) or a video camera to sense its environment. Although
the plane orthogonal to the direction of the pipeline along with  far from Global Positioning System (GPS) in performance,
the yaw velocity are derived from the image sequence using there exist systems which allows positioning with respect t
bi-normalised Plicker coordinates of the pipeline borders. The g4 e |ocally fixed beacons. Most vehicles share a couple of
desired velocity along the pipeline is specified by the operator . . L
and finally the desired velocities in pitch and roll angles are types of common phySICaI. dynam!cs and similar tasks. The
set to zero. The asymptotic stability of the visual servo control  control problem thus remains a universal and shared core for
strategy is proved and simulation testing is carried out to show most of the academic centers researching AUVSs.
performance of the control approach. Results in non-linear control of AUV systems have been
achieved using a host of different techniques. Amongst the
. INTRODUCTION approaches which exploit the nonlinearities are techrsique
The application of Autonomous Underwater Vehiclesf direct Lyapunov control [5], sliding mode control [6],
(AUVs) has improved the accessibility of scientific andadaptive control (LQ [7], Ho [8]), optimal control [9] and
industrial data in several domains. From the initial godls ca host of linearizing methods. Moreover, some developments
data gathering in vast open spaces, the missions of thegih respect to the sensor-based navigation, centeredymost
vehicles are now expected to be executed in close proximigtound sonar-based tracking and simultaneous localisatio
of a complex sea bottom or submarine structures, given thahd mapping (SLAM) have been recently proposed [10].
it can create revolutionary applications of AUVs in subse@jotable examples of work where the sensor input is used
inspection and maintenance. The shift from simple inertigbr structure-referenced navigation are [11] and [12], levhi
navigation to sensor-referenced and model-based cont{eB] and [14] focus on the task of pipeline tracking, with
is prompting the development of new techniques. Provelitle regards to the nonlinearity of the control problem.
robustness and steady performance in the face of often noisywhile almost all techniques developed previously are
data is a requirement for assuring safe operation of thes@sed on the reconstruction of the relative position of the
vehicles, often very expensive. vehicle in its environment, this paper focuses on an image-
The main challenging problem when dealing with AUVbased visual servoing (IBVS). The advantage of IBVS
is inherently linked to the nonlinear dynamics of the systerschemes over position-based visual servoing (PBVS) relies
and highly coupled in 6 d.o.f. The interaction with a densen the fact that the relative position of the robot with
medium (water) has measurable effects due to friction anédspect to its environment is not required and only 2D
dynamic surface pressure, bringing in the terms of addefhage features are needed. Hence, IBVS techniques are
mass and damping. There are several formulations of thgually more suitable for real-time algorithms since they
dynamics of an underwater vehicle taking all these effectsxploit geometrical properties of the imaging systems and
into consideration, notably by Fossen [1], Baileyal. [2] their relations to the environment/robot. The image fesstur
and Leonard [3], each of them with different merits anctonsidered are the bi-normalisediiBker coordinates [15]
certain considerations. The latter reference, based on tbethe pipeline borders. The control design is split into two
change of momentum expression, provides good insight infsarts: an inner-loop controller to stabilise the velositief
the energy of the system. the vehicle around a desired set point and an outer-loop to
There is a vast array of designs and control system archierive the velocity desired set point from image features.
tectures for AUVs, well summarised by Yuh in [4]. Typically, The paper is organized as follows: Section Il presents
AUVs carry inertial sensors to estimate accelerations. The developed dynamical system modelling an AUV. Section
estimation, inherently burdened by drift error, is imprdve Il describes the chosen control problem along with the
_ o visual features considered. Section IV derives the inoep
 13S UNS-CNRS, Sophia Antipolis, France controller and analyses the stability of the system. Seadtfio
ISIR UPMC-CNRS, Paris, France . : . . .
t Cybernetix SA, Technde de Clateau-Gombert, 306 rue Albert describe the velocity desired set point from image features
Einstein, Marseille, France Section V-B analyses the stability of the full system. Smtti



VI applies the control strategy to a realistic model of an According to [3] and [17], the dynamics of the system can
underwater vehicle and exhibits some simulation resulie. T be expressed as follows:
final section provides a short conclusion and an indication

of future works. =R 2)
bp = RV )

Il. SYSTEM MODELING . .
P=PxQ+ (mg—Fg)R" es+ Fp + F¢ 4)

The following conventions of the reference frames are -
used: A = {e¢, g, es} is the inertial reference frame and 1= xQ+ P xV +mgrg x R e3 +Tp +Tc (5)
B = {e}, €5, e} represents the body-fixed frame. The posi- The two first lines represent the kinematics of the system
tion of the body-fixed frame it is the center of buoyancy \while the other two lines describe the dynamics of the
(CB) and denoted; < A. The center of gravity (CG) is vehicle. The termimg— F)R” es is the contribution of both
denotedb; € A andrg € B (see Fig. 1). The orientation gravitational and buoyancy forces. The cross tenmv¢ x
of B with respect toA is denotedR € SO(3),8 — A, RT¢; expresses the gravitational moment with respect to the
an element of the special orthogonal group. The remainingnter of buoyancy. In any submerged vehicle the center of
state variables of the system are the velocities: lifé@nd  mass lies under the center of buoyancy, it is straightforward
angular2, both expressed if8. Another important reference to verify that gravitational moment can be expressed as
frame is bound to the camera&: = {ef,e5,e5} which is  gies x RTes, wherel is the distance between CB and
displaced from the origin o8 by a vectorr¢, keeping its  CG, along the body-reference directief. This cross term
base vectors parallel to those Bf Let {e1,e2,e3} denote plays an important role in the stabilization of the roll and

the canonical basis dt*. Define: surge pitch angles of the vehicle. The expansionfi V in Eq.
v = P{ﬂ —[uvwpgq T}T — iz;gl%f‘é (5), shows that the termiMV) x V' should not be ignored
| B due the added mass of the AUVs [3]. The teriis and
Commonly used parameters of a rigid body are the totat;, represent the damping terms due to fluid pressure and
massm and the moment of inertia tensds. viscous drag. For underwater vehicles maneuvering at low
When characterised at an arbitrary point, for instai@@ speed, the damping is given by [1, p.74]:
(CB # CG@), the kinetic energy of the system is given'by T ]
[Fp Tp|" = —B(v)v, with B(v) = Bi+ B,(v) (6)
Ern — EVT Milzxs —mrex| EVTM y
RB =79 mrax Iy 2 RB where B, is a constant diagonal positive matrix aiq rep-
wherer( is the position of the center of gravity (CG) in theresents a nonlinear damping matrix here modeledas-
body-fixed frame with the origin af'B. diag(dy|ul, dv|v], dw|wl, dp|p|, dglql, dr|7]) with dy > 0.
According to Kirchhoff and Lamb theory [16], the kinetic We assume hereafter and w.l.0.g that:
energy of the Ilqlwd surrounillng t?\;l?oj(\jiylgs given by [3]: Fo(V) = —By(V)V, Tp(Q)=—-Bo(Q)Q (7)
Es= §VTMAV = §VT [M% M%} v where By and B are two diagonal positive matrices.

Finally, Fo, Tc € R? represent the control inputs of the

¥yste m.

whereM 4 is known as the added mass matrix. Consequent!
the total of the kinetic energy of the body in its medium is:

1
Er = Erp+ E4 = §UT]\/[TV (1)

[ M o MP [mIzs+My —mrgx+My2
where My = {]\4%1 I | 7 [ mrax+M3 I+ M22

All vehicles with three mutually perpendicular axes of
symmetry (em i.e. ellipsoid, box-shaped, ...) approxima-
tively have a diagonal form for the added mass maiix.

In practice, the diagonal terms 8f 4 are often significantly A
larger that the other terms, and therefore the maiiy

can be approximated by a diagonal matrix [1]. Consequently,
M%l = fM%Q =D :=mrgx.

Recalling the total kinetic energy of the body-liquid sys-
tem (1), one can derive the translation&l)(and rotational
momentumsI{) as follows [3]:

OET

P=-——=MV+D"Q
65“/ Fig. 1. Reference frames relationships
Er
N=——=1I0+ DV
0 *

IIl. VISUAL SERVO CONTROL PROBLEM
0 —wv3 w2

1The notationvy = {% 0 731} is used to abbreviate the skew-  This section describes the control problem considered
—v2 U1 . . .
symmetric matrix multiplicative representation of vector prod to perform autonomous pipeline tracking for fully-actuhte



AUV using visual servo control. The visual features con- 1

. . . . Q = —Th.

sidered are the images of the pipeline borders assumed to 21 |H;| ™
=

be.pafa”e'. in the horizontal p!ang of Fhe inertial framepTh with | H;| the norm of the closest point on lingi = {1,2})
unit direction vector of the pipeline is denotede A in T S
andr, = (I3 —zz') is a projection onto the tangent space

e T .
the inertial frame and/ = I"u € C in the camera frame. spheres? of a pointz € S2. Given that the termH,|
We assume the image features remain in the camera field.of : . :
. . . IS unknown it follows thatQ is also unknown. In practice,
view throughout the motion, a reasonable assumption given . . .
. onhe can use different clues like depth gauge readings or
the nature of the manoeuvre considered.

L : . camera autofocus information to estimate the upper-bound
A position-like and yaw related orientation error terms are L : -
. . : . and lower-bound of its eigenvalues that will be exploited in
derived from the visual features. The first one is based on th . . )
. ) : e control design. It is of interest to study the structural
bi-normalised Ricker coordinates of the observed paralle . : o
X . . ; . roperties of Eq. (10). The time derivative of the storage
lines and is used to align the camera at a desired height wi Dnction L[5, |2 is:
2191 :

respect to the pipeline. The second is based on the alignment

i i inali iracti i 1d
of the forward vel_ocny with the pipeline dlrectlon..l_ Given 25,2 = =5TQ(Ve x U).
that the observed lines are known to be parallel, theickdr ) 2dt _
coordinategh;, U) € C, i = {1,2} can be measured directly Since theé matrix > 0, choosingVe x U = 4, acts to
from the image features [17]: decreased;|?. Analogously, in order to stabiliz& about
- Yl x 12 - i x U - W2 X U - hy % T e1, consider the following st(;rage positive function
Tl x gl XUl XU T b x ho Ly =ky(1—U"e1), ky >0, (12)
whose time-derivative satisfies

wherey} andy? € C are two specific points on the line= . T T
{1,2}. The direction of the pipeliné/ € C is specified up Ly =ky(QxU)"er =k Q" (U x 1) 13)

to a sign that should be fixed by the operator. The proposd@ give the control insight, assume that the first two compo-
visual servo scheme is based on centroid vectors designeents of(2 are equal to zero and choo8g = r as

from the image features (8) as follows: Qs = kyUs, ky > 0,
q=hi+hy . .
: " . . One can ensure thdt, is decreasing
The visual position error with respect to the set of the linea . )
features can then be defined as: Ly = —kykuUs.

Since V., and Q3 cannot be chosen as control input, the
. approach taken in this paper is split into two parts. The
WheTe ¢ 1S the value of theq yector _for a reference first part termed inner-loop controller allows stabilipati

configuration of the features. It is considered as constagt, \alocities to a desired set point and the second one

Idn A. .Ther%(?ri, ihe g(zjyna*m_;_cs of Ili etﬂuwallenfct to ftthhe termed outer-loop controller, is specifically designednfro
ynamics oltz: ¢- = —2i>xq . To reguiate the velocily ot the image feature to define the desired set point.
vehicle in the direction of the pipeline, a reference veioai

is specified. The yaw related-orientation error can be define IV. INNER-LOOP CONTROL DESIGN

by specifyinge? as the “reference forward direction” for the  sjnce the external torque due to gravity and buoyancy

vehicle. Let definel, as the second component &f one  ensures a pendulum-like movement aroufidwe consider

can define the yaw related orientation error iyes. here the objective of stabilizing the velocitiét, Q) at the
Finally, it is worth noting that the external torque duereference(w,Q,.) with Q. = Qj,e3, defined by the outer-

to gravity and buoyancy in a bottom-heavy vehicle (CGoop controller. Let us define the velocity error variables
is below CB) ensures a pendulum-like movement around VeV_V. §—0-0 (14)

the gravitational directiore§. Moreover, if the damping is
included, the system looses rotational kinetic energy anthen, the control objective is equivalent to the stabilcrat
naturally comes back to equilibrium set point, ensuring thadf (V', ) to zero. Using Egs. (4), (5), and (14), and the fact
R"es converges tees and the first two components 61 that D), = DQ, = 0, the velocity error system can be
(1 = p,Q = ¢) converge to zero as long as the externaivritten as
torque due to gravity and buoyancy is not compensated. MV — DO = (MV — DQ) y Q4 (MV — D) 2,

According to [17], the time derivative @f; defined by Eq.
(9) can be expressed as follows:

b =—-Qx8 —Q(Ve x U), (10)

where Vi is the velocity of the camera expressed in the

body-fixed framel3 and is given by with the new variables
Vo=V - Q x rc

o . y - . _ Foi= MV, 4+ (MV,)«Q,
The matrix Q is symmetric positive definite matrix and is . .
defined by Ty := —IQp =DV +(IQ + DV, ) Qp + (M V) Vy

h=q—¢" 9

+ Fr 4 (mg—Fp)RTes + Fp(V) + Fo
[94DV=(IQ + DV)yQ + (MV — DQ) V (15)

+ (I + DV)x Q4+ (MV — DQ) Vs

+mglesxRTes3 +Tr + Tp(Q) + Te



For control design purposes, let us introduce some defimine deduces the convergence &f.; and, thus,V and €
tions of saturation functions to zero. Then, by application of Barbalat's lemma again one

oy () := min(|z|, x)sign(z), Vx € R (16) deduces the convergence Bfand Q) to zero. Finally, from
T : the last equation in (15) one deduces the convergence of
sat (z) = [0y, (#1); s (w2), 0 (23)] Ve € RP - (17) e3 x RTes to zero which implies thaf? " e; converges to
with a constant positive vectah = [x1,x2,xs]. The first eithere; or —e;. The proof of local exponential stability of
control result of this paper is stated next. the equilibrium(V,Q7RTe3)~: (0,0,e3) and the proof of
instability of the equilibrium(V,Q, R"e3) = (0,0, —e3) are
Proposition 1 Let Ky, Ko, Ay, Ag denote some positive based on the lineazired systems which are not difficult but
diagonal matrices and apply the control law are omitted here due to space limitation. ]
Fo = — SatAV(Kvﬁ),(MV)XQTJrM@XVT) Note that in the calculation of,.;, we have developed
— Fy — (mg — Fp)R es — Fp(V;) a string of mathematical manipulations so as to obtain the
" " (18) control law (18) in a simple form which does not contain

Tc = —sak, (Kaf) — (12) < Q-+ (DQ) < Vi many terms depending of. The main reason is that
— T, —Tp() in practice the measurement of the vehicle’s translational
to the error systengl5). Assume that;, Q, and their time- velocity is more difficult to obtain and is less precise than
derivative are bounded. Then that of the angular velocity. Note also that the saturation

terms in the control law (18) are useful to account for the

1) The error state(V, 2, R"e3) converges tq0, 0, +e3) constraints of the actuators

for all initial conditions.

2) The equilibrium (V,Q,RTes) = (0,0,e3) is . o
(V,9Q,RTes) = (0,0, —e3) is unstable. reference velocitied/. and €2, are prerequisite to compute

the feedback controF- and T¢. In the next section, we
Proof: Consider the following Lyapunov candidatewill show how this fact influences the visual servoing cdntro
function design.
Loyl = 1fV[7TM W + mgl(1—elRes)
vel = 3 T 9 3 3 V. OUTER-LOOP CONTROLLER VISUAL SERVO CONTROL

(19) DESIGN

- %VTMW%QTIQAN/TDQ+mgl(1fe3TRTe3)
with the positive-definite matri¥/; defined in Eq. (1). The
time-derivative ofL,.; satisfies

The control design is based directly on the quantities
estimated by the visual sensor. The control objective ctansis
_ N 5 T N in stabilizing the visual error terny, about zero, the vector
Lo =VI(MV—-DQ)+QT (IQ+DV)—mgiQTes x RTes U aboute;, andVTU about a the reference value
~ N T = ~ In view of Egs. (10), (4), and (5), the system of interest
_ T - T - T T
_V.(MV D)+ (IQ+DV) —mglfles < Kes has a cascaded structure. This may lead one to define the
Then, using system (15) and the propgrtlé@r =0and reference velocitie¥, and(, of the inner-loop as functions
D(a x b) = (Da)xb— (Db)xa, Va,b € R, one has: of §, and U respectively to stabiliz¢V, Q) about(V;.,Q,.).
VI(MV — DQ)Q+ QT (MV — DQ), .V =0, This strategy requires the explicit knowledge of the time-
derivative ofV,. which in turn implies that the time-derivative
and the control law (18) one deduces . S :
. 0 .’ of §; must be known. Since the matri@ is unknown in
Loer =V (Fo + Fr+ (mg = Fp) R es + Fp(V) (10), we introduce a new variablig satisfying the following
+ (MV — DQ)x Q) dynamics:
+ QT (Te + Ty + Tp(Q) . B
n (I€2+D\7)XQT+(M\7 B Dﬁ)xvr) 0o = —Q X 0o — k162 + koo, (52(0) — (51(0), ]431,2 >0 (20)
= VT(Fc + F, + (mg — Fg)RTes + Fp(V) Note thatd, and it§ time-derivative), are known. Analo-
(MU =Dy Oy = M(Sx Vi) + D(S5 20)) gously tod; (9), d, is also orthogonal td/.
+ar <TC + Ty + Tp(Q) + (1) x Q2 — (D) vr)
= —VTsan,, (K.V) — QT sat, (Kaf)
+VT(Fp(V4Vi) = Fp(Vi))+QT (Tp(Q4Q.) - Tp(24))
< —VTsa,, (K, V) — QT sat, (KoQ) Proof: The_ time-derivative of the_ fgllowing Lyapunov
where the last inequality is obtained using the following-andidate function’ := 1,/2(6; U)* satisfies
property:z(|z+yl(z+y)—[yly) = 0, Vo,y € R. SinceLocr = (57U ) (67 (2 x U) + UT(—Q x 85 — k10 + kdy))
is negative semi-definite, the velocity errdrsand 2 and, B (5TUY — — 2k
thus, the control variablegy and Ty are bounded. From  — — 10 U)" = =2k

here, one easily verifies the uniform continuityzb]‘el viathe Thus,V is non-increasing and remains null for all time since
boundedness of,.;. By application of Barbalat's lemma, V(0) = 0. This concludes the proof. [ ]

Lemma 2 The vectord,, solution to systen20), is orthog-
onal to U for all time t.



A. Definitions of reference velocities Lemma 3 Consider the LTV syste(26). If @ is uniformly
The next step consists in defining the reference velocitid®®unded and positive definite, and if

V, and(,.. The following definitions of/, and(},. essentially k3 < min [ A (Amax — Amin)? 27)
follow the insights given in [17] with few modifications. koks e A min
Define the reference translational velocity for the camerahere),,,.x and A,,;, are the upper-bound and lower-bound
Veor as of the eigenvalues of Q, then the equilibriu@y, d2) =
Ver = ksU X 62 + U, (21) (0, 0) is exponentially stable.

with ks some positive gain. Intuitively, iV = V¢, and Proof: Introduce positive constants andp, satisfying
Q= 0.0.r1.e hasV'U = a. j’his justifies the termuU in pipe > 1, (28)
the definition (21) ofV,.. Using Lemma 2 and Eq. (21) one . . . il _I

verifies that which serve to build a matriP := _1[;’:;’ pﬂziﬂ (con-

o 2c stant, symmetric, positive definite) and matiw (¢) :=
Ver x U i= —ks(Ux)"02 = —ks02 A()TP + PA(t) with A(t) defined in (26).

The reference angular velocify, is defined based on the  To prove the exponential stability of the LTV system (26),
heading control objective. In order to stabilizeaboute;, it suffices to show the existence pf andp, such that

;encdal(lzgggstelr.ne derivative (13) of the storage function (12) e > 0, Vi, W(t) < —elo (29)
' o Note that condition (28) is necessary fBrto be positive
Q, = kUU2€3, ky > 0, ( ) .. i
definite. One verifies that
one obtains W — —2k2l3x3 —p1ksQ+(k1+kap2)Isxs
S 1.0T N 2 | —p1ks Q+(k1+kap2)T3xs 2ks Q—2p2k1lsxs
| _ ﬁy_f ky Q0 (U X eq) kkaQQ. (23) S T . )
Finally, in view of Eq. (11) we define the reference™0r all & = [#1 @] with 21,25 € R®, one has
i i 1
translational velocityV,. as §XTWX = — kolz1|* — 23 (pok1 — ksQ) o
Vi =Veor+ Q. xXre. 24
N haté. and O kc o Tcé./ 49 ( | ) + (k1 + paka)at w2 — prksa] Qua  (30)
kr?ct)Svrt? atoz an are known, hences, andsi, are aiso | o A1, A2, A3(> 0) denote the eigenvalues @f. One has

Amin < A < Amax- Since @ is symmetric, there exists a
B. Stability analysis matrix Rg € SO(3) such thatQ = R, AqRq, with Ag =

Since the reference velocities are specified, i.e. Egs, (Z?iao?(/\l’)‘fQ’)‘?’)EDenOtin%xi = Rqu; with ¢ = 1,2, one
(22), (21), one can apply the control law (18) proposed i educes from £q. (3??) that

Section IV in order to stabilizéV, ©2) about(V;., €2,.). Using
the fact thatl’, Q2 converge to zero and from (12) and (23) it —
is straightforward to verify that/, converges to zero. Since . o

RTes converges t@s along withUs = 0 one can verify that — (k1 + p2ko —_p1ka)\i)m1,ix2,?)_ (31)

U converges te;. It remains to show the convergence ofWWe have to prove that there exists some positive constant
5, andd, to zero. Recalling Egs. (10) and (20), one verifie$Uch thatX " WX < —e| X|?. From here, the proof proceeds

1
5XTWX =— Z(kﬂ:ii + (pok1 — kcs)\z')i”g,qx

that: by considering two possible cases. Case 1 :Consider
‘?1 = —ks Q02 + €5, (25) the case wheré ., < 7““‘“;‘[3:““)2 . Eq. (27) implies the
02 = kody — k162 + €5, existence of a constam, > 0 such that
ki

with €5, :== —Qy 51 —Q((V+Q xrc) xU), €5, = :QX(SQ Faks
The termse;, ande;, converge to zero whew, {2, and From Eqg. (31), usian Cauchy-Schwartz inequality one en-
Uy converge to zero. Therefore, they can be treated @gres thatW < —clgy if for all i € {1,2,3}

singular perturbations of system (25). As a consequence,
by application of singular perturbation theory, in order to
prove thatd; andd, converge to zero, it suffices to prove & Fi(p1) := (k§A7)pi — 2ksXi(k1 + pak2)p1

the exponential stability of the equilibriurf; , 45) = (0, 0) + (k1 + p2k2)?—4 (ko =2 ) (pok1—kshi— =) <0 (33)
of the zero dynamics of system (25), correspondingsfo= 2 2
€5, = 0. This zero dynamics is a linear time-varying (LTV)
system

= Amax + Cx . (32)

(k1 + paka — p1ksAi)® < 4 (k’z - %) (p2k1 — kshi — %)

Chooseps = ki /ke and0 < & < min(2ks, 2kscy). Then,

it is easy to verify from this choice and Eq. (32) that the
determinant ofF;(p,) is positive. Thus, inequality (33) is
d [61} _ [ 0 —ksQ } {61] (26) satisfied for alli € {1,2,3} if

dt 192 kalsxs —kulsxa] |82 maxp; (\) < py < minpf (A

pr(N) = 21 + V4 (k2 —/2) (k}/ka — kshi —¢/2)

2Due to the space limitation their expressions are not givethénpaper. ksAi ksAi (34)

A(t)




It is straightforward to verify that

2k k 1

lim (minpf()\i)) > 2 >2 = —

=0 K k1 — \/ k‘% - kaé)\max k1 p2
2ko

lim [ maxp; (\;) )] <

5%0( X P ( )) Tk + /K2 — koksAmax

Thus, by continuity there exists some positive threshgld
close enough to zero and smaller tham(2k,, 2kscy) such
that for alle < &, one has

1
1 . . —_—
H}\llnp1 (M) > max <n&z?xp1 (i), 2> ,

which implies the existence of some constant> 0 such
that (28) and (34) are satisfied. This concludes the proof

min )

> Case 2 :Consider the case wherg, . > (A"‘“i
Assume that one can choose someand p, such that
kal > kéAmax (35)

>\max + )\min
k1 + pake > prhs ————— (36)

Then, from Eq. (31) and the fact that;| = |z;|, with i =
1,2, one deduces

1

XWX < — ol |* = ks Amax)|z2|?

+ (k1 4 p2ka — prksAmin)| 1] 22|

(p2k1 —

From here, using Cauchy-Schwartz inequality one ensures

that W < _€IG><6 if
&€
(kl +p2k32 —p1 k5>\min)2 <4 (k2 - 5) (p?kl _k(S)\max -
< (ké)‘?nm)p% - 2]f&)‘min(kl + p2k2)p1
2_ _£ _ _£
+ (k1 +p2k2)? =4 (k2= ) (p2ks —hsAmax— ) <O

2)

@7

There exists a positive constantlose enough to zero such

that (37) is satisfied if we have the following strict inedtyal
Gi(p1) == (K3A; — 2ks Amin (k1 + p2ka)p1

mm)

+ (kl +p2]€2) —4k2 (pgkl—kg/\max) <0 (38)

It is easy to verify from Eq. (35) that the determinant of :

G1(p1) is positive. Thus, inequality (38) is satisfied if

Py <pi<pi
L kit poke | VAke (p2k1 — KAmax)  (39)
L k5)\min ké/\min
Combining Egs. (28) and (36) one obtains
2(ky + paka)
—<p < 40
P2 P = k6(>\max + )\min) ( )

One easily verifies from Eq. (35) that
1 k1 2(k1 + p2k2)
p2 ké/\max ké()\max + )\min)
Thus, the existence of some > 0, such that Egs. (39) and
(40) are satisfied, is ensured if
2(k1 + p2k2)
ké(Amax + Amin)

& (k1 +poks)? (

<pf

>p;

>\Inax -

Amin ) 2
SRR SR ) <4k k1 — ks Amax
>\max + Amin) 2(p2 ! g )

>\m x_>\min 2
< Ga(p2) = (AaT) k3p3
max 1min

Amax - )\min 2
—2k1ko [2—( —————
. ( (Amax‘f')\min) )pQ

A
k}2 max
N ! <>\max + >\min

— >\min

2
) + 452k6>\max <0

The determinant of5(p2) is ensured to be positive from the
condition (27). This in turn ensures the existence of some
p2 > 0 such thatGz(p2) < 0. We have proved the existence
of some positive constants, and p, satisfying conditions
(28), (35), and (36) such that inequality (29) holds for some
positive constant. This concludes the proof. ]

VI. SIMULATION RESULTS

The controller has been implemented and tested together
with the dynamics of a realistic AUV. The simulated vehicle
belongs to the family of fully-actuated underwater vetscle
which possess full control over all components of the cdntro

" forces and torques. The physical parameters of the vehicle

are shown in Table 1. Two border lines of the tracked pipe
stay in a horizontal plane (wittf=0) in the inertial frame.
The direction of the lines1 is parallel to theX-axis of the
inertial frame (i.e.ju=e;), where theirY-coord arey,;=1m
and y; > =3m. The initial position of the vehicle has been
chosen as;(0)=[0, —5, 7|7, 5m aside and7m above
the tracked pipe. The initial orientation of the vehicleris
rotated from vectom. The initial roll and pitch angles of
the vehicle are null. The reference values, the controlgyain
and parameters are given in lower part of Table 2.

In order to show the robustness of the method to model
errors, a different set of parameters are used in the coetyoll
reflecting usually approximative knowledge of the real AUV
dynamics. They are given in the upper part of Table 2
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Fig. 4. Components of vector U

M%l =10°diag(0.2,4.5,4.5)kg
MZ2=103diag(1.5, 20, 15)kg.m?>
By =103diag(0.2,1.0,1.0) 2
Bg=10%diag(0.5,1.2,1.0) %2

m = 1000kg
volume = 0.97 m3
1=0.15m, rc =[1,0,0]7

500 —15 25
Io=|—15 3000 1 |kg.m? Ay = [1000, 1000, 1000]T N
25 1 3000 Agq = [200, 3000, 6000]7 N

Tab. 1: Physical parameters of the simulated vehicle

The simulation results reported in Fig. 2 show the stabi-
lization of the visual errof, to zero, as well as the regulation
of the orientation the desired values. The forwarding vigjoc
converges rapidly to the given value 0.5m/s. The
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Fig. 2. Numerical results of the simulation. 1st column: errariables ofé; andd2; 2nd column: body-referenced velocitiés and €2; 3rd column:
control forces and torques
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