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Time-varying correlations in oil, gas and CO2 prices: an application using BEKK, CCC, and DCC-MGARCH models

Introduction

Statistical analyses of price determinants in the EU Emissions Trading Scheme (EU ETS) have so far relied on univariate GARCH2 models to explain the interrelationships between energy and emissions markets. Based on a standard GARCH(1,1) model, [START_REF] Alberola | Price drivers and structural breaks in European carbon prices 2005-2007[END_REF] identify oil and gas as being the main CO 2 price drivers. High (low) energy prices contribute to an increase (decrease) of CO 2 prices3 . [START_REF] Oberndorfer | EU emission allowances and the stock market: evidence from the electricity industry[END_REF] develops an empirical analysis of stock market effects in the EU ETS. Based also on a GARCH(1,1) model with oil, gas, and electricity volatility variables in the variance equation, the author identifies a positive relationship between CO 2 prices and stock returns in the electricity sector.

This article focuses on the contemporaneous interrelationships between energy (oil, gas) and emissions (CO 2 ) markets4 . The directions of these links are in essence complex to capture.

The EU ETS is a commodity market, which is influenced by other factors as well, notably fuel shifts and energy efficiency. The CO 2 price is determined by the demand and supply of CO 2 rights -a surplus induced by above-mentioned measures or reduced energy demand would reduce the CO 2 cost. There is a natural correlation however which comes to mind between oil, gas, and CO 2 : this explaining factor is the economy. Macroeconomic conditions indeed influence all commodity markets [START_REF] Caballero | Financial Crash, Commodity Prices and Global Imbalances[END_REF]). If declining oil prices do not reduce per se the CO 2 cost, a recession reduces both oil demand and industrial activities, and hence CO 2 emissions that reduce the demand for CO 2 rights, and ultimately the CO 2 price.

Of course, the full nature of the price and volatility interrelationships between the oil, gas, and CO 2 markets needs to be assessed with adequate econometric tools. It is fair to assume that gas or oil prices may be affected by the EU allowance market, which makes a multivariate approach necessary. As shown by Hsu [START_REF] Hsu Ku | Student-t distribution based VAR-MGARCH: an application of the DCC model on international portfolio risk management[END_REF] for the major equity and currency markets in the US, Japan, and the UK, transmission effects between markets and obvious time-varying correlations may be adequately captured by Multivariate GARCH models (MGARCH). This econometric technique has also been recently applied by [START_REF] Leeves | Declining US output volatility and its effect on labour flow volatility: an MGARCH analysis[END_REF] to the flow rates of US workers between employment and unemployment to investigate links between flow-rates volatilities. Both studies reveal that substantial links and adjustment dynamics may be uncovered using a multivariate econometric analysis, that we propose to adapt in this article to energy and emissions markets. lows to analyze the time-varying correlations between the oil, gas and CO 2 price series. While previous literature relied only on univariate GARCH models, the class of MGARCH models allows to capture the dynamics of variance and covariance overtime. We are primarily interested in identifying cross innovations and volatility spillover effects between energy and emissions markets. We also investigate the persistence of shocks overtime, and whether this persistence is more marked for own market innovations, or for cross markets innovations.

The results obtained will thus be of particular importance for traders, financial institutions, and regulated utilities that lack a precise identification of correlations between energy and emissions markets for hedging and risk-management purposes.

As in Hsu [START_REF] Hsu Ku | Student-t distribution based VAR-MGARCH: an application of the DCC model on international portfolio risk management[END_REF], we use both Vector Autoregressive VAR and MGARCH models as part of our estimation strategy. Our study period goes from April 22, 2005 to December 15, 2008 5 . Based on various specifications of multivariate GARCH models (BEKK, CCC, DCC) 6 , we are able to highlight the transmission of price volatility among the three markets.

Own volatility and cross volatility spillovers are significant for nearly all markets, indicating the presence of strong ARCH and GARCH effects. Strong own persistent volatility effects are also evident in all markets. Our main finding states that BEKK and constant-correlation MGARCH models are insufficient to assess the time-varying correlations between energy and emissions markets. The DCC MGARCH model provides the best results to examine the relationship between volatility and correlation. We find time-varying correlations in the order of [-0.3;0.3] between oil and gas, [-0.05;0.05] between oil and CO 2 , and [-0.2;0.2] between gas and CO 2 . To further elaborate on the meaning and the importance of the results, we can identify one major explaining factor behind such correlations between oil, gas, and CO 2 prices: the macroeconomy.

The remainder of the article is organized as follows. Section 2 briefly reviews VAR and MGARCH modeling. Section 3 summarizes the data used. Section 4 presents the estimation results. Section 5 concludes.

Review of Vector Autoregressive and Multivariate GARCH Models

When modeling the interrelationships between oil, gas and CO 2 prices, several choices arise in the empirical estimation strategy. The time-series may be studied independently as univariate time-series, each characterized by its own mean and autocovariance function. [START_REF] Alberola | Price drivers and structural breaks in European carbon prices 2005-2007[END_REF] and [START_REF] Oberndorfer | EU emission allowances and the stock market: evidence from the electricity industry[END_REF] have followed this approach, by including in the univariate Such an approach, however, fails to take into account the possible dependence between the time-series, which may be of great importance for understanding the observed values of the time-series. This perspective leads us to consider a vector of oil, gas and CO 2 prices whose conditional covariance matrix evolves through time. Let us start with a brief review of VAR and MGARCH models.

Vector Autoregressive models

Following [START_REF] Sims | Macroeconomics and Reality[END_REF], a basic VAR model consists of a set of K endogenous variables y t = (y 1t , . . . , y kt , . . . , y Kt ) for k = 1, . . . , K. A VAR(p) process may thus be defined as:

y t = A 1 y t-1 + . . . + A p y t-p + u t (1)
where A i are (K × K) coefficient matrices for i = 1, . . . , p and u t is a K-dimensional process with E(u t ) = 0 and time-invariant positive definite covariance matrix E(u t u T t ) = u . For a given sample of y 1 , . . . , y T and sufficient pre-sample values y -p+1 , . . . , y 0 , the coefficients of a VAR(p) process can be estimated by OLS separately for each price series.

The main interest behind VAR modeling consists in generating stationary time-series with time invariant means, variances and covariance structure, given sufficient starting values.

Besides, VAR models work quite well in many of the financial and econometric applications. 

Multivariate GARCH models

Consider k time-series of return innovations {X i,t , i = 1, . . . , k}. Stacking these innovations into a vector X t , we define σ ii,t = var(X i,t | t-1 ) and σ ij,t = cov(X i,t , X j,t | t-1 ). We note Σ t = σ ij,t the conditional variance-covariance matrix of all the time-series.

The main difficulty encountered with Multivariate GARCH modeling lies in finding a suitable system that describes the dynamics of Σ t parsimoniously. Besides, the multiple GARCH equation needs to satisfy the positive definiteness of Σ t , which is a numerically difficult problem. Finally, the number of parameters to be estimated increases very rapidly as the dimension of the time-series increases, which can take a very long time during the numerical implementation. To address these questions, we detail below three parametric formulations for the structure of the conditional covariance matrices. 

BEKK MGARCH models

The first class of multivariate GARCH models that we study stems from the contributions of [START_REF] Bollerslev | A Capital Asset Pricing Model with Time-Varying Covariances[END_REF], who provided with the VEC-GARCH model a straightforward extension of univariate GARCH models. We examine more particularly the following Baba-Engle-Kraft-Kroner (BEKK, [START_REF] Engle | Multivariate Simultaneous Generalized ARCH[END_REF]) MGARCH model: 

H t = CC + q j=1 K k=1 A kj r t-j r t-j A kj + p j=1 K k=1 B kj H t-j B kj ( 
H t = CC + A r t-1 r t-1 A + DE[A r t-1 r t-1 A | t-2 ]D (3) 
In eq(3), we now model the conditional variances and covariances of certain linear combinations of the vector of price returns r t .

CCC MGARCH models

The second class of multivariate GARCH models examined is based on the decomposition of the conditional covariance matrix into conditional standard deviations and correlations.

In such Constant Conditional Correlation (CCC) MGARCH models [START_REF] Bollerslev | Modelling the Coherence in the Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model[END_REF]), the conditional correlation matrix is time-invariant and the conditional covariance matrix may be written as follows:

H t = D t P D t (4) 
where

D t = diag(h 1/2 1t , ldots, h 1/2 N t
) and P = [ρ ij ] is positive definite with ρ ii = 1, i = 1, . . . , N . Off-diagonal elements of the conditional covariance matrix are computed as:

[H t ] ij = h 1/2 it h 1/2 jt ρ ij , i = j (5) F o r P e e r R e v i e w
where 1 ≤ i, j ≤ N . The conditional variances of r it processes are similar to univariate GARCH(p,q) models:

h t = ω + q j=1 A j r 2 t-j + p j=1 B j h t-j (6)
with ω a N × 1 vector, A j and B j diagonal N × N matrices, and r 2 t = r t r t . When the conditional correlation matrix P is positive definite and the elements of ω and the diagonal elements of A j and B j positive, the conditional covariance H t is positive definite.

DCC MGARCH models

Due to the possibly overly restrictive assumption of constant conditional correlations, we consider a third class of multivariate GARCH models which attempts at making the conditional correlation in eq(4) time-varying:

H t = D t P t D t (7) 
According to [START_REF] Engle | Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models[END_REF] Dynamic Conditional Correlation (DCC) MGARCH model, we introduce the following dynamic matrix process:

Q t = (1 -a -b)S + a t-1 t-1 + bQ t-1 (8)
with a and b respectively positive and non-negative scalar parameters such that a + b < 1, S the unconditional correlation matrix of the standardized errors t , and Q 0 is positive definite.

To produce valid correlation matrices, Q t needs to be re-scaled as follows:

P t = (I Q t ) -1/2 Q t (I Q t ) -1/2 (9)
Having detailed the VAR and MGARCH modeling on which our empirical estimation strategy hinges, we present in the next section the data used.

Data

We study three time-series of oil, gas, and CO 2 daily closing prices. Insert Table 1 about here Descriptive statistics for oil and gas raw price series, log-returns, VAR and MGARCH residuals may be found in Table 1. The distributional properties of the oil and gas raw price series appear non-normal. The oil and gas markets are positively skewed and since the kurtosis (or degree of excess) in both of these energy markets exceeds three, a leptokurtic distribution is indicated.

Insert Figure 1 about here in Table 1. We observe that the ECX December 2008 futures contract presents nonzero skewness and excess kurtosis 9 . These summary statistics also reveal a "fat tailed" leptokurtic distribution.

Insert Figure 2 about here 8 Therefore, Phase II futures proved to be much more reliable than futures prices for delivery during Phase I (2005)(2006)(2007) due to the banking restrictions enforced between 2007 and 2008 [START_REF] Alberola | European carbon prices and banking restrictions: Evidence from Phase I (2005-2007)[END_REF]). 9 Note for a normally distributed random variable skewness is zero, and kurtosis is three. To sum up, none of the raw time-series under consideration may be approximated by the normal distribution. Oil, gas and CO 2 log-returns are presented in Figure 2. In the next section, we present our estimation results.

Estimation Results

This section contains the estimation results for the VAR and MGARCH modeling of oil, gas, and CO 2 prices, denoted by (OIL t , GAS t , CO2 t ) .

VAR Results

In this section, we conduct a preliminary data analysis by applying a VAR(p) process to the returns of each price series (see Hsu [START_REF] Hsu Ku | Student-t distribution based VAR-MGARCH: an application of the DCC model on international portfolio risk management[END_REF] for a similar approach). The stability of VAR(p) processes appears indeed useful to ensure that the variables under consideration are stationary. First, the raw time-series plots are shown in Figure 1. A visual inspection indicates nonstationarity in each of the series, so we proceed by taking differenced natural logs, which allows convenient interpretation by means of approximate percentage change. The time-series plots of log-returns, given in Figure 2, appear stationary. Second, to confirm this diagnostic, we conduct unit root tests by applying the Augmented Dickey-Fuller (ADF) test regressions. We use the oil, gas, and CO 2 price series transformed into log-returns.

Insert Table 2 about here

The results of ADF tests are summarized in Table 2. These tests confirm that the original data are considered nonstationary. The oil, gas and CO 2 price series are stationary when taken in logarithmic first-difference transformation. It can be concluded that all time-series are integrated of order one (I(1)). After taking this nonstationarity into account, we need to determine the optimal length for an unrestricted VAR (with a maximal lag number of eight).

Insert Table 3 about here

Those results are reported in Table 3. All criteria unambiguously point out an optimal lag order p = 1. Thus, we choose the most parsimonious specification of a VAR(1) model. We can therefore proceed to fit a vector autoregressive model to the tri-variate log-returns of the time-series (OIL t , GAS t , CO2 t ) , which has a length of 936 observations. The VAR(p) model equation is:

  OIL t GAS t CO2 t   =   w 1 w 2 w 3   +   γ 1,1 γ 1,2 γ 1,3 γ 2,1 γ 2,2 γ 2,3 γ 3,1 γ 3,2 γ 3,3     OIL t-1 GAS t-1 CO2 t-1   +   1t 2t 3t   8 F o r P e e r R e v i e

w

Insert Table 4 

about here

The estimated parameters and robust standard errors are given in Table 4, along with diagnostic tests. The VAR(1) model has 12 parameters, of which 3 are significant. Note that the gas variable is negatively impacted by its own lag, while the CO 2 variable is positively impacted by the gas variable and its own lag at the 1% significance level. According to the diagnostic tests shown at the bottom of Table 4, there is no significant autocorrelation left in the residuals of this VAR(1) model 10 . However, there is significant autocorrelation in the three series of squared residuals, which indicates the necessity to use a Multivariate GARCH model for further analysis.

Insert Figure 3 about here Besides, OLS-CUSUM tests (based on cumulated sums of OLS residuals against a single-shift alternative, see [START_REF] Kramer | The CUSUM Test with OLS Residuals[END_REF]) for the presence of structural changes in the components of the VAR(1) model are shown in Figure 3. We reject the null that the process should have a peak around the breakpoint for all time-series. For all variables, the empirical fluctuation processes stay safely within their bounds.

In the next step of our empirical strategy, we proceed by fitting a suitable MGARCH model to the residuals ( 1t , 2t , 3t ) of the VAR(1) model for the oil, gas, and CO 2 variables.

MGARCH Results

In this section, we discuss first some issues concerning the estimation of the MGARCH models presented in Section 2.2, and second we present the results obtained for each class of model.

Estimation practicalities

In the unrestricted BEKK MGARCH model, too large values of K yield to an identification problem because several parameterizations yield the same representation of the model. To overcome these numerical difficulties, it is generally assumed that p = q = K = 1 in the application of eq(2). Such restrictions may be found in [START_REF] Kroner | Modeling Asymmetric Comovements of Asset Returns[END_REF], where B = δA and δ > 0 is a scalar. The estimation of the "diagonal BEKK" model for the three timeseries is carried out maximizing the log-likelihood, assuming that residuals are Gaussian white noise 11 .

10 To conserve space, the autocorrelation function (ACF) for the residuals and squared residuals are not reproduced in the article, and may be obtained upon request to the authors. 11 i.e. the log-likelihhod is computed on the basis of the normal distribution. The estimation of CCC MGARCH models offers on the contrary a computationally attractive parameterization. Besides the univariate GARCH equations, the number of parameters needing to be estimated is equal to N (N -1)/2. Covariance stationarity is ensured if the roots of det(I -q j=1 A j λ jp j=1 B j λ j ) lie outside the unit circle.

In the DCC MGARCH model, positive definiteness of H t in eq( 7) is ensured if the conditional correlation matrix P t is positive definite at each point in time, in addition to having welldefined conditional variances h it,i=1,...,N . This leads again to computationally demanding estimation procedures, as the correlation matrix has to be inverted for each t during every iteration.

In what follows, we set p = 1 and q = 1 for each class of MGARCH model. The BHHH algorithm [START_REF] Berndt | Estimation and Inference in Nonlinear Structural Models[END_REF]) is used to produce quasi maximum likelihood parameter estimates and their corresponding asymptotic robust standard errors.

BEKK MGARCH results

Now we proceed to identifying a tri-variate BEKK(1,1) MGARCH model to the residuals of the VAR(1) model. The model follows the equations:

t = H 1/2 t ν t , H t = C C + q i=1 A i t-i t-i A i + p j=1 B j H t-j B j (10) 
with (Z t ) = (W t , X t , Y t ) the time-series of oil, gas, and CO 2 variables, H t the conditional covariance matrix of Z t , cov(Z t | t-1 ) = H t , {C, A i , B j } the parameter matrices, ν t a threedimensional white noise with covariance matrix cov(ν) = I n , and I n the unity matrix of order n.

Insert Table 5 about here

The estimated parameters, together with their robust standard errors in parenthesis, are

shown in Table 5. from -0.55 for gas to 0.58 for CO 2 . In terms of cross-innovation effects, past innovations in most markets exert an influence on the other energy and/or emissions markets. For example, in the case of the CO 2 market cross-innovations, the oil market is significant with a coefficient of -0.15. The exception to the presence of cross-innovation effects is gas on the CO 2 market.

In the GARCH set of parameters, 44% of the estimated coefficients are significant. The lagged volatility spillover effects for oil, gas, and CO 2 are equal to, respectively, -0.84, -0.29, and -0.64.

This means that past volatility shocks in each individual market have a greater effect on their own future volatility than the past volatility shocks in the other energy/emissions markets. In terms of cross-volatility for the GARCH parameters, the only significant parameter appears to be oil on the CO 2 market. That is, past volatility shocks in the oil market have the greatest effect on the future volatility of the CO 2 market. The latter result is in line with previous literature, which highlighted the predominant role of oil price changes in driving CO 2 price changes. We are able to confirm this effect in a multivariate and dynamic econometric framework.

The sum of the ARCH and GARCH coefficients measures the overall persistence in each market's own volatility, i.e. -0.45, 0.84, and -0.07 for the oil, gas and CO 2 markets respectively.

The cross-volatility spillover effect of the oil market on the CO 2 market is equal to 0.22. As a diagnostic check of the fitted model, the range of residuals is now closer to what we expect from a standard normal distribution, as the ACF plots for each time-series are contained within the critical values 12 . However, the ACF of the squared residuals between lags 9 and 14 clearly exhibit some autocorrelation. Thus, the diagnostic checks of the BEKK(1,1)

MGARCH model suggest that the model may be misspecified with respect to the necessary white noise residuals properties 13 . We need to try and refine the trivariate GARCH model in order to remove the small number of remaining significant correlations in the ACFs of the standardized residuals 14 .

To this purpose, we detail in the next section the results obtained with constant conditional correlation and dynamic conditional correlation models.

12 These plots are not reproduced in the article to conserve space, and may be obtained to the authors upon request. 13 To make further visual assessment of the goodness of fit of the model, the interested reader may ask to the authors a graph of the standardized residuals. Note that while for an univariate GARCH standardized residuals are simply the model residuals divided by the conditional standard deviation, the standardized residuals for a multivariate GARCH are obtained by the whitening matrix transformation Σ -1/2 t Zt. For a well-fitted multivariate GARCH model, this transformation produces standardized residual vectors that have an approximately diagonal conditional covariance matrix. 14 Since the BEKK(1,1) MGARCH model appears misspecified, we do not display the plots of the conditional standard deviations and correlations to conserve space. 

CCC MGARCH results

We estimate below [START_REF] Bollerslev | Modelling the Coherence in the Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model[END_REF] constant-correlation model in which the conditional variances of {y t }, t = 1, . . . , T time-series with K elements each so that y t = (y 1t , . . . , y Kt ) follow a GARCH process, while the correlations are constant:

σ 2 it =ω i + α i σ 2 i,t-1 + β i y 2 i,t-1 , i = 1, . . . , K σ ijt =ρ ij σ it σ jt , 1 ≤ i < j ≤ K (11)
with ω i , α i , and β i nonnegative, α i + β i < 1 for i = 1, . . . , K, σ ijt the covariance elements, and Γ = {ρ ij } the correlation matrix positive definite. A tri-variate GARCH(1,1) model with constant-correlation is fitted to the VAR(1) residuals of oil, gas and CO 2 variables.

Compared to the BEKK(1,1) MGARCH, the CCC(1,1) MGARCH does not exhibit autocorrelation, since the squared residuals remain in the range of the critical values15 . Besides, the fitted model has resulted in smaller ACF values for the standardized residuals relative to the series observed. To provide further guidance in assessing the fit of the CCC(1,1) MGARCH model, the standardized residuals show that most, but not all, of the autocorrelation structure has been removed by the fitted CCC(1,1) MGARCH model16 . Nevertheless, the residuals of the CCC(1,1) MGARCH model satisfy the required white noise properties, and useful interpretations may be derived from our estimates.

Insert Figure 4 about here

The time-varying standard deviations estimated from the CCC(1,1) MGARCH model for the oil, gas and CO 2 variables are shown in Figure 4.

Insert Table 6 about here

The results are summarized in Table 6. The CCC(1,1) MGARCH model has 12 parameters, of which 9 are significant. The last three rows of Table 6 show estimates of the correlation parameters. The other rows show parameter estimates of univariate GARCH(1,1) models for each time-series. As can be seen, most of the estimated univariate GARCH parameters, except the constant terms, are statistically significant and positive. The level of the ARCH coefficient, which represents the reaction to new information, is quite low. The value of α + β is close to one for each time-series, which suggests that the variance process is not integrated [START_REF] Engle | Modelling the persistence of conditional variances[END_REF]). As for the correlation parameters, we observe that There is strong evidence (significance at the 1% level) of time-varying correlations between the tri-variate time-series. Not surprisingly, we find evidence against constant correlations.

As highlighted in previous literature [START_REF] Alberola | Price drivers and structural breaks in European carbon prices 2005-2007[END_REF], [START_REF] Oberndorfer | EU emission allowances and the stock market: evidence from the electricity industry[END_REF], [START_REF] Bunn | Structural interactions of European carbon trading and energy prices[END_REF]), CO 2 price changes are dependent, to a large extent, on price changes of other energy markets such as oil and gas. If these markets have low correlations, and/or their relationships are not stable overtime 17 , we would expect the correlations between the three time-series to be time-varying. This comment brings us to investigate in the next section the interrelationships between oil, gas and CO 2 prices from a dynamic correlation perspective.

DCC MGARCH results

For the ease of presentation, we re-state the DCC(m,n) MGARCH model estimated [START_REF] Engle | Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models[END_REF]):

h i,t = ω i + P i p=1 α ip r 2 i,t-p + Q i q=1 β iq h i,t-p i = 1, . . . , k (12) 
Q t = 1 - M m=1 α * m - N n=1 β * n Q + M m=1 α * m ( t-m t-m ) + N n=1 β * n Q t-n R t = Q-1 t Q t Q-1 t ( 13 
)
with t = D -1 t r t , t ∼ N (0, R t ), Qt a diagonal matrix containing the square root of the diagonal entries of Q t , and Q t the matrix of unconditional covariances. Eq(12) is a standard univariate GARCH model, and eq(13) is referred to as a DCC(m,n) model. We fit eq(12) and ( 13) to the VAR(1) residuals of oil, gas, and CO 2 variables. As explained in Section 4.2.1, we choose to adopt the most parsimonious specification with m = 1 and n = 1. Similarly to the constant-correlation model, the ACF plots of residuals and squared residuals do not exhibit autocorrelation 18 . It may be concluded that the residuals of the DCC(1,1) MGARCH model satisfy the necessary white-noise properties.

Insert Figure 5 about here

In Figure 5, we can also look at the normal Q -Q plots of the standardized residuals for all estimated models. We observe that the deviation from the normal distribution is highest in 17 Alberola et al. (2008) highlight that the influence of other energy markets (such as oil and gas) on CO2 price changes varies depending on institutional events. 18 These plots are not reproduced in the article to conserve space, and may be asked upon request to the authors. the VAR model. The Q -Q plots for oil almost lie on a straight line in all MGARCH models, while gas seems to differ from the normal distribution. Compared to gas, the mismatch appears less pronounced for the CO 2 variable in all MGARCH models.

Insert Table 7 about here DCC(1,1) MGARCH estimates are reported in Table 7. The DCC(1,1) MGARCH model has 11 parameters, of which 7 are significant. As sensitivity tests, we notice the remarkable stability of the coefficients and robust standard error estimates between the CCC(1,1) and DCC(1,1) MGARCH models. The correlation structure of the DCC(1,1) MGARCH model has a clear interpretation: there is a non-constant interaction of the three time-series with respect to conditional correlation, and this correlation impacts current correlation with a lag of 1. This interaction effect would be neglected if the three time-series of VAR residuals were modeled in isolation, each with a univariate GARCH model. Next, we reproduce [START_REF] Engle | Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH[END_REF] test for the presence of dynamic correlation in the residuals of the DCC(1,1) MGARCH model: [START_REF] Engle | Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH[END_REF] p value and χ 2 statistic testing for the dynamic correlation between the oil, gas and CO 2 residuals are presented in the last two rows of Table 7. Under the null the constant and all of the lagged parameters in the model should be zero. Thus, we reject the null of a constant correlation in favor of a dynamic structure.

H 0 :R t = R ∀t ∈ T H a :vech(R t ) = vech(R) + β 1 vech(R t-1 + β 2 vech(R t -1) + . . . + β p vech(R t-1 )) (14)

Insert Figure 6 about here

In Figure 6, we provide a visual representation of the dynamic correlations between the oil, gas and CO 2 variables estimated from the DCC(1,1) MGARCH model 19 . To allow direct comparison, the dashed lines in Figure 6 represent the estimated constant conditional correlations from the CCC(1,1) MGARCH model. The constant-correlation model tends to bias (upward in the case of ρ GAS,CO2 , downward in the case of ρ OIL,CO2 ) the actual correlations observed in the dynamic correlation model. The DCC MGARCH model thus provides a more accurate description of the dynamics of the correlations between the oil, gas, and CO 2 variables overtime. 19 To conserve space, we do not reproduce the plots of the time-varying standard deviations which are very similar to the CCC(1,1) MGARCH model, due to the stability of the coefficients estimated with the DCC(1,1) MGARCH model. The values observed for ρ OIL,GAS are comprised between -0.3 and 0.3, which represents a significantly higher bandwith than the value of -0.02 estimated in the CCC(1,1) MGARCH.

The main reason behind this sharp difference between the constant and dynamic correlations models lie in the presence of two peaks in the dynamics of ρ OIL,GAS observed in August and September 2005. These peaks have also been observed in the raw price series, as commented in Section 3.1. Otherwise, ρ OIL,GAS oscillates around the value found in the constant correlation model.

ρ OIL,CO2 spans the range of values comprised between -0.05 and 0.05, with a few peaks in the observed correlations. The constant correlation of -0.04 estimated with the CCC(1,1)

MGARCH model lies outside of the interval where both series oscillates (around 0.01). This plot gives us a clear picture of the dynamic correlations behind the evolution of the oil and CO 2 price series overtime.

As for ρ GAS,CO2 , the correlation structure spans the range from nearly -0.2 to over 0.1, which differs from the value of 0.018 found in the CCC(1,1) MGARCH model. Significant peaks may be found during the period going from April to October 2006, which corresponds to institutional developments during Phase I of the EU ETS20 . The visual inspection of Figure 6 has overall confirmed the superiority of the DCC MGARCH model over the CCC MGARCH model to examine the contemporaneous relationships between volatility and correlation on energy and emissions markets. We may conclude that there is strong evidence of time-varying correlations among the selected oil, gas, and CO 2 variables.

Conclusion

Previous studies on the interrelationships between energy (oil, gas) and emissions (CO 2 ) markets have focused on univariate GARCH models [START_REF] Alberola | Price drivers and structural breaks in European carbon prices 2005-2007[END_REF][START_REF] Oberndorfer | EU emission allowances and the stock market: evidence from the electricity industry[END_REF]). These articles identified oil and gas (among energy prices) as being the main drivers of the CO 2 price (see also [START_REF] Bunn | Structural interactions of European carbon trading and energy prices[END_REF] for structural interactions results). To take this analysis one step further, the goal of our article is to further analyze the co-movements of the oil, gas, and CO 2 price series. Multivariate GARCH models appear as an adequate tool to fulfill such an objective (see Hsu [START_REF] Hsu Ku | Student-t distribution based VAR-MGARCH: an application of the DCC model on international portfolio risk management[END_REF] and [START_REF] Leeves | Declining US output volatility and its effect on labour flow volatility: an MGARCH analysis[END_REF] for recent applications).

Compared to previous literature, we investigate the time-varying correlations of the energy and emissions markets in a multivariate modeling framework. Our econometric methodology consists in fitting various specifications of multivariate GARCH to the residuals of a vector autoregressive model for the three price series. Following a brief review of VAR and MGARCH The BEKK MGARCH model allows to identify own and cross volatility spillovers between energy and emissions markets. We also establish that past volatility shocks have a stronger effect on their own future volatility rather than on the other energy/emissions markets. However, we noticed that the squared residuals of the BEKK MGARCH models exhibit some autocorrelation, which suggests model misspecification. As for constant-correlation models, we find strong evidence of time-varying correlations between the oil, gas and CO 2 price series.

For this reason, we conclude that the CCC MGARCH model does not capture adequately the dependence between the conditional correlations of the oil, gas, and CO 2 price series.

The class of DCC MGARCH model features white noise residuals properties, while reflecting the dynamic correlations overtime. It also uncovers clear interactions between the VAR residuals with respect to conditional correlation. These interactions impact the current correlation structure with a lag of one, and would have been neglected if the three time-series were modeled in isolation using univariate GARCH models. The estimates of time-varying correlations typically features values of [-0.3;0.3] between oil and gas, [-0.05;0.05] between oil and CO 2 , and [-0.2;0.2] between gas and CO 2 . The DCC MGARCH model may therefore be identified as being the most satisfactory.

Through this empirical analysis, we have been able to identify strong connections between energy and emissions markets. These results convey interesting applied economics insights, as they inform us about the dynamic correlations between oil, gas, and CO 2 prices modeled jointly overtime. They may be used directly in the banking and finance industry, as well as by brokers for companies regulated by the EU ETS, to make informed hedging decisions. In extension of this work, an interesting area for future research lies in the investigation of the transmission of shocks on the term structure of the energy and emissions markets, as is usual for other financial markets [START_REF] Christiansen | Macroeconomic Announcement Effects on the Covariance Structure of Government Bond Returns[END_REF]). 

  Compared to previous literature, we adopt a multivariate econometric framework which al-

5

  i.e. from the start of CO2 trading on exchanges until the expiration date of the CO2 futures contract of maturity December 2008.6 As detailed below, BEKK stands for the Baba-Engle-Kraft-Kroner model, CCC for the constant conditional correlation model, and DCC for the dynamic conditional correlation model.

  of CO 2 prices exogenous regressors such as oil and gas prices.

Fitting

  a VAR model to energy and emissions markets thus appears as a natural extension of this methodology in line with our research question. Next, we recall various specifications of MGARCH.

  and Gas PricesWe use the daily NYMEX Crude Oil Futures traded in $/barrel, and the daily Zeebrugge Natural Gas Next Month contract traded in = C/MWh. Price series are converted to = C using the daily exchange rate provided by the European Central Bank.

Figure 1

 1 Figure 1 presents the price development for the Zeebrugge natural gas next month, and NYMEX crude oil futures price series from April 22, 2005 to December 15, 2008. In November 2005 and September 2008, natural gas prices soared to 90 = C/MWh, and steadily decreased afterwards to 40 = C/MWh in February 2008 and December 2008. The brent price series peaked over 80 = C/barrel from May to August 2008.

  The BEKK(1,1) MGARCH model has 27 parameters, of which 16 are significant. The maximum eigenvalue is 0.86901. The coefficients for the variance-covariance equations are generally significant for own-and cross-innovations, and significant for ownand cross-volatility spillovers in the individual price series of oil, gas and CO 2 , indicating the presence of strong ARCH and GARCH effects. In evidence, 89% (8 out of 9) of the estimated ARCH coefficients, and 44% (4 out of 9) of the estimated GARCH coefficients are significant at the 1% level.Own-innovation spillovers in the energy and emissions markets are large and significant, indicating the presence of strong ARCH effects. The own-innovation spillover effects range

  the three energy and emissions markets are quite low, all below 0.1.

  have detailed the main interests for investigating dynamic correlations between energy and emissions markets. Then, we have detailed the daily data used for oil, gas, and CO 2 prices from April 2005 to December 2008. After fitting a VAR model to the logreturns of the time-series, the observed squared residuals revealed significant autocorrelations in all time-series, indicating a further need for tri-variate MGARCH modeling. Hence, we investigated the interrelationships between the oil, gas, and CO 2 markets by using three classes of MGARCH: BEKK models, constant conditional correlation (CCC) and dynamic conditional correlation (DCC) models.

  Figure 1 215x279mm (600 x 600 DPI)

  

  

  

  

  

  

  2) where A kj , B kj , and C are N × N parameter matrices, and C is lower triangular to ensure the positive definiteness of H t . Note the BEKK model is covariance stationary if and only if the

	eigenvalues of q j=1	K k=1 A kj ⊗ A kj + p j=1	K k=1 B kj ⊗ B kj are less than one in modulus,
	with ⊗ the notation for Kronecker products. Due to the computational burden involved by
	the estimation of a full BEKK model 7 , we restrict the number of parameters by implementing
	the following "diagonal BEKK" MGARCH model:

  Our study period goes from April 22, 2005 to December 15, 2008 which corresponds to a sample of 936 observations.

The source of the data is the European Climate Exchange (ECX), Bloomberg and Reuters.

Table 1 :

 1 Summary Statistics Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. Std.Dev. stands for Standard Deviation, Skew. for Skewness, and Kurt. for Kurtosis. The number of observations is 936.

	F Variable o Mean r Raw Price Series	Median Max	Min	Std. Dev.	Skew.	Kurt.
	Oil Gas CO 2 Log-Returns Oil Gas CO 2	55.7279 53.1892 93.9841 26.2558 11.9011 0.8585 46.6878 44.3250 107.7500 15.7200 17.8437 0.5299 P 20.9298 20.9000 32.2500 12.2500 3.5804 0.2084 e -0.0003 0.0004 0.1776 -0.1401 0.0268 0.0988 0.0008 -0.0014 0.3590 -0.3949 0.0603 0.5472 e r -0.0001 0.0012 0.1865 -0.2882 0.0287 -1.3195	3.6833 3.0022 2.7831 8.4889 13.2876 17.7714
			R			
			e		
			v i e		
				w	

Table 2 :

 2 ADF Tests for Oil, Gas and CO 2 Variables Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. The critical values reported are from[START_REF] Dickey | Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root[END_REF] and[START_REF] Hamilton | Time Series Analysis[END_REF]. The number of observations is 936.
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	Lag AIC(n) HQ(n) SC(n) F P E(n)	1 -1.997933 -1.99450 -1.990114 0.000210 Diagnostic Tests 2 -1.997209 -1.992437 -1.984699 0.000212 Lag Q 1 6 F o r P e e r R e v i e w 3 4 5 6 -1.996408 -1.994872 -1.995287 -1.994975 -1.989847 -1.986521 -1.985147 -1.983045 -1.979207 -1.972980 -1.968704 -1.963700 0.000214 0.000217 0.000216 0.000217 p value JB 4 p value M ARCH 5 p value 7 -1.993828 -1.980109 -1.957862 0.000219 p = 1 165.1727 0.03965 13208.33 0.00001 481.9319 0.00001	8 -1.992055 -1.976545 -1.951397 0.000223

Table 3 :

 3 VAR Optimal Lag Length Determination for Oil, Gas and CO 2 Variables Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. AIC(n) refers to the Akaike Information Criterion for a lag of order n, HQ(n) refers to the Hannan-Quinn Criterion for a lag of order n, SC(n) refers to the Schwarz Criterion for a lag of order n, and F P E(n) refers to the Final Prediction Criterion for a lag of order n. The number of observations is 936. Diagnostic tests are provided for the optimal lag length p = 1. Q 16 refers to the Ljung-Box-Pierce Portmanteau Test Q Statistic with a maximal lag of order 16, JB 4 is the Jarque-Berra Normality Tests Statistic for a maximal lag of order 4, and M ARCH 5 is the Multivariate ARCH Test Statistic for a maximal lag of order 5.

	γ 3,2 γ 3,3	0.11620*** 0.12060***	0.06803 0.03257
	γ 2,3 γ 3,1	0.006472 0.03261	0.01547 0.03056
	F o γ 2,2 r -0.16630*** 0.03231 e e r R e v e w 1 0.00069 0.00391 w w 1 0.00113 0.00187 i γ 1,1 γ 1,2 γ 1,3 -0.04430 -0.00305 -0.00134 0.03278 R -Squ. Adj.R -Squ. SE Log -Lik. F -Stat. Diagnostic Tests 0.00730 OILt 0.00720 0.002926 0.02674 0.1514 5372.948 0.03494 GASt 0.03099 0.02682 0.05953 5372.948 0.00001 P γ 2,1 -0.01268 0.01451 CO2t 0.01555 0.01131 0.02850 5372.948 0.00566
	w 1	0.00240	0.00176
	Parameter	Estimate	Standard Error

Table 4 :

 4 VAR(1) Estimation Results for Oil, Gas and CO Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. The optimal lag order for the VAR is p = 1. *** denotes 1% significance, ** 5% significance, and * 10% significance levels. The number of observations is 936. R -Squ. stands for the R-Squared, Adj.R -Squ. for the Adjusted R-Squared, SE for the standard error, Log -Lik. for the log-likelihood, and F -Stat. for the F-Statistic. The value of the F -Stat. is the p-value. The VAR(p) model estimated is shown in Section 4.1.

	Parameter	Estimate	
			Oil		Gas	CO 2
	C OIL		-0.00910***	0.01089***	0.00001
			(0.00138)		(0.00613)	(0.00001)
	C GAS		0.00001		-0.04645***	0.00001
	(0.00001) 0.00083 (0.00141) 0.38894*** (0.03606) r F C CO2 A OIL o A GAS 0.04024***	(0.00367) 0.01069*** (0.00551) 0.18887** (0.10386) -0.54739***	(0.00001) -0.01481*** (0.00144) -0.14831*** (0.04072) 0.03205
	A CO2 B OIL B GAS B CO2	(0.01798) 0.01986*** P (0.03490) -0.83827*** e (0.02893) -0.04919 e (0.03600) r 0.02625	(0.06579) 0.23559*** (0.09673) -0.00119 (0.09296) -0.29449*** (0.13907) -0.06593	(0.02130) 0.57486*** (0.04516) -0.08685*** (0.03915) -0.06569 (0.04264) -0.64418***
			(0.03283)	R (0.111374)	(0.04679)
			Diagnostic Tests e e i AIC -6399.865 v Eig. 0.86901
					w

2 Variables

Note:

Table 5 :

 5 BEKK(1,1) MGARCH Estimates for Oil, Gas and CO 2 Variables Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. Robust standard errors in parentheses. *** indicates 1% significance, ** 5% significance, and * 10% significance levels. The number of observations is 936. AIC is the Akaike Information Criterion. Eig. is the maximum eigenvalue. The BEKK(p,q) MGARCH model estimated is shown in Section 4.2.2.

	Parameter	Estimate
	GARCH parameters
	ω OIL	0.0001
		(0.0001)
	α OIL	0.1144***
		(0.0002)
	β OIL ω GAS α GAS r F o	0.8557*** (0.0004) 0.0001 (0.0001) 0.0404*** (0.0001)
	β GAS P ω CO2 e α CO2 e β CO2 r 0.9458*** (0.0002) 0.0001 (0.0001) 0.2507*** (0.0081) 0.6942*** (0.0059)
	Correlation Parameters ρ OIL,GAS -0.0243*** R (0.0001) ρ OIL,CO2 -0.0398*** e (0.0001) ρ GAS,CO2 0.0176*** v (0.0003) i e Log -Lik. 5671.3939
		w

Table 6 :

 6 CCC(1,1) MGARCH Estimates for Oil, Gas and CO 2 Variables Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. Robust standard errors in parentheses. *** indicates 1% significance, ** 5% significance, and * 10% significance levels. The number of observations is 936. The CCC(p,q) MGARCH model estimated is shown in Section 4.2.3.
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Table 7 :

 7 DCC(1,1) MGARCH Estimates for Oil, Gas and CO 2 Variables Note: Oil refers to NYMEX crude oil, Gas to Zeebrugge Natural Gas Next Month, and CO 2 to ECX December 2008 futures price series. Robust standard errors in parentheses. *** indicates 1% significance, ** 5% significance, and * 10% significance levels. The number of observations is 936. ES p value and ES χ 2 stat are Engle and Sheppard's (2001) dynamic correlation tests statistics for a maximum lag of order 1. The DCC(m,n) MGARCH model estimated is shown in Section 4.2.4.

Address for correspondence: Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16, France. Email address: julien.chevallier@dauphine.fr

A GARCH(p,q) model stands for a General Autoregressive Conditional Heteroskedasticity model of autoregressive order p and moving average q.

 3 In a somewhat different setting,[START_REF] Kanen | Carbon Trading and Pricing[END_REF] identifies brent prices as the main driver of natural gas prices which, in turn, affect power prices and ultimately CO2 prices.[START_REF] Bunn | Structural interactions of European carbon trading and energy prices[END_REF] also identify econometrically that CO2 prices react significantly to a shock on gas prices in the short

term.4 A disclaimer is necessary: only the European emissions market can be analysed and is analysed here.

As the number of parameters (p + q)KN 2 + N (N + 1)/2 increases, it may be difficult to obtain convergence during the estimation.
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ACF of residuals and squared residuals are not reproduced in the article to conserve space, and may be asked upon request to the authors.

This figure is not reproduced in the article to conserve space, and may be asked upon request to the authors.

Namely, the first verification of emissions occurred in April 2006 (Alberola et al. (2008)), while the European Commission announced banking restrictions between 2007 and 2008 in October 2006 (Alberola and Chevallier (2009))