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Abstract— This paper addresses the choice of the control
horizon in a Nonlinear Model Predictive Control (NMPC) strat-
egy for nonholonomic vehicles. The latter can be modeled by
chained systems. We establish a relation between the degree of
nonholonomy and the minimum length of the control horizon so
as to make the full-state control possible. A necessary condition
on the control horizon of NMPC is given and theoretically
proved whatever the dimension of the chained system consid-
ered. The theoretical results are illustrated through simulations
on a (2,5) chained system, describing a car-like vehicle with
one trailer. Difficult motion objectives that require a lateral
displacement are considered, as well as robustness to modeling
errors.

I. INTRODUCTION

The model predictive control has become the mature

strategy that we know today thanks to many theoretical and

practical developments during the last decades [1]. Initially

developed for slow systems, it is now currently used for

fast nonlinear systems like mobile robots, PVTOL (planar

vertical take off and landing) aircrafts,... In all the appli-

cations of an NMPC strategy, the choice of the prediction

horizon and the control horizon still remains a difficulty.

The prediction horizon, noted Np, is chosen in order to best

satisfy a compromise between the stability of the closed-loop

(long horizon) and the computational time required (short

horizon). The control horizon, noted Nc, is often chosen

equal to Np. Although the role of the control horizon is

relayed to the second plan, it can be decisive in some

applications such as the control of mobile robots. The control

of nonholonomic vehicles (unicycle, car, car-like vehicle with

n trailers, etc.) has been largely studied. Albeit intrinsically

controllable, a nonholonomic system has a linearized model

which loses its controllability property at any fixed point.

Furthermore Brockett [2] showed that no continuous time-

invariant feedback control could asymptotically stabilize this

class of systems. Time-varying [3], [4], [5], discontinuous

[6], hybrid [7] feedbacks have been reported. NMPC im-

plicitly provides a discontinuous feedback thereby bypassing

Brockett’s condition. If NMPC is often used to the rather

simple problem of the trajectory tracking, only a limited

number of studies addresses the difficult problem of the

full-state (position and orientation) control [8], [9], [10].

The stability of the closed-loop system is ensured either

under assumptions of detectability and boundedness of the

cost function [10] or by using time-varying weighted matrix

[8]. In all the aforementioned papers, the control horizon is

chosen equal to Np, leading to a quite long computational

time.
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In this paper, the choice of the control horizon is addressed

for the control of chained systems which can model many

common nonholonomic systems. We establish a relation

between the degree of nonholonomy and the minimum length

of the control horizon in order to perform the full-state

control of the chained system. A necessary condition on

the control horizon of NMPC is then given and theoreti-

cally proved whatever the dimension of the chained system

considered. From a practical point of view, an appropriate

choice of control horizon makes it possible to reduce the

computational load requirement. A real time implementation

on fast robotic systems can consequently be considered.

The paper is organized as follows: section II briefly recalls

the NMPC concept, nonholonomic vehicles and chained

systems. The main result is stated in section III: how can we

determine the minimal control horizon Nc that will ensure the

desired full-state to be reached? A necessary condition on Nc

is given for the state feedback control of chained systems.

In section IV, the NMPC for chained system is described in

detail. In section V, simulations on a car-like vehicle with

one trailer modeled by a (2,5) chained system illustrate the

decisive role of the control horizon. Conclusions are given

in the last section.

II. BACKGROUND
A. NMPC

The NMPC strategy is based on the receding horizon

principle and is formulated as solving on-line a nonlinear

optimization problem, see [1] for a survey. From a practical

point of view, the main advantage of NMPC is its ability to

take into account constraints. Constraints on states, inputs or

outputs can easily and explicitly be added to the optimization

problem. The basic concepts of NMPC are the explicit use

of a model to predict the process behavior over a finite

prediction horizon Np and the minimization of a cost function

J with respect to a sequence of Nc controls. The cost function

J, difference between the control task (the reference) and the

predicted behavior is defined by:

J(x,u) = F(x(t +Np)) +
∫ t+Np

t
L(x(τ),u(τ),yre f (τ))dτ (1)

where x is the model state, u is the control input, L is a

quadratic function and F(x(t +Np)) is a terminal constraint

added to ensure the stability of the closed-loop system. The

mathematical formulation of an NMPC problem is usually

written as follows:{
min

ũ
J(x,u)

subject to ẋ = f (x,u).
(2)



The equation ẋ = f (x,u) represents the nonlinear dynamic

model of the process to be controlled. The cost function J

is minimized over the prediction horizon Np with respect

to the sequence of controls ũ. Only the first element of the

computed optimal sequence ũ is really applied to the process.

At the next sampling time, the measurements are updated,

the prediction horizon moves one step forward and the whole

procedure is repeated.

B. Modeling of nonholonomic vehicles

This section recalls some properties of nonholonomic ve-

hicles. For notions on Lie algebras and differential geometry,

see [11], [12].

Wheeled robots are characterized by non completely inte-

grable velocity constraints resulting from the rolling without

slipping assumption < ai(z), ż>= 0, i= 1, · · · ,q, where z∈N

is the configuration of the vehicle in a n differentiable man-

ifold N, and the ai’s are assumed smooth and independent

[13]. Nonholonomic vehicles can hence be modeled by a

kinematic driftless control system:

ż =
m

∑
i=1

uiZi(z), z(0) = z0 (3)

where m = n−q < n, z0 is the initial configuration, the ui’s

denote control variables and the Zi’s are smooth independent

vector fields over N. The solution at time t of (3) is denoted:

z(t) = e
t

m

∑
i=1

uiZi

(z0). (4)

Let Z (N) be the Lie algebra of all vector fields on N and

g = L (Z1, · · · ,Zm) the Lie subalgebra of Z (N) generated

by the vector fields Z1, · · · ,Zm. We assume that system (3)

satisfies the Lie algebra rank condition on N:

dim(span{Z(z) : X ∈ L (Z1, · · · ,Zm)}) = n. (5)

Under assumption (5), Chow’s theorem implies that system

(3) is controllable [12].

In order to classify nonholonomic systems, we recall the

concept of nonholonomic degree defined in [14].

Definition 1 Let g1 = span{Z1, · · · ,Zm} and recursively

gk = gk−1 +[g1,gk−1], k ≥ 2

where [g1,gk−1] = span{[X ,Y ] : X ∈ g1,Y ∈ gk−1}. Assuming

the system is regular, we define the degree of nonholonomy

as p = min{i ∈ N : gi = g}.

The degree of nonholonomy is an image of the difficulty

in controlling the system. Since the longer the Lie bracket

is, the more difficult it is to move in its direction, the

difficulty is the greatest when moving in the direction of

the vector fields that belong to g\gp−1. This degree is an

intrinsic property of the system, i.e., it does not depend on

the coordinate system the control is written in.

Concerning the kinematic modeling of a wide class of

wheeled robots, such as a unicycle with n− 3 trailers, [15]

gives a feedback change of coordinates (z,u1,u2) 7→ (x,v,w)
converting system (3) in natural coordinates (i.e., defined on

SE(2)×M with M denoting a (n−3)-dimensional manifold)

into a (2,n) chained form, which is a particular case of

system (3).

Definition 2 A (2,n) chained system is a kinematic system

in the form (3) with two control inputs and the following

vector fields:




ẋ = X1(x)v+X2w, x = (x1, · · · ,xn) ∈ R
n

X1 = (1,0,x2, · · · ,xn−1)
X2 = (0,1,0, · · · ,0)

(6)

The degree of nonholonomy of system (6) is p = n−1.

III. PROBLEM STATEMENT AND MAIN RESULT

Problem 1 Let Nc denote the control horizon of a predictive

control law and (v,w) ∈ R
2, the control input of system (6).

Consider a piecewise constant control family {vk,wk}k≤Nc

over Nc sampling periods Te. With notations of section II-B,

let:

s : ν̃ 7→ x f = eYNc ◦ · · · ◦ eY2 ◦ eY1 ◦ x0 (7)

where Yk(x) = Te(X1(x)vk +X2wk) and ν̃ = (ṽ, w̃) is the con-

trol sequence with ṽ = (v1, · · · ,vNc) and w̃ = (w1, · · · ,wNc).
What is the minimal control horizon Nc such that there exists

a control sequence ν̃ solving equation (7) for any desired

final configuration x f , i.e. such that s is surjective?

Solving Problem 1 is not always simple. Since the vector

fields of system (6) are left-invariant on the Lie group R
n,

then equation (7) can be expressed as a product of exponen-

tials, whose direct calculation is provided either using the

Campbell-Hausdorff formula or using the group operation

of the Lie group. For more generic systems in the form (3),

producting the exponentials using the Campbell-Hausdorff

formula will result in an infinite number of bracketings.

If possible, it is thus preferable to feedback nilpotentize

system (3) in order to avoid errors induced by the truncation

of brackets longer than a given order [16]. Note however

that feedback nilpotentization may induce singularities, thus

limitating reachable points for a given control horizon.

Proposition 1 Solving Problem 1 for any (2,n) chained sys-

tem (6) generically requires a control horizon Nc = p+1= n.

The detailed proof is given in Appendix.

Remark 1 Solving Problem 1 for unicycle or car-like vehi-

cles in natural coordinates, i.e., in the form (3) on respective

manifolds N = SE(2) and N = SE(2)× (−π
2
, π

2
) with vector

fields respectively given by:

Z1(z) = (cosθ ,sinθ ,0), Z2 = (0,0,1) (8a)

Z1(z) = (cosθ ,sinθ ,
tanφ

L
,0), Z2 = (0,0,0,1) (8b)

generically requires a control horizon Nc = p = n−1. Such

trajectories consist of two semi arcs of circle and three arcs

of clothoids, respectively.

The price to pay using a chained system (6) instead of

system in natural coordinates (3) with vector fields (8a) or

(8b) is linked to the nilpotence degree p of the chained

system, which increases the minimal control horizon length



needed to solve Problem 1. Indeed, the minimal control

horizon required to solve Problem 1 for the car is Nc = p= 3

in natural coordinates, versus Nc = p+1= 4 in chained form.

Let us discuss the case Nc = p, where s is surjective for

any motion along gp−1\gp−2, but is no longer surjective on

g\gp−1. This lack of solution is due to the nilpotentization,

which is illustrated hereinafter by the significant car example,

and therefore should not be regarded as an intrinsic property,

but rather as a consequence of the choice of the coordinate

system the nonholonomic system is written in.

Example 1 Any translation along g\g2, corresponding to

a pure transversal motion (along X4 = [X1, [X1,X2]] =
(0, 0, 0, 1)), is clearly feasible by a car modeled by system

(3) with vector fields (8b) and Nc = p = 3, but requires

that the orientation reaches values forbidden by the nilpo-

tentization feedback [17] (namely θ =±π
2

). Basically, along

g\g2, the nilpotence degree p = 3 of the car in chained

form (6) results in a null translation. This motion is thus

impossible to achieve for the car in chained form with Nc = 3.

The same problem was reported in [18] using the nilpotent

approximation of the unicycle. Nevertheless, it should be

noted that any motion along g2\g1 (along X3 = [X1,X2] =
(0, 0, −1, 0)), i.e., a pure rotation around the location of

the rear wheels, can be achieved with Nc = 3, whatever the

coordinate system the car-like vehicle is written in.

Remark 2 Proposition 1 gives a sufficient and necessary

condition on Nc for the wide class of nonholonomic vehicles

modeled by the (2,n) chained form, so as to ensure the

existence of solutions to Problem 1 given arbitrary initial

and final configurations. In the scope of optimization-based

control, there are slight differences with the formulation of

Problem 1. Firstly, the goal in NMPC is not explicitly to

regulate to zero the error between the reference and the

model output configuration obtained by applying Nc control

steps, but rather to minimize a weighted sum of errors over

a prediction horizon Np ≥ Nc. Secondly, the handling of

constraints either on the control inputs and/or on the states

may reduce the set of solutions. Restrictions imposed using

an NMPC approach thus result in relaxing the sufficient and

necessary condition for solving the theoretical Problem 1

into a necessary condition, in practice, for solving the NMPC

optimization problem formulated in the next section.

IV. NMPC DESIGN FOR FULL-STATE CONTROL OF

CHAINED SYSTEMS

As for all predictive strategies, a reference trajectory, a

model of the dynamic process, a cost function and a solving

optimization method are necessary. In the sequel, the choice

of these four points is discussed according to the control

objective: the full-state control and stabilization of a chained

system.

First of all, to address robustness to modeling errors and

disturbances, the well-known Internal Model Control (IMC)

structure (see Fig. 1) has been chosen. The tracking of

the reference trajectory yre f by the process output yp is

equivalent to the tracking of the desired trajectory yd by

the model output ym. The signal error e(k) = yp(k)− ym(k)
includes modeling errors and measurement noises. The error

is assumed to be constant over the prediction horizon but

is updated at each new measurement. The control task is to

steer the process to the origin, consequently yre f is null.

yref +

_

_

+

u

ym

Process

Model

ɛ

yd yp

ɛ

_

+
Optimization
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Fig. 1. Control Structure

The model of prediction. The model has to predict the

process behavior over the prediction horizon.
{

ẋ(t) = X1(x(t))v(t)+X2w(t) , x(0) = x0

ym(k+ j | k) = x((k+ j)Te).
(9)

The variables x∈R
n, (v,w)∈R

2 and ym ∈R
n are respectively

the state, the input and the output of the model. The model

output is sampled at each Te = 1s and ym(k+ j|k) is the predicted

output at time k+ j from the current time k. The computed

input is kept constant over a sampling period: ∀ j ∈ [1;Np],

v(t) = v(k+ j−1 |k) for (k+ j−1)Te < t < (k+ j)Te,
w(t) = w(k+ j−1 |k) for (k+ j−1)Te < t < (k+ j)Te.

(10)

The model output ym(k) is initialized with the updated

measures of the process output y(k) providing an implicit

feedback.

The cost function. Due to the IMC structure and the sampled

measurements of the process, the mathematical formulation

of the cost function is written, in discrete-time, as:

J(x,u)=
k+Np

∑
j=k+1

[yd −ym](k+ j|k)
T Q( j)[yd−ym](k+ j|k)+F(x(k+Np))

(11)

where Q( j) is a symmetric positive definite matrix and

ym(k+ j | k) is given by (9).

The role of the time-varying matrix Q( j) consists in weight-

ing the tracking error at each iteration more and more over

the prediction horizon. It reinforces the role of the terminal

constraint. Giving a heavy weight at the end of Np, which

corresponds to the final objective, makes the NMPC problem

(2) tend to the theoretical Problem 1. The time variation of

the weighted matrix Q( j) is given by:

Q( j) = αQ( j−1), with α ≥ 1. (12)

The solving optimization method. A sequential quadratic

programming (SQP) is used (function fminunc from Matlab)

to solve the optimization problem (2) with (9)-(12). The

cost function J is minimized with respect to the control

sequence ũ = {u(k),u(k+1), ...,u(k+Nc), ...,u(k+Np−1)},

composed of Nc different controls. From u(k +Nc + 1) to

u(k+Np−1), the inputs are constant and equal to u(k+Nc).



The control horizon Nc plays a crucial role: it provides

a solution by proposing Nc different controls at time k

comparable to a manoeuvre. According to Proposition 1, the

control horizon will be chosen equal to or greater than the

degree of nonholonomy of the chained system: Nc ≥ p+1.

We have deliberately chosen a standard algorithm to show

that the efficiency of the NMPC for full-state control is due to

the control horizon and does not depend on the optimization

algorithm.

V. SIMULATIONS

We consider a (2,5) chained system, describing a car vehicle

with one trailer, defined by the following vector fields:

X1(x) = (1, 0, x2, x3, x4), X2 = (0, 1, 0, 0, 0). (13)

The degree of nonholonomy is given by p = n−1 = 4. All

the simulations are performed on the chained system. The

NMPC parameters are respectively set to Np = 10 and Nc = 5

according to Proposition 1. The time variation of Q( j) is

given by (12) with α = 5 and Q(1) = I.

We first illustrate the role of Nc as a necessary condition

for the state feedback of chained systems without constraints.

In the particular case where the initial state is (0,0,0,0,1)
and the desired one is (0,0,0,0,0), the final position is

not reached with Nc < 5. With Nc = 5, in accordance with

Proposition 1, the control strategy is able to determine a

control sequence such that the full-state converges to the

desired state (see Fig. 2(a) and 2(d)).

To better illustrate the effectiveness of the approach, a change

of coordinates has been applied on the graphical illustration

of the simulation results. Constraints handling is one of the

advantages of NMPC design. In simulation 2, the control

inputs and the state variables of the chained system are

respectively constrained to ±2 and ±4. We can notice that

the convergence is still obtained while the constraints are

satisfied (see Fig. 2(b) and 2(e)). From a different initial

state (0.2,−0.6,0.25,−0.3,0.5), the control strategy finds

a control sequence satisfying the same constraints and the

control task is always achieved (see Fig. 2(c) and 2(f)).

To test the robustness of the approach, the initialization of the

process is different from the model’s one (25% on the state

x5), the controls really applied to the process have got an

error of 5% on the computed value of v and w. With Nc = 5

and Np = 6, the states of the chained system converge to the

origin in spite of modeling errors (see Fig. 2(g) and 2(h)).

The control inputs satisfy the constraints ±2 (see Fig. 2(i)).

Remark 3 For all the presented simulations performed on

a PC intel Core 2 duo, 3.06 GHz under Matlab, the compu-

tational time required to solve the optimization problem was

about 2 seconds. This computational time is composed of the

Matlab function call, the differential equation resolution and

the optimization solving. The over-all computational time

can be greatly reduced by using a discrete-time model of the

mobile robot (simulations have already been performed and

required 50ms) and by using a more efficient minimization

algorithm. It is worth mentioning that the computational load

relative to the usual choice of Nc = Np is divided by 3

approximately by using the appropriate choice of Nc = p+1.

VI. CONCLUSION

From a theoretical point of view, we have established a

necessary condition on the length of the control horizon

whatever the dimension of the chained system. This neces-

sary condition provides a useful lower bound for the control

horizon to ensure the full-state control of chained systems.

From a practical point of view, the appropriate choice of the

control horizon makes it possible to minimize the computa-

tional load. On the other hand, the choice of the prediction

horizon still remains an open problem in an NMPC strategy.

Since Nc is often equal to Np, a useful information on the

minimum length of the prediction horizon can also be given.

However it is worth noting that the presence of constraints

on states or inputs will inevitably impact the lengths of the

horizons.
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APPENDIX

PROOF OF PROPOSITION 1

Proof: The proof consists in four steps. The first step

aims at reformulating the Problem 1 using the properties

of the (2,n) chained systems. The second and third steps

are devoted to the study of cases where s(ν̃) = eX (0), X ∈
g\g1 and s(ν̃) = eX (0), X ∈ g\gNc−2, that is motions in the

direction of vector fields of increasing length, and thus of

increasing difficulty. The last step concludes the proof.

1) First, we can make the Problem 1 more explicit for the

(2,n) chained system. The nilpotent algebra generated

by the vector fields of (6) underlies the following group

operation on the Lie group N = R
n:

xy = exp(Ay1)x+ y (A.14)

where A is the square matrix of dimension n which

nonzero entries are only ai+1,i = 1,∀i ≥ 2.

Since the vector fields of system (6) are left-invariant

with respect to the group operation given by (A.14), (7)

can be expressed as a product:

s : ν̃ 7→ x f = x0eY1(0)eY2(0) · · ·eYNc (0) (A.15)

with 0 denoting the identity element of N = R
n. As the

final configuration x f is any element of N, the initial

condition can be set to x0 = 0 without loss of generality.

Thus (A.15) becomes s : ν̃ 7→ x f = x(1)x(2) · · ·x(Nc),
where x( j) = eY j(0) is the solution of equation (6) for

the jth control input pair (v j,w j) and initial condition

0. Let Te = 1s so as not to burden notations, then using

direct integration of (6), we get:

x( j) =
(

v j, w j,
v jw j

2
, · · · ,

vn−2
j w j

(n−1)!

)
. (A.16)

Using the group operation (A.14) on R
n, the solution to

a succession of Nc iterations is thus given by:

s(ν̃) =
Nc

∏
j=1

x( j) =
Nc−1

∑
j=1

exp
(
A

Nc

∑
i= j+1

vi

)
x( j)+ x(Nc)
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Fig. 2. Different simulations of the (2,5) chained systems

Using (A.16) in the previous equation leads to:

s(ν̃) =




1 · · ·1 0 · · ·0
0 · · ·0 1 · · ·1

0n−2,Nc B(ν̃)


 ν̃ , (A.17)

with matrix B elements bi,Nc = vi
Nc
/(i+1)! and

bi, j =
i

∑
r=0

( Nc

∑
q= j+1

vq

)i−r

vr
j

(i− r)!(r+1)!
, ∀ j ≤ Nc −1. (A.18)

2) If s(ν̃) = eX (0), X ∈ g\g1, i.e. the shift’s two first com-

ponents are null while the others are not, (A.17) gives:

(s3, . . . ,sn)(ν̃) = B̄(ν̃)w̃, (A.19)

with, ∀i ≤ n−2,∀ j ≤ Nc −1, coefficients of B̄ given by:

b̄i, j =

(−1)i+1

[
(

Nc−1

∑
r=1

vr)
i −

i

∑
q=0

(
i+1

q

)
v

i−q
j (

j−1

∑
r=1

vr)
q

]

(i+1)!
.

(A.20)

Using (A.20), we get
Nc−1

∑
j=1

v j b̄i, j = 0, ∀i, and (A.19) gives:

(s3, . . . ,sn)(ν̃) = D(ν̃) λ , (A.21)

where D denotes the Nc − 2 first columns of B̄, and

λ = (λ1, . . . ,λNc−2) with λ j = w j − v jwNc−1/vNc−1.

3) We will now show that, with a control sequence of

length Nc, having s(ṽ) = eX (0) with X ∈ g\gNc−2 implies

that sNc(·) divides sNc+1(·), · · · , sn(·).



Let s(ṽ) = eX (0) with X ∈ g\gNc−2. We have si(·) = 0,

∀i ≤ Nc −1 and (A.21) can be decomposed as:




01,Nc−3

sNc

...

sn


(ν̃) =




C E

b̄Nc,1 RNc

...
...

b̄n,1 Rn


(ν̃) λ , (A.22)

where the matrix D is partitioned in blocks C, RNc+q

and E respectively denote (Nc − 3) column and raw

vectors and a (Nc−3)×(Nc−3) matrix. Using the Schur

complements for sNc+q(·), ∀q = 0, · · · ,n−Nc, we get:

sNc+q(·) = (b̄Nc+q,1 −RNc+qE−1C)λ1. (A.23)

With the block matrix FNc+q defined by:

FNc+q =

(
C E

b̄Nc+q,1 RNc+q

)
, (A.24)

the equation (A.23) leads to:

sNc+q =
detFNc+q

(−1)Nc−3 detE
λ1. (A.25)

The determinants in the latter equation are determined

using a LU decomposition with a unit triangular matrix L.

Let FNc+q = LNc+qUNc+q, then the diagonal matrix Unc+q

coefficients are given using (A.20):

Ui,i =





(−1)i+1

(i+1)!

( Nc−1

∑
j=i+1

v j

) i−1

∏
j=1

( i

∑
r= j

vr

)
, if i ≤ Nc −3

(−1)Nc−1

(Nc−1)! vNc−1

Nc−3

∏
j=1

(Nc−2

∑
r= j

vr

)
PNc,q, if i = Nc −2

(A.26)

with PNc,q given by:

PNc,q =
(−1)q(Nc−1)!
(Nc+q−1)! ∑

|I|=q

(
Nc+q−2

I1

)(
Nc+q−3−I1

I2

)

· · ·
(q+1−

Nc−3

∑
j=1

I j

INc−2

)
v

I1
1 · · ·v

INc−1

Nc−1 (A.27)

where the sum is done for multiindex I = (I1, · · · , INc−1)

such that |I| = q, i.e. for every I j such that
Nc−1

∑
j=1

I j = q.

Combining (A.26) and (A.27), we finally obtain:

detFNc+q =
(−1)

Nc(Nc−1)
2

−1
vNc−1

Nc−1

∏
i=1

i!

Nc−2

∏
i=2

[Nc−i

∏
j=1

( j+i−1

∑
r= j

vr

)]
PNc ,q.

(A.28)

In the same way, we obtain detE:

detE = (−1)
Nc(Nc−1)

2
+1

Nc−2

∏
i=1

i!

{
Nc−3

∏
i=2

[Nc−1−i

∏
j=2

( j+i−1

∑
r= j

vr

)]}

{
Nc−3

∑
i=0

[ i

∏
j=1

(
j

∑
r=1

vr)
Nc−3−i

∏
j=1

(−
j

∑
r=1

vNc−r)
]}

.

(A.29)

Using (A.28) and (A.29), (A.25) is simplified as:

sNc+q(·) =

(−1)Nc−1vNc−1

Nc−2

∏
i=2

[
(

i

∑
j=1

v j)(
i

∑
j=1

vNc− j)
]
PNc,qλ1

(Nc−1)!
Nc−3

∑
i=0

[ i

∏
j=1

(
j

∑
r=1

vr)
Nc−3−i

∏
j=1

(−
j

∑
r=1

vNc−r)
] .

(A.30)

As PNc,0 = 1, the equation (A.30) implies that

sNc+q(ṽ) = sNc(ṽ)PNc,q(ṽ), ∀q = 1, · · · ,(n−Nc). (A.31)

Consequently, s(ṽ)= eX (0) with X ∈ g\gNc−1 will involve

that s(ṽ)= 0. Hence, s is not surjective for Nc ≤ p= n−1.

4) For Nc = p+ 1 = n, s(ṽ) = eX (0) with X ∈ g\gp−1 will

have solutions provided that the numerator in (A.30) is

not null, that is if vNc−1 6= 0 and no sum of strictly less

than Nc − 2 successive controls vi is null. As a result, s

is surjective for Nc = p+1.
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