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Time-varying correlations in oil, gas and CO2

prices: an application using BEKK, CCC, and

DCC-MGARCH models
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Université Paris Dauphine (CGEMP/LEDa)

Abstract: Previous literature has identified oil and gas prices as being the main drivers of CO2 prices
in a univariate GARCH econometric framework (Alberola et al. (2008), Oberndorfer (2009)). By
contrast, we argue in this article that the interrelationships between energy and emissions markets
shall be modeled in a vector autoregressive and multivariate GARCH framework, so as to reflect the
dynamics of the correlations between the oil, gas and CO2 variables overtime. Using BEKK, CCC,
and DCC-MGARCH models on daily data from April 2005 to December 2008, we highlight significant
own-volatility, cross-volatility spillovers, and own persistent volatility effects for nearly all markets,
indicating the presence of strong ARCH and GARCH effects. Besides, we provide strong empirical
evidence of time-varying correlations in the range of [-0.3;0.3] between oil and gas, [-0.05;0.05] between
oil and CO2, and [-0.2;0.2] between gas and CO2, that have not been considered by previous studies.
These findings are of interest for traders and utilities in the energy sector, but also for a broader
applied economics audience.
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1 Introduction

Statistical analyses of price determinants in the EU Emissions Trading Scheme (EU ETS)

have so far relied on univariate GARCH2 models to explain the interrelationships between

energy and emissions markets. Based on a standard GARCH(1,1) model, Alberola et al.

(2008) identify oil and gas as being the main CO2 price drivers. High (low) energy prices

contribute to an increase (decrease) of CO2 prices3. Oberndorfer (2009) develops an empirical

analysis of stock market effects in the EU ETS. Based also on a GARCH(1,1) model with

oil, gas, and electricity volatility variables in the variance equation, the author identifies a

positive relationship between CO2 prices and stock returns in the electricity sector.

This article focuses on the contemporaneous interrelationships between energy (oil, gas) and

emissions (CO2) markets4. The directions of these links are in essence complex to capture.

The EU ETS is a commodity market, which is influenced by other factors as well, notably

fuel shifts and energy efficiency. The CO2 price is determined by the demand and supply

of CO2 rights - a surplus induced by above-mentioned measures or reduced energy demand

would reduce the CO2 cost. There is a natural correlation however which comes to mind

between oil, gas, and CO2: this explaining factor is the economy. Macroeconomic conditions

indeed influence all commodity markets (Caballero et al. (2008)). If declining oil prices do

not reduce per se the CO2 cost, a recession reduces both oil demand and industrial activities,

and hence CO2 emissions that reduce the demand for CO2 rights, and ultimately the CO2

price.

Of course, the full nature of the price and volatility interrelationships between the oil, gas,

and CO2 markets needs to be assessed with adequate econometric tools. It is fair to assume

that gas or oil prices may be affected by the EU allowance market, which makes a multivariate

approach necessary. As shown by Hsu Ku (2008) for the major equity and currency markets

in the US, Japan, and the UK, transmission effects between markets and obvious time-varying

correlations may be adequately captured by Multivariate GARCH models (MGARCH). This

econometric technique has also been recently applied by Leeves (2008) to the flow rates of

US workers between employment and unemployment to investigate links between flow-rates

volatilities. Both studies reveal that substantial links and adjustment dynamics may be

uncovered using a multivariate econometric analysis, that we propose to adapt in this article

to energy and emissions markets.

Compared to previous literature, we adopt a multivariate econometric framework which al-
2A GARCH(p,q) model stands for a General Autoregressive Conditional Heteroskedasticity model of autore-
gressive order p and moving average q.

3In a somewhat different setting, Kanen (2006) identifies brent prices as the main driver of natural gas prices
which, in turn, affect power prices and ultimately CO2 prices. Bunn and Fezzi (2009) also identify economet-
rically that CO2 prices react significantly to a shock on gas prices in the short term.

4A disclaimer is necessary: only the European emissions market can be analysed and is analysed here.
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lows to analyze the time-varying correlations between the oil, gas and CO2 price series. While

previous literature relied only on univariate GARCH models, the class of MGARCH mod-

els allows to capture the dynamics of variance and covariance overtime. We are primarily

interested in identifying cross innovations and volatility spillover effects between energy and

emissions markets. We also investigate the persistence of shocks overtime, and whether this

persistence is more marked for own market innovations, or for cross markets innovations.

The results obtained will thus be of particular importance for traders, financial institutions,

and regulated utilities that lack a precise identification of correlations between energy and

emissions markets for hedging and risk-management purposes.

As in Hsu Ku (2008), we use both Vector Autoregressive VAR and MGARCH models as

part of our estimation strategy. Our study period goes from April 22, 2005 to December

15, 20085. Based on various specifications of multivariate GARCH models (BEKK, CCC,

DCC)6, we are able to highlight the transmission of price volatility among the three markets.

Own volatility and cross volatility spillovers are significant for nearly all markets, indicating

the presence of strong ARCH and GARCH effects. Strong own persistent volatility effects

are also evident in all markets. Our main finding states that BEKK and constant-correlation

MGARCH models are insufficient to assess the time-varying correlations between energy

and emissions markets. The DCC MGARCH model provides the best results to examine

the relationship between volatility and correlation. We find time-varying correlations in the

order of [-0.3;0.3] between oil and gas, [-0.05;0.05] between oil and CO2, and [-0.2;0.2] between

gas and CO2. To further elaborate on the meaning and the importance of the results, we

can identify one major explaining factor behind such correlations between oil, gas, and CO2

prices: the macroeconomy.

The remainder of the article is organized as follows. Section 2 briefly reviews VAR and

MGARCH modeling. Section 3 summarizes the data used. Section 4 presents the estimation

results. Section 5 concludes.

2 Review of Vector Autoregressive and Multivariate GARCH
Models

When modeling the interrelationships between oil, gas and CO2 prices, several choices arise in

the empirical estimation strategy. The time-series may be studied independently as univariate

time-series, each characterized by its own mean and autocovariance function. Alberola et al.

(2008) and Oberndorfer (2009) have followed this approach, by including in the univariate
5i.e. from the start of CO2 trading on exchanges until the expiration date of the CO2 futures contract of
maturity December 2008.

6As detailed below, BEKK stands for the Baba-Engle-Kraft-Kroner model, CCC for the constant conditional
correlation model, and DCC for the dynamic conditional correlation model.
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time-series of CO2 prices exogenous regressors such as oil and gas prices.

Such an approach, however, fails to take into account the possible dependence between the

time-series, which may be of great importance for understanding the observed values of the

time-series. This perspective leads us to consider a vector of oil, gas and CO2 prices whose

conditional covariance matrix evolves through time. Let us start with a brief review of VAR

and MGARCH models.

2.1 Vector Autoregressive models

Following Sims (1980), a basic VAR model consists of a set of K endogenous variables yt =

(y1t, . . . , ykt, . . . , yKt) for k = 1, . . . ,K. A VAR(p) process may thus be defined as:

yt = A1yt−1 + . . .+Apyt−p + ut (1)

where Ai are (K ×K) coefficient matrices for i = 1, . . . , p and ut is a K-dimensional process

with E(ut) = 0 and time-invariant positive definite covariance matrix E(utu
T
t ) =

∑
u. For a

given sample of y1, . . . , yT and sufficient pre-sample values y−p+1, . . . , y0, the coefficients of a

VAR(p) process can be estimated by OLS separately for each price series.

The main interest behind VAR modeling consists in generating stationary time-series with

time invariant means, variances and covariance structure, given sufficient starting values.

Besides, VAR models work quite well in many of the financial and econometric applications.

Fitting a VAR model to energy and emissions markets thus appears as a natural extension

of this methodology in line with our research question. Next, we recall various specifications

of MGARCH.

2.2 Multivariate GARCH models

Consider k time-series of return innovations {Xi,t, i = 1, . . . , k}. Stacking these innovations

into a vector Xt, we define σii,t = var(Xi,t | =t−1) and σij,t = cov(Xi,t, Xj,t | =t−1). We note

Σt = σij,t the conditional variance-covariance matrix of all the time-series.

The main difficulty encountered with Multivariate GARCH modeling lies in finding a suitable

system that describes the dynamics of Σt parsimoniously. Besides, the multiple GARCH

equation needs to satisfy the positive definiteness of Σt, which is a numerically difficult

problem. Finally, the number of parameters to be estimated increases very rapidly as the

dimension of the time-series increases, which can take a very long time during the numerical

implementation. To address these questions, we detail below three parametric formulations

for the structure of the conditional covariance matrices.
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2.2.1 BEKK MGARCH models

The first class of multivariate GARCH models that we study stems from the contributions

of Bollerslev, Engle, and Wooldridge (1988), who provided with the VEC-GARCH model a

straightforward extension of univariate GARCH models. We examine more particularly the

following Baba-Engle-Kraft-Kroner (BEKK, Engle and Kroner (1995)) MGARCH model:

Ht = CC ′ +
q∑

j=1

K∑
k=1

A′kjrt−jr
′
t−jAkj +

p∑
j=1

K∑
k=1

B′kjHt−jBkj (2)

where Akj , Bkj , and C are N×N parameter matrices, and C is lower triangular to ensure the

positive definiteness of Ht. Note the BEKK model is covariance stationary if and only if the

eigenvalues of
∑q

j=1

∑K
k=1Akj ⊗ Akj +

∑p
j=1

∑K
k=1Bkj ⊗ Bkj are less than one in modulus,

with ⊗ the notation for Kronecker products. Due to the computational burden involved by

the estimation of a full BEKK model7, we restrict the number of parameters by implementing

the following “diagonal BEKK” MGARCH model:

Ht = CC ′ +A′rt−1r
′
t−1A+DE[A′rt−1r

′
t−1A | =t−2]D (3)

In eq(3), we now model the conditional variances and covariances of certain linear combina-

tions of the vector of price returns rt.

2.2.2 CCC MGARCH models

The second class of multivariate GARCH models examined is based on the decomposition

of the conditional covariance matrix into conditional standard deviations and correlations.

In such Constant Conditional Correlation (CCC) MGARCH models (Bollerslev (1990)), the

conditional correlation matrix is time-invariant and the conditional covariance matrix may

be written as follows:

Ht = DtPDt (4)

where Dt = diag(h1/2
1t , ldots, h

1/2
Nt ) and P = [ρij ] is positive definite with ρii = 1, i = 1, . . . , N .

Off-diagonal elements of the conditional covariance matrix are computed as:

[Ht]ij = h
1/2
it h

1/2
jt ρij , i 6= j (5)

7As the number of parameters (p + q)KN2 + N(N + 1)/2 increases, it may be difficult to obtain convergence
during the estimation.
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where 1 ≤ i, j ≤ N . The conditional variances of rit processes are similar to univariate

GARCH(p,q) models:

ht = ω +
q∑

j=1

Ajr
2
t−j +

p∑
j=1

Bjht−j (6)

with ω a N × 1 vector, Aj and Bj diagonal N × N matrices, and r2t = rt � rt. When the

conditional correlation matrix P is positive definite and the elements of ω and the diagonal

elements of Aj and Bj positive, the conditional covariance Ht is positive definite.

2.2.3 DCC MGARCH models

Due to the possibly overly restrictive assumption of constant conditional correlations, we con-

sider a third class of multivariate GARCH models which attempts at making the conditional

correlation in eq(4) time-varying:

Ht = DtPtDt (7)

According to Engle’s (2002) Dynamic Conditional Correlation (DCC) MGARCH model, we

introduce the following dynamic matrix process:

Qt = (1− a− b)S + aεt−1ε
′
t−1 + bQt−1 (8)

with a and b respectively positive and non-negative scalar parameters such that a+ b < 1, S

the unconditional correlation matrix of the standardized errors εt, and Q0 is positive definite.

To produce valid correlation matrices, Qt needs to be re-scaled as follows:

Pt = (I �Qt)−1/2Qt(I �Qt)−1/2 (9)

Having detailed the VAR and MGARCH modeling on which our empirical estimation strategy

hinges, we present in the next section the data used.

3 Data

We study three time-series of oil, gas, and CO2 daily closing prices. Our study period goes

from April 22, 2005 to December 15, 2008 which corresponds to a sample of 936 observations.

The source of the data is the European Climate Exchange (ECX), Bloomberg and Reuters.

6
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3.1 Oil and Gas Prices

We use the daily NYMEX Crude Oil Futures traded in $/barrel, and the daily Zeebrugge

Natural Gas Next Month contract traded in =C/MWh. Price series are converted to =C using

the daily exchange rate provided by the European Central Bank.

Insert Table 1 about here

Descriptive statistics for oil and gas raw price series, log-returns, VAR and MGARCH residu-

als may be found in Table 1. The distributional properties of the oil and gas raw price series

appear non-normal. The oil and gas markets are positively skewed and since the kurtosis (or

degree of excess) in both of these energy markets exceeds three, a leptokurtic distribution is

indicated.

Insert Figure 1 about here

Figure 1 presents the price development for the Zeebrugge natural gas next month, and

NYMEX crude oil futures price series from April 22, 2005 to December 15, 2008. In November

2005 and September 2008, natural gas prices soared to 90=C/MWh, and steadily decreased

afterwards to 40=C/MWh in February 2008 and December 2008. The brent price series peaked

over 80=C/barrel from May to August 2008.

3.2 CO2 Price

For CO2 prices, we use daily futures prices for the December 2008 contract traded in =C/ton

of CO2 on ECX. In Figure 1, we observe that 2008 CO2 futures prices convey a coherent price

signal - around 20 =C/ton of CO2 - throughout the historical available data during Phase II

(2008-2012) of the EU ETS. The futures price development features a lower bound around

15=C/ton of CO2 in April 2007, and an upper bound around 35=C/ton of CO2 in November

20088.

Descriptive statistics of the ECX futures contract of maturity December 2008 are presented

in Table 1. We observe that the ECX December 2008 futures contract presents nonzero

skewness and excess kurtosis9. These summary statistics also reveal a “fat tailed” leptokurtic

distribution.

Insert Figure 2 about here
8Therefore, Phase II futures proved to be much more reliable than futures prices for delivery during Phase I
(2005-2007) due to the banking restrictions enforced between 2007 and 2008 (Alberola and Chevallier (2009)).

9Note for a normally distributed random variable skewness is zero, and kurtosis is three.
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To sum up, none of the raw time-series under consideration may be approximated by the

normal distribution. Oil, gas and CO2 log-returns are presented in Figure 2. In the next

section, we present our estimation results.

4 Estimation Results

This section contains the estimation results for the VAR and MGARCH modeling of oil, gas,

and CO2 prices, denoted by (OILt, GASt, CO2t)′.

4.1 VAR Results

In this section, we conduct a preliminary data analysis by applying a VAR(p) process to

the returns of each price series (see Hsu Ku (2008) for a similar approach). The stability

of VAR(p) processes appears indeed useful to ensure that the variables under consideration

are stationary. First, the raw time-series plots are shown in Figure 1. A visual inspection

indicates nonstationarity in each of the series, so we proceed by taking differenced natural

logs, which allows convenient interpretation by means of approximate percentage change. The

time-series plots of log-returns, given in Figure 2, appear stationary. Second, to confirm this

diagnostic, we conduct unit root tests by applying the Augmented Dickey-Fuller (ADF) test

regressions. We use the oil, gas, and CO2 price series transformed into log-returns.

Insert Table 2 about here

The results of ADF tests are summarized in Table 2. These tests confirm that the original

data are considered nonstationary. The oil, gas and CO2 price series are stationary when

taken in logarithmic first-difference transformation. It can be concluded that all time-series

are integrated of order one (I(1)). After taking this nonstationarity into account, we need to

determine the optimal length for an unrestricted VAR (with a maximal lag number of eight).

Insert Table 3 about here

Those results are reported in Table 3. All criteria unambiguously point out an optimal lag

order p = 1. Thus, we choose the most parsimonious specification of a VAR(1) model. We

can therefore proceed to fit a vector autoregressive model to the tri-variate log-returns of the

time-series (OILt, GASt, CO2t)′, which has a length of 936 observations. The VAR(p) model

equation is:  OILt

GASt

CO2t

 =

 w1

w2

w3

+

γ1,1 γ1,2 γ1,3

γ2,1 γ2,2 γ2,3

γ3,1 γ3,2 γ3,3

 OILt−1

GASt−1

CO2t−1

+

 ε1t

ε2t

ε3t
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Insert Table 4 about here

The estimated parameters and robust standard errors are given in Table 4, along with di-

agnostic tests. The VAR(1) model has 12 parameters, of which 3 are significant. Note that

the gas variable is negatively impacted by its own lag, while the CO2 variable is positively

impacted by the gas variable and its own lag at the 1% significance level. According to the

diagnostic tests shown at the bottom of Table 4, there is no significant autocorrelation left

in the residuals of this VAR(1) model10. However, there is significant autocorrelation in the

three series of squared residuals, which indicates the necessity to use a Multivariate GARCH

model for further analysis.

Insert Figure 3 about here

Besides, OLS-CUSUM tests (based on cumulated sums of OLS residuals against a single-shift

alternative, see Kramer and Ploberger (1992)) for the presence of structural changes in the

components of the VAR(1) model are shown in Figure 3. We reject the null that the process

should have a peak around the breakpoint for all time-series. For all variables, the empirical

fluctuation processes stay safely within their bounds.

In the next step of our empirical strategy, we proceed by fitting a suitable MGARCH model

to the residuals (ε1t, ε2t, ε3t)′ of the VAR(1) model for the oil, gas, and CO2 variables.

4.2 MGARCH Results

In this section, we discuss first some issues concerning the estimation of the MGARCH models

presented in Section 2.2, and second we present the results obtained for each class of model.

4.2.1 Estimation practicalities

In the unrestricted BEKK MGARCH model, too large values of K yield to an identification

problem because several parameterizations yield the same representation of the model. To

overcome these numerical difficulties, it is generally assumed that p = q = K = 1 in the

application of eq(2). Such restrictions may be found in Kroner and Ng (1998), where B = δA

and δ > 0 is a scalar. The estimation of the “diagonal BEKK” model for the three time-

series is carried out maximizing the log-likelihood, assuming that residuals are Gaussian white

noise11.
10To conserve space, the autocorrelation function (ACF) for the residuals and squared residuals are not repro-

duced in the article, and may be obtained upon request to the authors.
11i.e. the log-likelihhod is computed on the basis of the normal distribution.
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The estimation of CCC MGARCH models offers on the contrary a computationally attrac-

tive parameterization. Besides the univariate GARCH equations, the number of parameters

needing to be estimated is equal to N(N − 1)/2. Covariance stationarity is ensured if the

roots of det(I −
∑q

j=1Ajλ
j −

∑p
j=1Bjλ

j) lie outside the unit circle.

In the DCC MGARCH model, positive definiteness of Ht in eq(7) is ensured if the conditional

correlation matrix Pt is positive definite at each point in time, in addition to having well-

defined conditional variances hit,i=1,...,N . This leads again to computationally demanding

estimation procedures, as the correlation matrix has to be inverted for each t during every

iteration.

In what follows, we set p = 1 and q = 1 for each class of MGARCH model. The BHHH

algorithm (Berndt et al. (1974)) is used to produce quasi maximum likelihood parameter

estimates and their corresponding asymptotic robust standard errors.

4.2.2 BEKK MGARCH results

Now we proceed to identifying a tri-variate BEKK(1,1) MGARCH model to the residuals of

the VAR(1) model. The model follows the equations:

εt = H
1/2
t νt, Ht = C′C +

q∑
i=1

A′iεt−iε
′
t−iAi +

p∑
j=1

B′jHt−jBj (10)

with (Zt) = (Wt, Xt, Yt)′ the time-series of oil, gas, and CO2 variables, Ht the conditional

covariance matrix of Zt, cov(Zt | =t−1) = Ht, {C, Ai, Bj} the parameter matrices, νt a three-

dimensional white noise with covariance matrix cov(ν) = In, and In the unity matrix of order

n.

Insert Table 5 about here

The estimated parameters, together with their robust standard errors in parenthesis, are

shown in Table 5. The BEKK(1,1) MGARCH model has 27 parameters, of which 16 are

significant. The maximum eigenvalue is 0.86901. The coefficients for the variance-covariance

equations are generally significant for own- and cross-innovations, and significant for own-

and cross-volatility spillovers in the individual price series of oil, gas and CO2, indicating the

presence of strong ARCH and GARCH effects. In evidence, 89% (8 out of 9) of the estimated

ARCH coefficients, and 44% (4 out of 9) of the estimated GARCH coefficients are significant

at the 1% level.

Own-innovation spillovers in the energy and emissions markets are large and significant,

indicating the presence of strong ARCH effects. The own-innovation spillover effects range
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from -0.55 for gas to 0.58 for CO2. In terms of cross-innovation effects, past innovations in

most markets exert an influence on the other energy and/or emissions markets. For example,

in the case of the CO2 market cross-innovations, the oil market is significant with a coefficient

of -0.15. The exception to the presence of cross-innovation effects is gas on the CO2 market.

In the GARCH set of parameters, 44% of the estimated coefficients are significant. The lagged

volatility spillover effects for oil, gas, and CO2 are equal to, respectively, -0.84, -0.29, and -0.64.

This means that past volatility shocks in each individual market have a greater effect on their

own future volatility than the past volatility shocks in the other energy/emissions markets. In

terms of cross-volatility for the GARCH parameters, the only significant parameter appears

to be oil on the CO2 market. That is, past volatility shocks in the oil market have the

greatest effect on the future volatility of the CO2 market. The latter result is in line with

previous literature, which highlighted the predominant role of oil price changes in driving CO2

price changes. We are able to confirm this effect in a multivariate and dynamic econometric

framework.

The sum of the ARCH and GARCH coefficients measures the overall persistence in each

market’s own volatility, i.e. -0.45, 0.84, and -0.07 for the oil, gas and CO2 markets respectively.

The cross-volatility spillover effect of the oil market on the CO2 market is equal to 0.22. As

a diagnostic check of the fitted model, the range of residuals is now closer to what we expect

from a standard normal distribution, as the ACF plots for each time-series are contained

within the critical values12. However, the ACF of the squared residuals between lags 9

and 14 clearly exhibit some autocorrelation. Thus, the diagnostic checks of the BEKK(1,1)

MGARCH model suggest that the model may be misspecified with respect to the necessary

white noise residuals properties13. We need to try and refine the trivariate GARCH model

in order to remove the small number of remaining significant correlations in the ACFs of the

standardized residuals14.

To this purpose, we detail in the next section the results obtained with constant conditional

correlation and dynamic conditional correlation models.
12These plots are not reproduced in the article to conserve space, and may be obtained to the authors upon

request.
13To make further visual assessment of the goodness of fit of the model, the interested reader may ask to

the authors a graph of the standardized residuals. Note that while for an univariate GARCH standardized
residuals are simply the model residuals divided by the conditional standard deviation, the standardized
residuals for a multivariate GARCH are obtained by the whitening matrix transformation Σ

−1/2
t Zt. For a

well-fitted multivariate GARCH model, this transformation produces standardized residual vectors that have
an approximately diagonal conditional covariance matrix.

14Since the BEKK(1,1) MGARCH model appears misspecified, we do not display the plots of the conditional
standard deviations and correlations to conserve space.
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4.2.3 CCC MGARCH results

We estimate below Bollerslev’s (1990) constant-correlation model in which the conditional

variances of {yt}, t = 1, . . . , T time-series with K elements each so that yt = (y1t, . . . , yKt)′

follow a GARCH process, while the correlations are constant:

σ2
it =ωi + αiσ

2
i,t−1 + βiy

2
i,t−1, i = 1, . . . ,K

σijt =ρijσitσjt, 1 ≤ i < j ≤ K
(11)

with ωi, αi, and βi nonnegative, αi + βi < 1 for i = 1, . . . ,K, σijt the covariance elements,

and Γ = {ρij} the correlation matrix positive definite. A tri-variate GARCH(1,1) model

with constant-correlation is fitted to the VAR(1) residuals of oil, gas and CO2 variables.

Compared to the BEKK(1,1) MGARCH, the CCC(1,1) MGARCH does not exhibit auto-

correlation, since the squared residuals remain in the range of the critical values15. Besides,

the fitted model has resulted in smaller ACF values for the standardized residuals relative

to the series observed. To provide further guidance in assessing the fit of the CCC(1,1)

MGARCH model, the standardized residuals show that most, but not all, of the autocorre-

lation structure has been removed by the fitted CCC(1,1) MGARCH model16. Nevertheless,

the residuals of the CCC(1,1) MGARCH model satisfy the required white noise properties,

and useful interpretations may be derived from our estimates.

Insert Figure 4 about here

The time-varying standard deviations estimated from the CCC(1,1) MGARCH model for the

oil, gas and CO2 variables are shown in Figure 4.

Insert Table 6 about here

The results are summarized in Table 6. The CCC(1,1) MGARCH model has 12 parameters,

of which 9 are significant. The last three rows of Table 6 show estimates of the correlation

parameters. The other rows show parameter estimates of univariate GARCH(1,1) models

for each time-series. As can be seen, most of the estimated univariate GARCH parameters,

except the constant terms, are statistically significant and positive. The level of the ARCH

coefficient, which represents the reaction to new information, is quite low. The value of

α + β is close to one for each time-series, which suggests that the variance process is not

integrated (Engle and Bollerslev (1986)). As for the correlation parameters, we observe that
15ACF of residuals and squared residuals are not reproduced in the article to conserve space, and may be asked

upon request to the authors.
16This figure is not reproduced in the article to conserve space, and may be asked upon request to the authors.
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the correlations across the three energy and emissions markets are quite low, all below 0.1.

There is strong evidence (significance at the 1% level) of time-varying correlations between

the tri-variate time-series. Not surprisingly, we find evidence against constant correlations.

As highlighted in previous literature (Alberola et al. (2008), Oberndorfer (2009), Bunn and

Fezzi (2009)), CO2 price changes are dependent, to a large extent, on price changes of other

energy markets such as oil and gas. If these markets have low correlations, and/or their

relationships are not stable overtime17, we would expect the correlations between the three

time-series to be time-varying. This comment brings us to investigate in the next section the

interrelationships between oil, gas and CO2 prices from a dynamic correlation perspective.

4.2.4 DCC MGARCH results

For the ease of presentation, we re-state the DCC(m,n) MGARCH model estimated (Engle

(2002)):

hi,t = ωi +
Pi∑

p=1

αipr
2
i,t−p +

Qi∑
q=1

βiqhi,t−p i = 1, . . . , k (12)

Qt =

(
1−

M∑
m=1

α∗m −
N∑

n=1

β∗n

)
Q+

M∑
m=1

α∗m(εt−mε
′
t−m) +

N∑
n=1

β∗nQt−n

Rt =Q̃−1
t QtQ̃

−1
t

(13)

with εt = D−1
t rt, εt ∼ N(0, Rt), Q̃t a diagonal matrix containing the square root of the

diagonal entries of Qt, and Qt the matrix of unconditional covariances. Eq(12) is a standard

univariate GARCH model, and eq(13) is referred to as a DCC(m,n) model. We fit eq(12) and

(13) to the VAR(1) residuals of oil, gas, and CO2 variables. As explained in Section 4.2.1, we

choose to adopt the most parsimonious specification with m = 1 and n = 1. Similarly to the

constant-correlation model, the ACF plots of residuals and squared residuals do not exhibit

autocorrelation18. It may be concluded that the residuals of the DCC(1,1) MGARCH model

satisfy the necessary white-noise properties.

Insert Figure 5 about here

In Figure 5, we can also look at the normal Q−Q plots of the standardized residuals for all

estimated models. We observe that the deviation from the normal distribution is highest in
17Alberola et al. (2008) highlight that the influence of other energy markets (such as oil and gas) on CO2 price

changes varies depending on institutional events.
18These plots are not reproduced in the article to conserve space, and may be asked upon request to the authors.
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the VAR model. The Q−Q plots for oil almost lie on a straight line in all MGARCH models,

while gas seems to differ from the normal distribution. Compared to gas, the mismatch

appears less pronounced for the CO2 variable in all MGARCH models.

Insert Table 7 about here

DCC(1,1) MGARCH estimates are reported in Table 7. The DCC(1,1) MGARCH model

has 11 parameters, of which 7 are significant. As sensitivity tests, we notice the remarkable

stability of the coefficients and robust standard error estimates between the CCC(1,1) and

DCC(1,1) MGARCH models. The correlation structure of the DCC(1,1) MGARCH model

has a clear interpretation: there is a non-constant interaction of the three time-series with

respect to conditional correlation, and this correlation impacts current correlation with a lag

of 1. This interaction effect would be neglected if the three time-series of VAR residuals

were modeled in isolation, each with a univariate GARCH model. Next, we reproduce Engle

and Sheppard’s (2001) test for the presence of dynamic correlation in the residuals of the

DCC(1,1) MGARCH model:

H0 :Rt = R ∀t ∈ T

Ha :vech(Rt) = vech(R) + β1vech(Rt−1 + β2vech(Rt − 1) + . . .+ βpvech(Rt−1))
(14)

Engle and Sheppard’s (2001) p value and χ2 statistic testing for the dynamic correlation

between the oil, gas and CO2 residuals are presented in the last two rows of Table 7. Under

the null the constant and all of the lagged parameters in the model should be zero. Thus, we

reject the null of a constant correlation in favor of a dynamic structure.

Insert Figure 6 about here

In Figure 6, we provide a visual representation of the dynamic correlations between the oil,

gas and CO2 variables estimated from the DCC(1,1) MGARCH model19. To allow direct

comparison, the dashed lines in Figure 6 represent the estimated constant conditional corre-

lations from the CCC(1,1) MGARCH model. The constant-correlation model tends to bias

(upward in the case of ρGAS,CO2, downward in the case of ρOIL,CO2) the actual correlations

observed in the dynamic correlation model. The DCC MGARCH model thus provides a

more accurate description of the dynamics of the correlations between the oil, gas, and CO2

variables overtime.
19To conserve space, we do not reproduce the plots of the time-varying standard deviations which are very

similar to the CCC(1,1) MGARCH model, due to the stability of the coefficients estimated with the DCC(1,1)
MGARCH model.
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The values observed for ρOIL,GAS are comprised between -0.3 and 0.3, which represents a

significantly higher bandwith than the value of -0.02 estimated in the CCC(1,1) MGARCH.

The main reason behind this sharp difference between the constant and dynamic correlations

models lie in the presence of two peaks in the dynamics of ρOIL,GAS observed in August and

September 2005. These peaks have also been observed in the raw price series, as commented in

Section 3.1. Otherwise, ρOIL,GAS oscillates around the value found in the constant correlation

model.

ρOIL,CO2 spans the range of values comprised between -0.05 and 0.05, with a few peaks in

the observed correlations. The constant correlation of -0.04 estimated with the CCC(1,1)

MGARCH model lies outside of the interval where both series oscillates (around 0.01). This

plot gives us a clear picture of the dynamic correlations behind the evolution of the oil and

CO2 price series overtime.

As for ρGAS,CO2, the correlation structure spans the range from nearly -0.2 to over 0.1, which

differs from the value of 0.018 found in the CCC(1,1) MGARCH model. Significant peaks

may be found during the period going from April to October 2006, which corresponds to

institutional developments during Phase I of the EU ETS20. The visual inspection of Figure 6

has overall confirmed the superiority of the DCC MGARCH model over the CCC MGARCH

model to examine the contemporaneous relationships between volatility and correlation on

energy and emissions markets. We may conclude that there is strong evidence of time-varying

correlations among the selected oil, gas, and CO2 variables.

5 Conclusion

Previous studies on the interrelationships between energy (oil, gas) and emissions (CO2)

markets have focused on univariate GARCH models (Alberola et al. (2008), Oberndorfer

(2009)). These articles identified oil and gas (among energy prices) as being the main drivers

of the CO2 price (see also Bunn and Fezzi (2009) for structural interactions results). To take

this analysis one step further, the goal of our article is to further analyze the co-movements of

the oil, gas, and CO2 price series. Multivariate GARCH models appear as an adequate tool

to fulfill such an objective (see Hsu Ku (2008) and Leeves (2008) for recent applications).

Compared to previous literature, we investigate the time-varying correlations of the energy

and emissions markets in a multivariate modeling framework. Our econometric methodology

consists in fitting various specifications of multivariate GARCH to the residuals of a vector

autoregressive model for the three price series. Following a brief review of VAR and MGARCH
20Namely, the first verification of emissions occurred in April 2006 (Alberola et al. (2008)), while the European

Commission announced banking restrictions between 2007 and 2008 in October 2006 (Alberola and Chevallier
(2009))
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models, we have detailed the main interests for investigating dynamic correlations between

energy and emissions markets. Then, we have detailed the daily data used for oil, gas,

and CO2 prices from April 2005 to December 2008. After fitting a VAR model to the log-

returns of the time-series, the observed squared residuals revealed significant autocorrelations

in all time-series, indicating a further need for tri-variate MGARCH modeling. Hence, we

investigated the interrelationships between the oil, gas, and CO2 markets by using three

classes of MGARCH: BEKK models, constant conditional correlation (CCC) and dynamic

conditional correlation (DCC) models.

The BEKK MGARCH model allows to identify own and cross volatility spillovers between

energy and emissions markets. We also establish that past volatility shocks have a stronger

effect on their own future volatility rather than on the other energy/emissions markets. How-

ever, we noticed that the squared residuals of the BEKK MGARCH models exhibit some

autocorrelation, which suggests model misspecification. As for constant-correlation models,

we find strong evidence of time-varying correlations between the oil, gas and CO2 price series.

For this reason, we conclude that the CCC MGARCH model does not capture adequately

the dependence between the conditional correlations of the oil, gas, and CO2 price series.

The class of DCC MGARCH model features white noise residuals properties, while reflect-

ing the dynamic correlations overtime. It also uncovers clear interactions between the VAR

residuals with respect to conditional correlation. These interactions impact the current cor-

relation structure with a lag of one, and would have been neglected if the three time-series

were modeled in isolation using univariate GARCH models. The estimates of time-varying

correlations typically features values of [-0.3;0.3] between oil and gas, [-0.05;0.05] between oil

and CO2, and [-0.2;0.2] between gas and CO2. The DCC MGARCH model may therefore be

identified as being the most satisfactory.

Through this empirical analysis, we have been able to identify strong connections between

energy and emissions markets. These results convey interesting applied economics insights,

as they inform us about the dynamic correlations between oil, gas, and CO2 prices modeled

jointly overtime. They may be used directly in the banking and finance industry, as well as

by brokers for companies regulated by the EU ETS, to make informed hedging decisions. In

extension of this work, an interesting area for future research lies in the investigation of the

transmission of shocks on the term structure of the energy and emissions markets, as is usual

for other financial markets (Christiansen (2000)).
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Alberola, E., Chevallier, J., Chèze, B., 2008. Price drivers and structural breaks in European carbon prices
2005-2007. Energy Policy 36, 787-797.

Berndt, E.K., Robert, E.,Hall, B.H., Hausman, J.A., 1974. Estimation and Inference in Nonlinear Structural
Models. Annals of Economic and Social Measurement 3; 653-665.

Bollerslev, T., 1990. Modelling the Coherence in the Short-Run Nominal Exchange Rates: A Multivariate
Generalized ARCH Model. Review of Economics and Statistics 72, 498-505.

Bollerslev, T., Engle, R.F., Wooldridge, J.M., 1988. A Capital Asset Pricing Model with Time-Varying
Covariances. The Journal of Political Economy 96, 116-131.

Bunn, D., Fezzi, C., 2009. Structural interactions of European carbon trading and energy prices. Journal of
Energy Markets 2(4), 53-69.

Caballero R., Farhi E., Gourinchas, P., 2008. Financial Crash, Commodity Prices and Global Imbalances.
Brookings Papers on Economic Activity 2, 1-55.

Christiansen, C., 2000. Macroeconomic Announcement Effects on the Covariance Structure of Government Bond
Returns. Journal of Empirical Finance 7, 479-507.

Dickey, D.A., Fuller, W.A., 1981. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.
Econometrica 49(4), 1057-1072.

Engle, R.F., Bollerslev, T., 1986. Modelling the persistence of conditional variances. Econometric Reviews 5,
1-50.

Engle, R.F., 2002. Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive
Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics 20, 339-350.

Engle, R.F., Kroner, K.F., 1995. Multivariate Simultaneous Generalized ARCH. Econometric Theory 11,
122-150.

Engle, R.F., Sheppard, K., 2001. Theoretical and Empirical Properties of Dynamic Conditional Correlation
Multivariate GARCH. NBER Working Paper 8554.

Hamilton, J.D., 1994. Time Series Analysis. Princeton University Press.

Hsu Ku, Y.H., 2008. Student-t distribution based VAR-MGARCH: an application of the DCC model on interna-
tional portfolio risk management. Applied Economics 40, 1685-1697.

Kanen J.L.M., 2006. Carbon Trading and Pricing. Environmental Finance Publications.

Kramer, W., Ploberger, W., 1992. The CUSUM Test with OLS Residuals. Econometrica 60, 271-285.

Kroner, K.F., Ng, V.K., 1998. Modeling Asymmetric Comovements of Asset Returns. The Review of Financial
Studies 11, 817-844.

Leeves, G.D., 2008. Declining US output volatility and its effect on labour flow volatility: an MGARCH analysis.
Applied Economics iFirst, 1-9.

Oberndorfer, U., 2009. EU emission allowances and the stock market: evidence from the electricity industry.
Ecological Economics 68, 1116-1126.

Sims, C.A., 1980. Macroeconomics and Reality. Econometrica 48(1), 1-48.

Page 17 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 1  

215x279mm (600 x 600 DPI)  

 

Page 18 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 2  

215x279mm (600 x 600 DPI)  

 

Page 19 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 3  

215x279mm (600 x 600 DPI)  

 

Page 20 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 4  

215x279mm (600 x 600 DPI)  

 

Page 21 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 5  

215x279mm (600 x 600 DPI)  

 

Page 22 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 6  

215x279mm (600 x 600 DPI)  

 
 

Page 23 of 30

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Variable Mean Median Max Min Std.
Dev.

Skew. Kurt.

Raw Price Series
Oil 55.7279 53.1892 93.9841 26.2558 11.9011 0.8585 3.6833
Gas 46.6878 44.3250 107.7500 15.7200 17.8437 0.5299 3.0022
CO2 20.9298 20.9000 32.2500 12.2500 3.5804 0.2084 2.7831
Log-Returns
Oil -0.0003 0.0004 0.1776 -0.1401 0.0268 0.0988 8.4889
Gas 0.0008 -0.0014 0.3590 -0.3949 0.0603 0.5472 13.2876
CO2 -0.0001 0.0012 0.1865 -0.2882 0.0287 -1.3195 17.7714

Table 1: Summary Statistics

Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month,
and CO2 to ECX December 2008 futures price series. Std.Dev. stands for Standard
Deviation, Skew. for Skewness, and Kurt. for Kurtosis. The number of observations
is 936.
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Variable Deterministic

Terms

Lags Test

Value

Critical Values

1% 5% 10%
Oil constant, trend 2 -18.0672 -3.96 -3.41 -3.12
∆Oil constant 1 -23.4714 -3.43 -2.86 -2.57
Gas constant, trend 2 -20.0859 -3.96 -3.41 -3.12
∆Gas constant 1 -24.4663 -3.43 -2.86 -2.57
CO2 constant, trend 2 -16.406 -3.96 -3.41 -3.12
∆CO2 constant 1 -19.9418 -3.43 -2.86 -2.57

Table 2: ADF Tests for Oil, Gas and CO2 Variables

Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month,
and CO2 to ECX December 2008 futures price series. The critical values reported
are from Dickey and Fuller (1981) and Hamilton (1994). The number of observations
is 936.
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Lag 1 2 3 4 5 6 7 8

AIC(n) -1.997933 -1.997209 -1.996408 -1.994872 -1.995287 -1.994975 -1.993828 -1.992055

HQ(n) -1.99450 -1.992437 -1.989847 -1.986521 -1.985147 -1.983045 -1.980109 -1.976545

SC(n) -1.990114 -1.984699 -1.979207 -1.972980 -1.968704 -1.963700 -1.957862 -1.951397

FPE(n) 0.000210 0.000212 0.000214 0.000217 0.000216 0.000217 0.000219 0.000223

Diagnostic Tests

Lag Q16 p value JB4 p value MARCH5 p value

p = 1 165.1727 0.03965 13208.33 0.00001 481.9319 0.00001

Table 3: VAR Optimal Lag Length Determination for Oil, Gas and CO2 Variables

Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO2 to ECX December 2008 futures price series.

AIC(n) refers to the Akaike Information Criterion for a lag of order n, HQ(n) refers to the Hannan-Quinn Criterion for a lag of order n,

SC(n) refers to the Schwarz Criterion for a lag of order n, and FPE(n) refers to the Final Prediction Criterion for a lag of order n. The

number of observations is 936. Diagnostic tests are provided for the optimal lag length p = 1. Q16 refers to the Ljung-Box-Pierce Portmanteau

Test Q Statistic with a maximal lag of order 16, JB4 is the Jarque-Berra Normality Tests Statistic for a maximal lag of order 4, and

MARCH5 is the Multivariate ARCH Test Statistic for a maximal lag of order 5.
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Parameter Estimate

Oil Gas CO2

COIL -0.00910***
(0.00138)

0.01089***
(0.00613)

0.00001
(0.00001)

CGAS 0.00001
(0.00001)

-0.04645***
(0.00367)

0.00001
(0.00001)

CCO2 0.00083
(0.00141)

0.01069***
(0.00551)

-0.01481***
(0.00144)

AOIL 0.38894***
(0.03606)

0.18887**
(0.10386)

-0.14831***
(0.04072)

AGAS 0.04024***
(0.01798)

-0.54739***
(0.06579)

0.03205
(0.02130)

ACO2 0.01986***
(0.03490)

0.23559***
(0.09673)

0.57486***
(0.04516)

BOIL -0.83827***
(0.02893)

-0.00119
(0.09296)

-0.08685***
(0.03915)

BGAS -0.04919
(0.03600)

-0.29449***
(0.13907)

-0.06569
(0.04264)

BCO2 0.02625
(0.03283)

-0.06593
(0.111374)

-0.64418***
(0.04679)

Diagnostic Tests
AIC -6399.865
Eig. 0.86901

Table 5: BEKK(1,1) MGARCH Estimates for Oil, Gas and CO2 Variables

Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month,
and CO2 to ECX December 2008 futures price series. Robust standard errors in
parentheses. *** indicates 1% significance, ** 5% significance, and * 10% significance
levels. The number of observations is 936. AIC is the Akaike Information Criterion.
Eig. is the maximum eigenvalue. The BEKK(p,q) MGARCH model estimated is
shown in Section 4.2.2.
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Parameter Estimate
GARCH parameters
ωOIL 0.0001

(0.0001)
αOIL 0.1144***

(0.0002)
βOIL 0.8557***

(0.0004)
ωGAS 0.0001

(0.0001)
αGAS 0.0404***

(0.0001)
βGAS 0.9458***

(0.0002)
ωCO2 0.0001

(0.0001)
αCO2 0.2507***

(0.0081)
βCO2 0.6942***

(0.0059)
Correlation Parameters
ρOIL,GAS -0.0243***

(0.0001)
ρOIL,CO2 -0.0398***

(0.0001)
ρGAS,CO2 0.0176***

(0.0003)
Log − Lik. 5671.3939

Table 6: CCC(1,1) MGARCH Estimates for Oil, Gas and CO2 Variables

Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month,
and CO2 to ECX December 2008 futures price series. Robust standard errors in
parentheses. *** indicates 1% significance, ** 5% significance, and * 10% significance
levels. The number of observations is 936. The CCC(p,q) MGARCH model
estimated is shown in Section 4.2.3.
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Parameter Estimate
GARCH parameters
ωOIL 0.0001

(0.0001)
αOIL 0.1144***

(0.0002)
βOIL 0.8557***

(0.0004)
ωGAS 0.0001

(0.0001)
αGAS 0.0404***

(0.0001)
βGAS 0.9458***

(0.0002)
ωCO2 0.0001

(0.0001)
αCO2 0.2507***

(0.0081)
βCO2 0.6942***

(0.0059)
Correlation Parameters
α∗1 0.0190***

(0.0003)
β∗1 0.0001

(0.0096)
Log − Lik. 5671.6345
ES p value 0.0333
ES χ2 stat 0.9835

Table 7: DCC(1,1) MGARCH Estimates for Oil, Gas and CO2 Variables

Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month,
and CO2 to ECX December 2008 futures price series. Robust standard errors in
parentheses. *** indicates 1% significance, ** 5% significance, and * 10% significance
levels. The number of observations is 936. ES p value and ES χ2 stat are Engle and
Sheppard’s (2001) dynamic correlation tests statistics for a maximum lag of order 1.
The DCC(m,n) MGARCH model estimated is shown in Section 4.2.4.
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