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We report a 4-component relativistic benchmark study of the isotopic field shift in the rotational

spectrum of three diatomic molecules: TlI, PbTe and PtSi. A central quantity in the theory is the

derivative with respect to internuclear distance of an effective electron density associated with a

given nucleus, calculated at the equilibrium distance. The effective density, which is related to the

mean electron density within the nuclear volume, is usually replaced with the contact density, that

is, the electron density at the origin of the nucleus. Our computational study shows that for the

chosen systems this induces errors on the order of 10%, which is not acceptable for high-precision

work. On the other hand, the systematic nature of the error suggests that it can be handled by

an atom-specific correction factor. Our calibration study reveals that relativistic effects increase

the contact density gradient by about an order of magnitude, and that the proper transformation

of the associated property operator is mandatory in 1- and 2-component relativistic calculations.

Our results show very good agreement with the experimental data presented by Schlembach and

Tiemann [Chem. Phys. 68 (1982) 21], but disagree completely with the revised results given by

the same group in a later paper [Chem. Phys., 93 (1985) 349]. We have carefully re-derived the

relevant formulas and can not see that the rescaling of results is justified. Curiously previous DFT

calculations agree quite well with the revised results for TlI and PbTe, but we demonstrate that

this is because the authors inadvertently employed a non-relativistic Hamiltonian, which by chance

induces an error of the same magnitude as the suggested scaling. For the PtSi molecule our results

for the correction term due to nuclear volume disagree with experiment by a factor five, and we



recommend a re-examination of the experimental data.
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I. INTRODUCTION

The incompatibility of the α-scattering experiments of Geiger and Marsden[1] with the multiple scattering predicted

by Thomson’s “plum pudding” atomic model[2] led Rutherford in 1911 to propose that all positive charge was

concentrated in a nucleus at the center of a homogeneously negatively charged sphere[3, 4]. Rutherford concluded

that the size of the nucleus had to be very much smaller than the atomic radius, on the order of 10−15 m or less.

Since the nuclear size is indeed negligible for the description of most phenomena on an atomic scale, an overwhelming

majority of theoretical studies of molecules and solids, starting with the celebrated scattering formula of Rutherford,

treat nuclei as point charges. A notable exception are relativistic molecular electronic structure calculations based on

the finite basis approximation, where the point nucleus assumption leads to basis set convergence problems due to

the weak singularities displayed by the solutions of the Dirac Hamiltonian at the nuclei. To overcome this problem

it was early realized [5, 6] that the introduction of a finite (Gaussian) nuclear charge distribution not only curbs the

singularity but also leads to Gaussian type solutions near the origin, which greatly alleviates the integral evaluation

in relativistic wave function calculations using basis set expansions.

However, many phenomena known from atomic and molecular spectroscopy as well as isotope chemistry even lack a

reasonable explanation if the finite size of a nucleus is not taken into account. A notable example is the isotope shift in

the electronic spectra of atoms and molecules [7–9] which is well understood as an interplay between i) the mass shift,

scaling approximately with ∆M/M2 (M being the mass), and ii) the nuclear field shift, arising from the difference

in size and shape of the extended nucleus of each isotope. The mass shift term typically becomes less significant with

increasing nuclear charge values Z due to its scaling properties whereas the nuclear field shift is known to be the main

contributor to the total isotope shift for Z ≥ 58 [8]. Following similar lines of thoughts Bigeleisen [10, 11] developed

in the mid 1990s a general theoretical model which was able to explain isotopic anomalies in chemical reactions, as

for example observed in U(IV)-U(VI) exchange reaction experiments [12] which yielded a 235U isotopic enrichment

over 238U in the U(VI) species of an initial 235U/238U mixture. As a result, Bigeleisen could unambiguously attribute

the experimentally observed excess separation factor (beyond the expected regular mass-dependent fractionation) to

a nuclear field shift effect rather than a nuclear spin effect [12]. The theory proved also successful to the description

of related findings in 233U/238U isotope studies [13] and ab initio atomic and molecular studies of uranium isotope

fractionation have been reported by Abe and co-workers[14, 15]. The effect of nuclear volume has also been considered

as a possible source of explanation for isotopic anomalies observed in the isotope fractionation of other heavy atoms

such as mercury [16–19], as well as observed in the early Solar System [20].
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In the present work we consider the effect of nuclear volume no rotational spectra. In the early 1980s Tiemann

and co-workers [21] conducted a series of high-resolution rotation spectroscopy experiments for isovalent, closed-shell

diatomics AB, which aimed at an accurate assessment of spectroscopic constants as for example, the equilibrium bond

length Re or the rotational constant Be. In the particular case of thallium and lead compounds, they were not able

to bring their measured isotope data in agreement using the existing theory of adiabatic and non-adiabatic correction

terms to the Born-Oppenheimer (“clamped nuclei”) approximation [22–24], considering their order of magnitude

required to derive consistent Dunham coefficients Ykl [25]. In a follow-up publication Knöckel and Tiemann [26]

therefore first unambiguously identified the necessity of, beyond the known mass-dependent corrections, introducing

an additional correction factor arising from the finite size of the nuclei. Taking into consideration this finite extension in

the initial molecular Hamiltonian, Schlembach and Tiemann [27] built a sound theoretical foundation of the molecular

field shift in rotational spectra. Their final expression for the total correction term to the first Dunham coefficient

Y01, which is of particular interest in rotational spectroscopy, thus not only contains mass-dependent contributions

but also a further term that is proportional to the change in the mean-square nuclear charge radius δ
〈
r2n
〉

times the

derivative
(
dρ(0)

dR

) ∣∣∣
Re

of the electron density ρ(o) at a given nucleus with respect to the internuclear distance R, taken

at Re. The so-called contact density ρ(0) is a central quantity in the theory of the Mössbauer isomer shift[28–33], but

appears as a consequence of approximations[34, 35]. The same holds true in the case of the molecular field shift, as

will be discussed in section II.

A careful review of the original spectroscopic data for the heavy-element Pb- and Tl-compounds [21] by means of

the expressions derived in Ref. 27 revealed then the molecular field shift term as main contributor to the isotope shift

corrections to Y01. Interestingly, though, in 1985 [36] the same experimental group announced a revision of their entire

set of earlier results (for a review see for example Ref. 37) based on a computational error where they recommend

a scaling of the data by a factor 10. Their revised findings have later been corroborated by Cooke and co-workers

[38–41] who performed a series of (scalar-relativistic) ab initio calculations based on density-functional theory (DFT).

They furthermore demonstrated the existence of a molecular field shift effect in the rotational spectrum of platinum

silicide [39] by carrying out high-resolution experiments accompanied by DFT calculations.

The purpose of the present study is to provide an independent check on both theoretical and experimental studies

of the isotopic field shift in rotational spectra. On the theoretical side it is known that 1- and 2-component relativistic

calculations of molecular properties probing the electron density near nuclei are highly sensitive to picture change

errors [42–45] and so we wanted to calibrate previous calculations against 4-component relativistic highly correlated
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calculations. Theoretical studies can also shed light on the major physical contributions to the molecular field shift.

The paper is therefore organized as follows: In section II we carefully re-derive an expression for the first-order

modification of the rotational constant Be due to nuclear volume changes between isotopes. We have next carried out

non-relativistic, scalar-relativistic two-component as well as relativistic two- and four-component ab initio DFT and

high-level wave function Coupled Cluster calculations for three representative molecules, namely TlI, PbTe and PtSi.

Computational details are provided in section III, and in section IV we compare our results to previous theoretical

and experimental results based on the original as well as revised expressions derived by Tiemann and co-workers. By

means of our extensive reference data we shall reveal a curious twist in the tale before concluding in section V.

II. THEORY

Within the Born-Oppenheimer (“clamped nuclei”) approximation the rovibrational energy levels of a closed-shell

diatomic molecule AB may be determined from an effective radial Schrödinger equation of the form[
− ~2

2µ

d

dR2
+ Eel(R) +

~2J(J + 1)

2µR2

]
ψν,J(R) = Eν,Jψν,J(R) (1)

where R is the internuclear coordinate and µ the reduced mass. Solutions to this problem of rotating vibrator were

provided by Dunham in 1932 [25] in the framework of the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation

[25, 46–49] and expressed in the form nowadays known as the Dunham expansion

Eν,J = h
∑
k=0

∑
l=0

Ykl (ν + 1/2)
k

[J (J + 1)]
l
. (2)

where ν and J are vibrational and rotational quantum numbers, respectively. Eel is the potential obtained from

solving the electronic problem

Helψel
(
rel;R

)
= Eel(R)ψel

(
rel;R

)
(3)

where rel designates all electronic coordinates. The electronic Hamiltonian, relativistic or not, has the generic form

Hel =
∑
i

h(i) +
1

2

∑
i 6=j

g(i, j) + VAB ; h = h0 + VeN (4)

where VAB is the classical repulsion of nuclei A and B and g(i, j) the two-electron operator. The one-electron operator

h splits into the free-particle Hamiltonian h0 and a term VeN describing the interaction with the nuclei.

Following Schlembach and Tiemann[27] we give the Dunham coefficients Ykl in units of frequency. As emphasized

by Ogilvie [50, 51] they are not freely adjustable fitting coefficients since they are interrelated. To lowest order in ν
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and J one has[25]

Y10 = ωe

2π

[
1 +

(
B2
e/4ν

2
e

)
[. . .]

]
≈ νe

Y01 = Be
[
1 +

(
B2
e/2ν

2
e

)
[. . .]

]
≈ Be = h

8πµRe

(5)

where Re is the equilibrium bond distance. For a specific isotopomer α of the molecule AB the Dunham coefficients

are given by

Y αkl = µ−(k/2+l)α Ukl (6)

where Ukl are isotope-independent coefficients. However, the above relation supposes i) that all isotopomers experience

the same internuclear potential and ii) that the first-order JWKB approximation (the Bohr-Sommerfeld quantization

condition) is exact [52]. A more general expression, taking into account the breakdown of the Born-Oppenheimer

approximation, was proposed by Ross et al.[53] in an experimental study of isotopomers of CO

Y αkl = µ−(k/2+l)α Ukl

(
1 +

me

MA
∆A
kl +

me

MB
∆B
kl

)
(7)

and later developed theoretically by Bunker[23] and Watson [24]. In the above expression ∆A
kl and ∆B

kl are mass-

independent atom-specific correction factors.

In the following we shall focus on the modification of the rotational constant by modification of the size of one

nucleus, say nucleus A. Experimentally only discrete values of the nuclear radius are available through isotopic

substitution A → A′, but for the purpose of derivation it is more useful to consider the electronic energy Eel as a

continuous function of both internuclear distance R and the nucleus radius ξ, that is Eel ≡ Eel(R, ξ). We shall let ξA

correspond to the nuclear radius of a particular reference isotope of atom A. The equilibrium internuclear distance Re

for any value of nuclear radius ξ is found by minimizing the electronic energy with respect to internuclear distance,

dEel

dR

∣∣∣∣
ξ

= 0, (8)

and thus becomes a function of the nuclear radius parameter, which allow us to attack the above problem by variational

perturbation theory (see for instance Ref. 54). Since the variational condition Eq. (8) is valid for any nuclear radius

ξ we find the first-order shift in the equilibrium distance by derivation with respect to nuclear radius ξ

d2Eel

dξdR

∣∣∣∣
ξA

=

[
d2Eel

dR2

dR

dξ
+

∂

∂ξ

(
dEel

dR

)]
ξA

= 0 (9)

The expression for the first-order equilibrium distance, Eq. (9), contains the explicit derivative of the electronic

energy Eel with respect to nuclear radius. Such derivatives also appear in recent theoretical studies of the isomer shift

6



in Mössbauer spectroscopy[35, 55, 56]. We can safely ignore contributions from the classical repulsion VAB of nuclei

such that the only non-zero contribution comes from the electrostatic interaction between the electrons and nucleus

A. Its modification upon the isotope substitution A→ A′ is given by

δEelA′A =

∫
ρe(re;R)

[
φA(re; ξ

A′
)− φA(re; ξ

A)
]
dτe. (10)

It should be noted that in the above expression we ignore the implicit dependence on nuclear radius of the elec-

tronic charge distribution ρe. We express the scalar potential of nucleus A in terms of the normalized nuclear charge

distribution ρA

φA(re; ξ) =
Ze

4πε0

∫
ρA(rn; ξ)

rne
dτn. (11)

The perhaps simplest model for a finite nuclear charge distribution is the homogeneous charged sphere of radius ξ

ρHn (r) =


ρ0 ; r ≤ ξ

0 ; r > ξ

; ρ−10 =
4π

3
ξ3 (12)

which is also the model considered by Schlembach and Tiemann [27]. The associated potential is

φHn (r) =


Ze

8πε0ξ
(3− r2

ξ2 ) ; r ≤ ξ

Ze
4πε0r

; r > ξ

(13)

More widely employed in relativistic molecular calculations is the Gaussian model [5, 6] in which the charge distribution

is given by

ρGn (r) = ρ0 exp
[
−r2/ξ2G

]
; ρ−30 = π1/2ξG (14)

with the associated potential

φGn (r) =
Ze

4πε0r
erf(r/ξG). (15)

The radius parameter ξG can be connected to the radius ξ of the homogeneous sphere by requiring identical second

radial momenta

< r2n >=

∫
r2nρn (rn) dτn =

3

2
ξ2G =

3

5
ξ2; ⇒ ξG =

√
2

5
ξ (16)

Schlembach and Tiemann [27] consider the modification of the internuclear potential when going from a point nucleus

to a finite nucleus for each isotope, that is

δEelA0 =

∫
ρe(re;R)

[
φA(re; ξ

A)− φA(re; 0)
]
dτe. (17)
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in order to introduce mass-independent Dunham coefficients Ukl for a fictitious molecule of point-like nuclei. However,

such an approach is problematic in the relativistic case since the electronic density display a weak singularity at point

nuclei. As such, it is perhaps better to modify the Dunham expansion by the introduction of a reference isotopomer,

as suggested by Le Roy [52]. However, we can formally write Eq. (10) as

δEelA′A = δEelA′0 − δEelA0. (18)

where the electron density will be that of a molecule with finite size nuclei. In passing we note that the difference

potential in Eq. (17), using the homogeneous charged sphere model, looks curiously similar to the potential of the

Rutherford atom, consisting of a positive point charge at the origin and the homogeneous electronic charge within a

sphere of radius ξ [3]. We can formally write Eq. (17) as

δEelA0 = ρ̄e

∫ [
φA(re; ξ

A)− φA(re; 0)
]
dτe. (19)

where we have introduced a constant effective electronic charge density ρ̄e. Due to the extreme short-range nature of

the above difference potential, as seen for instance from Eq.(13), the effective density ρ̄e is typically approximated by

the contact density, that is the value of the electronic charge density at the nucleus:

ρ̄e ≈ ρe(0) . (20)

For light atoms this is certainly an excellent approximation; for the more extended nuclei of heavier atoms this leads

to an overestimation [34]. In the case of the Mössbauer isomer shift the deviation is quite systematic in nature, which

suggests that it can be handled by a correction factor[35], a feature that will also be investigated in the present study.

Using Eq.(18) we obtain the expression

δEelA′A = ρ̄e
Ze

6ε0
δ < r2n >A′A; δ < r2n >A′A=< r2n >A′ − < r2n >A (21)

which holds for both the homogeneous charged sphere and the Gaussian model of the nuclear charge distribution.

Following Filatov [55] an alternative approach to δEelA′A is to approximate the potential difference of Eq.(10) by a

first-order Taylor expansion, that is

δEelA′A ≈
∫
ρe(re;R)

∂φA(re; ξ)

∂ξ

∣∣∣∣
ξA

(
ξA

′
− ξA

)
dτe =

∂

∂ξ

(
dEel

dR

)∣∣∣∣
ξA

(
ξA

′
− ξA

)
(22)

thus connecting to the expression for the first-order equilibrium distance, Eq. (9).

Using this connection we find that the change in equilibrium bond distance due to change in nuclear size upon

isotope substitution A→ A′ can be expressed as

δRe = − Ze2

6ε0kAe
δ < r2n >A′A

(
dρ̄e
dR

)
RA

e

(23)
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where RAe and kAe corresponds to the equilibrium bond distance and the force constant of the reference isotopomer.

The corresponding modification of the equilibrium rotational constant Be is

δBe = BAe

(
−2

Re

)
δRe = BAe V

Aδ < r2n >A′A (24)

where appears the factor

V A =
Ze2

3ε0kAe R
A
e

(
dρ̄e
dR

)
RA

e

(25)

It has exactly the same form as Eq. (25) of the 1982 paper by Schlembach and Tiemann [27] except that the spectro-

scopic constants RAe and kAe is that of the reference isotopomer and not of a fictitious molecule with point-like nuclei.

Curiously, in a paper[36] from 1985 by the same group the formula for the isotopic field shift factors is given with an

additional factor π2

V A → π2V A (26)

which to our opinion is not justified. However, as we shall see in section IV it contributes to a strange twist in our

story.

III. COMPUTATIONAL DETAILS

All molecular calculations reported in this paper have been carried out with the DIRAC10 program package [57].

A. Electron correlation methods

The absolute magnitude of the electron density in the vicinity of a given nucleus is well described within a mean-

field approach to the electron-electron interaction since the dominant part is governed by the influence of the nuclear

potential and deformations of core orbitals are expensive in energy. The significant relative changes in the contact

density, which yield the most sensitive contributions to the isotopic field shift, are, on the other hand, affected by subtle

alterations in the valence electronic structure in a varying chemical environment. An accurate description of these

valence contributions thus requires proper inclusion of electron-electron correlation, as has been shown recently in the

context of isomer shift predictions for Mössbauer spectroscopy [35, 58]. For the three closed-shell diatomics TlI, PbTe

and PtSi we therefore performed single-reference coupled-cluster (CC) calculations with a full iterative treatment of

single and double excitations (CCSD) and including perturbative corrections for triple excitations (CCSD(T)) [59–61].
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The central object of our study is the first geometrical derivative of the contact density for selected nuclei X

calculated at the equilibrium internuclear distance Re

ρ
[1]X
0 =

dρX(0)

dR

∣∣∣
Re

(27)

which we in the following shall refer to as the contact density gradient. Presently there is no analytic implementation

of CC expectation values in the DIRAC10 program package. For the calculation of contact densities at the CC level we

therefore pursued a finite-field (ff) approach using a computational protocol which is described at length elsewhere

[35] and shall only be briefly sketched in the following. Exploiting the additivity of the contact density contributions

ρ(0) = ρHF (0)+ρcorr(0), namely, (i) the Hartree-Fock expectation value of ρHF (0), which can be evaluated analytically

in DIRAC10, and (ii) the electron-electron correlation term ρcorr(0), we are only left with the determination of the latter

contribution in a finite-field scheme. In line with our previous ff-coupled cluster property calculations [35] we employed

an optimal finite-field parameter of 10−8 for all diatomic systems under consideration and took take advantage of

the central-difference method [64] using a seven-point stencil for the numerical differentiation. In order to obtain the

contact density gradient ρ
[1]X
0 we performed a second numerical differentiation by means of the central-difference

method using a step size of 0.0125 Å as “finite-field” parameter. Computing the contact density gradient as derivative

of a polynomial data fit function yielded equally identical results.

Besides the isotopic field shift evaluations based on the wave function Hartree-Fock and CC methods we also

carried out four- and two-component density functional theory (DFT) calculations. Aiming at an assessment of both

the accuracy and internal consistency within the DFT contact densities (and therefore the isotopic field shift) we

employed an ample set of exchange–correlation functionals, namely LDA (VWN5) [65, 66], BLYP [67–69], B3LYP

[67, 70, 71], CAMB3LYP [72], PBE [73], PBE0 [74], and furthermore the SAOP model potential [75]. Of main concern

for electron density evaluations in the core region is the use of a sufficiently dense integration grid in the numerical

integration of the exchange-correlation evaluation [76]. We met this particular requirement by employing throughout

all DFT calculations an ultrafine grid.

B. Hamiltonian

An important aspect of the present study is furthermore to address successive approximations to the four-component

DC Hamiltonian and their validity in the evaluation of the field shift effect for a given nucleus. In particular, we

therefore compare four-component relativistic results to:
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• relativistic and scalar-relativistic data using the eXact 2-Component (X2C) Hamiltonian [77],

• four-component spin-orbit free (sf) [78, 79] (scalar-relativistic) results,

• non-relativistic (NR) values employing the Lévy-Leblond [80] Hamiltonian.

The X2C calculations have been carried out either including 2-electron spin-same-orbit corrections provided by the

AMFI[81, 82] code (relativistic) or by retaining only the spin-free terms in the one-electron Hamiltonian prior to the

transformation to two-component basis (scalar-relativistic; in the following denoted X2C-sf).

For reasons of computational efficiency, a molecular mean-field approximation 4cDC∗∗ to the four-component DC

Hamiltonian 4cDC was applied in the majority of CCSD(T) calculations, where our notation strictly follows the

Hamiltonian hierarchy introduced in Ref. 83. The relative deviation in the contact density gradient compared to the

exact 4cDC-CCSD(T) value was in all cases tested less than 0.05%.

C. Basis sets

All molecular calculations were performed using atom-centered large-component basis sets consisting of uncontracted

scalar Gaussian type orbitals (GTO) where the small-component basis functions were generated, where appropriate,

by the restricted kinetic balance condition as implemented in DIRAC10 [84]. In the case of the heavy elements Pb, Te,

Tl, I and Pt we used the triple-ζ (TZ) and quadruple-ζ (QZ) basis sets of Dyall [85–87]. The basic large-component

SCF set of primitives was further augmented with the recommended correlating and polarizing functions in order to

properly account for correlation contributions from the nsp valence and outer-core (n-1)d shells. For the Pt TZ basis

we also added a set of 2g1h primitives to allow for correlation of the (n-2)f electrons.

Basis set saturation at the heavy nuclei of interest with respect to an accurate computation of the contact den-

sity was achieved by further augmenting the set of primitives in an even-tempered fashion with two more tight s

and one tight p functions, which is in line with previous studies [35, 88]. The final large-component basis sets (de-

noted TZ+2s1p (QZ+2s1p) in the following) thus read as [33s28p18d12f1g] ([37s33p22d18f4g1h]) for Pb and Tl,

[29s22p16d4f1g] ([34s28p19d6f4g1h]) for Te and I, and [32s25p15d11f4g1h] for Pt, respectively. As Si basis set the

correlation-consistent Dunning basis set [90] of triple-ζ quality (ATZ) was likewise chosen in fully uncontracted form

and augmented with diffuse functions.
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D. Active space considerations

We have shown in a recent benchmark work for mercury-containing compounds [35] that an accurate assessment of

correlation effects to the contact density ρ(0) by means of wave-function based methods necessitates the inclusion of

both core-valence and valence correlation contributions. Our active space in all finite-field coupled-cluster calculations

therefore comprised the 5d6s6p shells of Tl (Pb) and 4d5s5p shells of I (Te) of the thallium iodide (lead telluride)

compound. For the platinum silicide diatom the active space has been adapted accordingly with an explicit correlation

treatment of the Pt 4f5p5d6s6p and Si 2s2p shells.

The size of the virtual spinor space for all three molecular systems was tailored to contain all recommended core- and

valence correlation as well as valence dipole polarization functions. This corresponds for the TlI and PbTe compounds

to a threshold of 40 hartree whereas for the PtSi diatom the cutoff is fixed at 62 hartree. The validity of this choice

was confirmed by calculating the contact density gradient ρ
[1]Tl
0 in thallium iodide at the CCSD(T) level using an

enlarged virtual space threshold of 134 hartree. Gradually saturating the unoccupied space by this means led to a

(for the present purpose) negligible decrease of 0.1% in the final value of ρ
[1]Tl
0 .

IV. RESULTS AND DISCUSSION

A. Molecular structures

Table I compiles the equilibrium bond distances Rcomp
e and vibrational frequencies ωcompe that have been derived

from our CCSD(T)/TZ+2s1p data as a by-product of the contact density calculations. Considering first the equilibrium

bond distance Re, we find a very good agreement with the experimental data, with our values consistently being only

0.02 Å longer than their reference. Since our primary concern in the present study was not to reproduce experimental

spectroscopic constants to highest precision we did not further pursue a basis set superposition error correction.

Turning to the vibrational frequencies ωe, we observe a similar good performance of our CCSD(T)/TZ+2s1p data

with the largest discrepancy being less than 2% for thallium iodide. Moreover, the present four-component molecular

mean-field CCSD(T) values for platinum silicide evidently improve upon earlier theoretical estimates based on a

CASPT2 study by Barysz and Pyykkö [91] who reported spectroscopic constants of Re = 2.1 Å and ωe = 531 cm−1

for this molecule.

We conclude this paragraph by noting that all geometrical derivatives, subject to discussion as follows, have been

taken at the experimental equilibrium internuclear distances Rexp
e summarized in Table I. This practice ensures a fair
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comparison with the computational results by Cooke et al. [38, 39] that is to be discussed in Section IV E.

B. On the use of the contact density

Before embarking on the analysis and interpretation of our geometrical derivative data of the electronic charge

density in the light of experimental and earlier theoretical predictions, we first investigate the validity of our approx-

imation (20) of the effective density ρ̄e by the contact density ρe(0). This approach leads to a modified expression of

Eq. 25, which describes the factor V A connected to the molecular field shift:

V A ≈ Ze2

3ε0kAe R
A
e

ρ
[1]A
0 (28)

This is the formula from which we have derived our V A values that enter the discussion in Section IV E.

Table II compiles for the Thallium atom individual orbital contributions to the effective density relative to the

contact density, which were computed at the HF/TZ+2s1p level. The evaluation of effective densities has recently

been made available in a development version of DIRAC10 and its implementation is described in full detail in Ref. 35.

Two trends are clearly discernible from Table II: (i) the contact density is solely composed of contributions from s1/2

and p1/2 shells (as expected from theory) whereas the effective density yields additional contributions considerable

in their magnitude first and foremost from p3/2 orbitals. The latter findings can be understood as a result of sizable

p3/2 orbital values within the nuclear volume. (ii) though contributions from the s1/2 and p1/2 orbitals are throughout

significantly higher in the contact density than in the effective density approach, they appear to be on a rather

systematic basis of ≈ +10%, a fact, which has also been observed for the mercury atom [35]. We expect the contact

density to be an increasingly better approximation of the effective density with decreasing nuclear charge; for xenon

the deviation is found to be around 5% [92].

Significant for the present discussion of the molecular field shift is, however, the first geometrical derivative rather

than the absolute magnitude of the electronic charge density at a given nucleus and internuclear distance. Table III

summarizes for our three reference molecules the effective as well as contact density gradients ρ[1]X computed at

the four-component HF/TZ+2s1p and DFT/TZ+2s1p level, respectively. Yet again we find considerable deviations

for the first derivative between both approaches. The use of the contact density approximation for the study of

nuclear size effects in the rotational spectra of Pt, Tl, and Pb diatomics, may, nevertheless, be well justified since the

deviations exhibit a systematic nature on the order of 10% and, equally important, are independent of the level of

electron-electron correlation included.
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C. Projection analysis of the contact density

At the SCF level the electronic density at nuclear center X may be written as

ρX = −e
nocc∑
i

〈ψi |δ (r−RX)|ψi〉 (29)

Inserting a Linear Combination of Atomic Orbitals (LCAO) expansion of the molecular orbitals into the above

expression leads to a projection analysis[35, 93] of expectation values particularly useful for local properties such as

the contact density. In practice the LCAO-expansion is limited to atomic orbitals p which are occupied in the ground

states of atoms P

|ψi〉 =
∑
pP

∣∣ψPp 〉 cPpi +
∣∣∣ψpoli

〉
(30)

and to which is added the orthogonal complement ψpoli which is denoted the polarization contribution. Expectation

values are accordingly decomposed into inter- and intra-atomic as well as polarization contributions. As shown in

Ref. 35 the contact density ρX0 is completely dominated by the intra-atomic contribution of same center X and can

accordingly be expressed as

ρX0 ≈ −e
∑
pq

{
RLpR

L
q +RSpR

S
q

}
r=RX

DXX
qp ; DQP

qp =
∑
i

cQqic
P∗
pi (31)

where RL and RS are the large and small component radial functions, respectively. Non-zero contributions to the

contact density are provided exclusively by the large components of s1/2 orbitals and the small components of p1/2

orbitals, whereas for the effective density ρ̄e other orbitals may come into play, as seen in section IV B. The radial

functions RX are evidently independent of internuclear distance, so all geometry-dependence arises from the density

matrix DXX
qp expressed in terms of atomic orbital expansion coefficients.

From Table IV it can be seen that the intra-atomic contribution from the Thallium atom dominates the contact

number density gradient ρ
[1]Tl
0 in TlI. Assuming generality of this result, we can accordingly express the contact

density gradient as

ρ
[1]X
0 ≈ −e

∑
pq

{
RLpR

L
q +RSpR

S
q

}
r=RX

(
dDXX

qp

dR

)∣∣∣∣∣
Re

. (32)

It is furthermore seen that a negative contribution from diagonal elements (p = q), which would contribute to the

atomic expectation value, are overwhelmed by positive off-diagonal contributions, which come into play due to the

breakdown of atomic symmetry in the molecule. The two opposing contributions reflect re-organization of the electron

density as a function of internuclear distance. A more detailed breakdown of the expectation value is seen in Table
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V. Looking first at just the geometric D[1]Tl derivative of the atomic density matrix, it can be seen that the above-

mentioned density re-organization takes predominantly place, as expected, amongst the valence orbitals. However, due

to the very much larger values of the radial functions of core orbitals at the nucleus, the contribution of core orbitals

to the overall expectation value is not negligible. Finally, it may be noted that there are non-zero contributions from

the p1/2 orbitals, but significantly smaller than the contributions from s1/2 orbitals.

D. Effect of Hamiltonian, basis and method

We summarize the results of our calculations on TlI, PbTe and PtSi in Tables VI , VII and VIII, respectively.

Before comparing with available experimental data we consider the effect of Hamiltonian, method and basis sets

on the calculated geometrical density derivatives. Starting from the relativistic DFT(SAOP) value ρ
[1]Tl
0 =119.96 Å−4

based on the 4-component relativistic Dirac-Coulomb ( 4DC) Hamiltonian obtained for TlI at the TZ+2s1p basis level,

we see that going to the non-relativistic (NR) limit gives a reduction of -82%, or one order of magnitude, showing the

importance of relativistic effects. Treating in turn exclusively scalar-relativistic effects at the spin-orbit free level (sf),

results in a slight overshoot by +12% for ρ
[1]Tl
0 at the DFT(SAOP)/TZ+2s1p level, indicating the necessity to account

for spin-orbit coupling contributions for this property irrespective of the closed-shell character of the molecular species.

Consider next the ability of the eXact 2-Component (X2C) Hamiltonian to reproduce the 4DC results. Of particular

concern in 2-component relativistic calculations are picture change errors[42–44]. The 2-component relativistic one-

electron Hamiltonian 2ch is obtained by block diagonalization U of the parent 4-component Hamiltonian 4ch

2ch =
[
U† 4chU

]
++

. (33)

Any 2-component one-electron property operator should be obtained by the same procedure, that is 2cΩ =[
U† 4cΩU

]
++

, rather than simply taking the large-large (LL) block of the parent 4-component operator 2cΩ ≈ [ 4cΩ]LL,

an approximation that may lead to significant errors, in particular for properties probing electron density near nu-

clei (cf. Ref. 45), as is the case here. The correct expression of the electron charge density in some point P at the

2-component relativistic SCF level is

ρ2c = −e
Nocc∑
i

〈ψ2c
i |
[
U†δ (r−P)U

]
++
|ψ2c
i 〉 6= −e

Nocc∑
i

ψ2c†
i (P)ψ2c

i (P) (34)

Use of the untransformed operator, that is, the ψ†ψ expression known from the 4cDC and NR levels, leads to an

overestimation of ρ
[1]Tl
0 in TlI by 283 % at the SAOP/TZ+2s1p level. Errors of similar size are observed for ρ

[1]Pb
0 and

ρ
[1]Pt
0 in PbTe and PtSi, respectively, showing that for this property picture change errors are significant larger than
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relativistic effects. X2C-calculations of the derivative density ρ
[1]X
0 using the correctly transformed operator, (34),

leads to errors less than 1 %, which is quite acceptable. In those calculations the major source of deviation from the

4DC is probably the incomplete transformation of the 2-electron operator. For ρ
[1]Pt
0 in PtSi results obtained with the

Douglas-Kroll-Hess Hamiltonian are available [94]. At the DKH(2,0) level, that is, using a 2nd order DKH Hamiltonian

for the generation of orbitals and a 0th order (untransformed) property operator, we get picture change errors on the

same order as above, whereas at the DKH(8,8) level the deviation with respect to the reference B3LYP/ 4DC value is

within 3 %.

The effect of the basis set can be seen from the HF/ 4DC results obtained for ρ
[1]Tl
0 in TlI. Starting from the TZ value

of 209.30 Å−4, we see that adding tight 2s1p functions increases the value by 1.4 %, whereas going to the QZ+2s1p

level has only a minor effect. In the following we therefore restrict attention to results obtained at the TZ+2s1p level.

A first indication of the importance of electron correlation effects is obtained by comparing SAOP and HF results

obtained at the 4cDC level. For all three molecules we observe that introduction of electron correlation through the

asymptotically corrected SAOP functional reduces the HF value by 30–40 %, clearly indicating that the inclusion of

electron correlation is mandatory for this property. However, taking the CCSD(T)/ 4cDC∗∗ value as reference, we see

that the performance of the various DFT functionals is variable and hardly satisfying. For TlI we see that LDA and

GGA functionals underestimate the value of ρ
[1]Tl
0 by some 20 %, whereas the inclusion of exact exchange through

hybrid functionals improves the results somewhat. Interestingly, the long-range corrected functional CAMB3LYP

shows quite different performance from that of B3LYP. For ρ
[1]Pt
0 in PtSi the hybrid functionals show the worst

performance, and for ρ
[1]Pb
0 in PbTe the simplest functional LDA agrees best with the reference CCSD(T)/ 4cDC∗∗

value.

Finally, turning to the CCSD(T) results themselves, we see that for ρ
[1]Tl
0 in TlI the molecular-mean field scheme

4cDC∗∗ introduces negligible error compared to the full 4cDC calculation. In the former approach[83] all two-electron

integral classes are employed in the SCF optimization step, but at the CC level only the (LL|LL) integrals, involving

the large components only, are retained and employed in conjunction with the Fock matrix (orbital energies) obtained

in the SCF step. Comparing TZ+2s1p and QZ+2s1p values we furthermore see that the value of the density derivative

ρ
[1]Tl
0 is well converged at the TZ+2s1p level. For TlI we also investigated the convergence with respect to the energy

cutoff value for the virtual space and found that the selected value introduces very small errors.
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E. Comparison with experimentally derived data

We list in Table IX for the three reference molecules our calculated 4cDC??-CCSD(T)/TZ+2s1p contact density

gradients in comparison with existing experimental and theoretical data. We furthermore provide estimates for the

field shift parameter V X by inserting in Eq. 28 the calculated contact density gradient along with the experimental

spectroscopic constants reported in Table I. In passing we note that if we combine our calculated data with the

changes in mean-square nuclear radii δ < r2n > from optical isotope shifts (only available with unknown screening

factor β of order unity) reported by Heilig and Steudel [8], we obtain changes in equilibrium bond lengths for isotope

pairs δR
Tl(203,205)
e =-6.4·10−17 m, δR

Pb(206,208)
e =-3.9·10−17 m and δR

Pt(194,196)
e =+3.7·10−17 m, for TlI, PbTe and PtSi,

respectively, which are exceedingly small numbers indeed.

Our point of departure for the following discussion will be the experimental Tl (Pb) density gradients,

ρ[1]Tl=120.6Å−4 (ρ[1]Pb=148Å−4), and field shift parameters, V Tl=3.20×104Å−2 (V Pb=2.12×104Å−2), which were

reported by Schlembach and Tiemann in the early 1980s [27] and are compiled in the rows “experiment[A]” in Table

IX. We find for both heavy metals a very good agreement with our reference CCSD(T) values where we notice slightly

larger deviations for the Tl nucleus. Scaling down the density gradient by 10 %, as suggested by our study in Section

IV B on the validity of approximating the effective density by the contact density, would bring our CCSD(T) values

in even closer agreement with “experiment[A]”. Based on our re-derivation of theory and our computed results we are

thus confident to have proven wrong a suggested re-scaling of the “experiment[A]” density gradients by a factor 10

which Knöckel and co-workers remarked in a follow-up publication in 1985 [36] (denoted as “experiment[B]” in Table

IX). More curiously, the authors obtained in the latter work a V Pb field shift factor for 208Pb32S which disagrees by

approximately one order of magnitude with the first estimate by Schlembach and Tiemann!

Consider next the molecular field shift data derived from DFT(SAOP)/QZ4P calculations by Cooke et al. [38].

Their values for the contact density gradients in TlI and PbTe agree reasonably well with the revised experimental

data from 1985 [36], and thus seem to corroborate those. However, a comparison of their predicted contact density

gradient ρ[1]Tl=21.1Å−4 at the Tl nucleus with our four-component CCSD(T) value of ρ[1]Tl=142.26Å−4 reveals a

rather striking discrepancy by more than a factor 6. We have demonstrated in Section IV D that DFT density gradients

cover a range relative to the CCSD(T) reference of up to 25% indicating that this cannot account for the wide variance

of the DFT(SAOP)/QZ4P value. A probable explanation may, on the other hand, be deduced from our non-relativistic

(NR) contact density gradient and associated field shift parameter data, which is for completeness added to Table IX

for all three diatomics. The evident agreement (apart from minor basis set effects) of the two DFT(SAOP) data sets for

17



either molecule strongly implies that Cooke and co-workers by accident carried out non-relativistic calculations though

they were aiming for scalar-relativistic studies based on the zeroth-order regular approximation (ZORA); this has

been confirmed for PbS [95]. This conclusion is further corroborated by recalling from Table VI our scalar-relativistic

DFT(SAOP)/TZ+2s1p contact density gradient at the Tl (Pb) nucleus ρ[1]Tl=134.48Å−4 (ρ[1]Tl=174.59Å−4) which,

inserted in Eq. 28 yields a field shift parameter V Tl (V Pb) on the order of 3.6 × 104 Å−2 (2.52 × 104 Å−2) rather

than 0.61 × 104 Å−2 (0.33 × 104 Å−2). The close agreement of the nonrelativistic DFT(SAOP)/QZ4P data with the

(presumably) erroneous late experimental results is merely fortuitous and this fact may explain why the computational

mistake in Refs. [38–40] was left undiscovered to date.

With that said, we finally turn to the PtSi field shift parameters compiled at the lower end of Table IX. Here, we see

again a close match of the contact density gradient ρ[1]Pt and field shift factor V Pt derived from our non-relativistic

DFT(SAOP) calculations and the purportedly scalar-relativistic DFT(SAOP) calculations, which further supports

our present conclusions. The open question remaining is then to explain the considerably large disagreement between

our four-component 4cDC?? CCSDT(T)/TZ+2s1p field shift factor V Pt = −5.05× 104 Å−2 and the experimental

value of -0.72 × 104 Å−2 reported by Cooke and co-workers [39]. Based on the findings so far, we are confident of our

theoretical estimate and therefore propose a careful re-examination of the experimental platinum silicide data fit, in

particular in the light of the non-conforming Eqs. 25 and 26, the latter probably being employed in the present data

fit.

In summary, our extensive four-component DFT and high-level CCSD(T) reference data clearly shows by comparison

with existing experimental results for the contact density gradient and field shift factor in rotational spectra of the

heavy-element diatomics TlI, PbTe, and PtSi that the original work of Schlembach and Tiemann in 1982 [27] provided

correct estimates for both properties. We furthermore provide evidence that the revised experimental data of Knöckel

and co-workers [36] as well as more recent experimental data by Cooke et al. [39, 40] are most likely incorrect and

should be re-examined. We also conclude that previous DFT calculations [38–40], which appeared to support the more

recent experimental values, are seriously in error since they are accidentally based on a non-relativistic Hamiltonian.

V. CONCLUSIONS AND PERSPECTIVES

The objective of this study has been to provide an independent evaluation of both theoretical and experimental

studies of the isotopic field shift in rotational spectra using high-level relativistic four-component electronic structure

methods. The first experimental evidence for an isotopic field shift effect in rotational spectra of the heavy-element
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Pb-chalcogenides and Tl-halides were reported by Knöckel and Tiemann [26] and Schlembach and Tiemann [27]

who identified it as “hidden” terms in the adiabatic mass-dependent correction to the Born-Oppenheimer (“clamped

nuclei”) approximation (see for example [24]). The new atom-specific correction terms were shown to be proportional

to the gradient of the electron (contact) density at a given nucleus with respect to the internuclear distance [27], a

quantity that can be extracted from electronic structure calculations. For the present benchmark study we therefore

chose three molecules TlI, PbTe, and PtSi, for which experimental and other theoretical data is available.

In the original formulation of the molecular isotopic field shift by Schlembach and Tiemann [27] the effective electron

density at a given nucleus was identified as the contact density. We have investigated the validity of this approximation.

Using a Gaussian model of the nuclear charge distribution we find that the contact density approach yields a systematic

overestimation of about 10% in all three molecules compared to the electron density gradient derived from the effective

density, a deviation that can clearly not be ignored in high-precision work. However, the systematic nature of the

observed error suggests that it can be handled by a correction factor, although the implementation of the more

accurate approach in a computer code is straightforward and recommended.

Since heavy-element compounds are subject to relativistic effects we have provided a thorough assessment of the

reliability of different relativistic Hamiltonians for the calculation of the contact density and its gradient. Our extensive

calibration studies show that the inclusion of spin-orbit coupling in an exact-two-component or four-component

framework is mandatory if reasonably high accuracy is aimed for. Whereas scalar-relativistic Hamiltonians account for

a major part of the relativistic effects with errors on the order of 10-12%, a non-relativistic ansatz yields meaningless

contact density gradients for all three molecules reduced by up to a factor 6 compared to their four-component

reference values. Calculations based on 2-component relativistic Hamiltonians show good performance, provided that

the property operator is correctly transformed. Otherwise we find that the picture change errors are larger than

relativistic effects. We furthermore point out the importance of considering electron correlation effects in the property

evaluation by comparing results both from a choice of density functionals and high-level CCSD(T) calculations with

Hartree-Fock data. As summarized recently in a related study on the isomer shift in mercury fluorides [35] density

functional theory (DFT) with various flavors of functionals exhibits a rather inconclusive overall performance relative

to our CCSD(T) reference for the contact density gradient, covering not only a range of ±25% but showing also a strong

system-dependency based on the quality of a result for a given functional type. One of the appealing feature of DFT is

of course its low computational cost and it may thus, nevertheless, be applicable to further qualitative studies of field

shift effects in other heavy-element diatomics. In this context, we have demonstrated how detailed information about
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changes in electronic structure upon changes in internuclear distances can be extracted from HF/DFT expectation

values by projection analysis.

We finally evaluated the known experimental and theoretical electron density gradients and field shift factors for

the three nuclei Tl, Pb, and Pt on the basis of our benchmark four-component CCSD(T) data. The comparison holds

a surprising twist in the tale and may be best summarized as follows:

1. Our present four-component CCSD(T) electron density gradients and field shift factors are in very good agree-

ment with the experimental predictions given by Schlembach and Tiemann [27] in 1982 with slightly larger

deviations for Tl in TlI than Pb in PbTe.

2. As a consequence our results do not agree at all with the suggested scaling of the original data from 1982 which

was published in 1985 by Knöckel et al. [36] along with a revised formula to derive the field shift factor from a

fit of rotational spectra data. We have carefully re-derived the appropriate formulas and can not see that such

a scaling is justified, nor were any arguments provided for it in Ref. 36.

3. On the other hand, previous DFT(SAOP) predictions [38, 39] of electron density gradients and field shift

parameters of the respective heavy-metal centers in the present three molecules agreed quite well with the revised

experimental data by Knöckel and co-workers [36]. We conclusively show, though, that these calculations are

plagued by a serious computational error. Having aimed at relativistic studies based on the ZORA Hamiltonian,

these calculations turned out to be of non-relativistic nature as a comparison with our present non-relativistic

DFT(SAOP) data unambiguously reveals. It so happens, and this is the twist in the tale, that the relativistic

effect is of about the same order as the scaling factor proposed by Knöckel et al. [36] to be applied to the

original and correct data by Schlembach and Tiemann [27], which is probably why these inconsistencies were

not discovered previously.

4. Our predicted field shift parameter for Pt in PtSi differs by a factor 7 from the experimental value reported by

Cooke and co-workers [39] which we currently attribute to be caused by a mistake in the experimental data fit.

We therefore recommend a careful re-examination of experiment.

We hope that our re-derivation of the key equations accompanied by the computational findings will put the theory

of molecular isotopic field shift in rotational spectra back on solid footings and stimulate further experimental and

theoretical work in this field. In future work we aim at investigating nuclear size effects of vibrational spectra, in which

the second geometrical derivative of the effective/contact density comes into play. We will also continue projection
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analysis of these quantities to see what information about molecular electronic structure they contain. Ultimately it

will be interesting to see if a combination of state of the art correlated electronic structure calculations combined with

experiment can be used to extract information about changes in nuclear volume upon isotope substitution.
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TABLE I: Spectroscopic constants for the 1Σ+
0 ground state of 205Tl127I, 208Pb130Te, and 195Pt28Si computed at the molecular-

mean-field 4DC??- CCSD(T)/TZ+2s1p level of theory (the reader may refer to the text for more details on the computational

setup). Note that our values are not corrected for basis-set superposition errors.

molecule Rcomp
e [Å] Rexp

e [Å] ωcomp
e [cm−1] ωexp

e [cm−1]

TlI 2.838 2.8136a 147.5 ≈ 150a

PbTe 2.612 2.5949a 211.0 211.9a

PtSi 2.083 2.0615b (2.0629)c 544.9 549d

a Ref. [96]

b Ref. [39]

c Ref. [97]

d Ref. [98]



TABLE II: Atomic matrix elements for the Thallium atom (HF/TZ+2s1p), comparing the contact ρe(0) and effective ρ̄e

(number) density . All values are in atomic units a−3
0 .

ρe(0) ρ̄e − ρe(0)

1s1/2 2112536.88 -215363.37

2s1/2 322388.19 -33035.87

3s1/2 74350.56 -7625.34

4s1/2 18799.34 -1928.44

5s1/2 3695.82 -379.14

6s1/2 371.46 -38.11

2p1/2 24695.53 -2449.09

2p3/2 0 2 x 0.56

3p1/2 6395.44 -634.80

3p3/2 0 2 x 0.16

4p1/2 1598.33 -158.67

4p3/2 0 2 x 0.08

5p1/2 280.27 -27.82

5p3/2 0 2 x 0.01

6p1/2 2.46 -0.24

6p3/2 0 < 0.01

Total 2565114.28 -261639.27



TABLE III: Effective and contact electron density gradients, respectively, at the nuclei Tl, Pb, and Pt calculated at the four-

component Dirac-Coulomb level using the TZ+2s1p basis. The derivatives (in Å−4) are taken at the respective experimental

geometries of TlI, PbTe, and PtSi.

Method ρ
[1]X
0 ρ̄[1]X ∆(ρ̄[1]X − ρ[1]X0 )

TlI

HF 212.15 190.29 -10.3%

DFT/PBE 114.53 102.67 -10.4%

DFT/SAOP 119.96 107.60 -10.3%

PbTe

HF 240.18 215.00 -10.5%

DFT/PBE 155.74 139.29 -10.6%

PtSi

HF -1183.83 -1070.52 -9.6%

DFT/PBE -656.39 -593.34 -9.6%

TABLE IV: Projection analysis of the contact density gradient ρ
[1]Tl
0 (in Å−4) in TlI calculated at the 4-component DFT(PBE0)

level using the TZ+2s1p basis.

Intra-atomic contribution Tl total 103.47

diagonal (p = q) -135.91

hybridization (p 6= q) 243.99

I total 0.00

Inter-atomic contribution 0.30

Polarization contribution 32.63



TABLE V: Detailed analysis of individual orbital contributions to geometric derivative of atomic density matrix D
[1]Tl
qp and

contact density gradient ρ
[1]Tl
0 (in Å−4) in TlI calculated at the 4-component DFT(PBE0) level using the TZ+2s1p basis. For

each quantity contributions from s1/2 and p1/2 orbitals are given in the lower and upper triangle of the table, respectively.

D[1]Tl

2p1/2 3p1/2 4p1/2 5p1/2 6p1/2

1s1/2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2p1/2

2s1/2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 3p1/2

3s1/2 0.0000 0.0000 -0.0001 0.0000 -0.0006 -0.0050 4p1/2

4s1/2 0.0000 0.0000 0.0003 -0.0005 -0.0028 -0.0443 5p1/2

5s1/2 -0.0001 -0.0004 -0.0013 0.0040 -0.0079 -0.0722 6p1/2

6s1/2 0.0001 0.0007 0.0024 -0.0077 0.0332 0.0222

1s1/2 2s1/2 3s1/2 4s1/2 5s1/2 6s1/2

ρ
[1]Tl
0

2p1/2 3p1/2 4p1/2 5p1/2 6p1/2

1s1/2 -0.75 0.00 0.00 0.00 0.00 0.00 2p1/2

2s1/2 3.69 -4.55 -0.01 0.00 0.00 -0.72 3p1/2

3s1/2 0.00 15.49 -13.19 -0.16 1.35 2.70 4p1/2

4s1/2 0.00 10.00 42.01 -33.45 -2.84 -10.34 5p1/2

5s1/2 -17.67 43.59 -74.25 118.29 -104.54 -3.90 6p1/2

6s1/2 10.54 -26.03 44.61 -72.71 142.75 30.86

1s1/2 2s1/2 3s1/2 4s1/2 5s1/2 6s1/2



TABLE VI: Contact density gradient ρ
[1]Tl
0 (in Å−4) of the TlI molecule computed at various level of theory. The derivative is

calculated at the experimental equilibrium interatomic distance Rexp
e = 2.8136 Å[96].

TlI

method ρe evaluation Hamiltonian basis set ρ
[1]Tl
0

HF ψ†ψ 4cDC TZ 209.30

HF ψ†ψ 4cDC TZ+2s1p 212.15

HF ψ†ψ 4cDC QZ+2s1p 212.07

DFT/SAOP ψ†ψ NR TZ+2s1p 21.09

DFT/SAOP ψ†ψ X2C TZ+2s1p 461.57

DFT/SAOP
〈
ρTl
〉

X2C TZ+2s1p 120.50

DFT/SAOP ψ†ψ 4cDC-sf TZ+2s1p 134.48

DFT/SAOP ψ†ψ 4cDC TZ+2s1p 119.96

DFT/SAOP ψ†ψ 4cDC QZ+2s1p 119.75

DFT/LDA ψ†ψ 4cDC TZ+2s1p 106.64

DFT/PBE ψ†ψ 4cDC TZ+2s1p 114.53

DFT/BLYP ψ†ψ 4cDC TZ+2s1p 107.09

DFT/PBE0 ψ†ψ 4cDC TZ+2s1p 140.63

DFT/B3LYP ψ†ψ 4cDC TZ+2s1p 127.46

DFT/CAMB3LYP ψ†ψ 4cDC TZ+2s1p 154.75

CCSD(T) ff 4cDC TZ+2s1p 142.47

CCSD(T) ff 4cDC∗∗ TZ+2s1p 142.43

CCSD(T) ffa 4cDC∗∗ TZ+2s1p 142.26

CCSD(T) ff 4cDC∗∗ QZ+2s1p 142.19

Exp.[27] 120.6(38)

a energy threshold for virtual spinor: 134 Hartree



TABLE VII: Contact density grdient ρ
[1]Pb
0 (in Å−4) of the PbTe molecule computed at various level of theory. The derivative

is calculated at the experimental equilibrium interatomic distance Rexp
e = 2.5949 Å[96].

PbTe

method ρe evaluation Hamiltonian basis set ρ
[1]Pb
0

HF ψ†ψ 4cDC TZ 236.84

HF ψ†ψ 4cDC TZ+2s1p 240.18

DFT/SAOP ψ†ψ NR TZ+2s1p 19.64

DFT/SAOP ψ†ψ X2C TZ+2s1p 585.06

DFT/SAOP
〈
ρPb
〉

X2C TZ+2s1p 162.19

DFT/SAOP ψ†ψ 4cDC-sf TZ+2s1p 174.59

DFT/SAOP ψ†ψ 4cDC TZ+2s1p 161.41

DFT/LDA ψ†ψ 4cDC TZ+2s1p 148.16

DFT/PBE ψ†ψ 4cDC TZ+2s1p 155.74

DFT/BLYP ψ†ψ 4cDC TZ+2s1p 148.33

DFT/PBE0 ψ†ψ 4cDC TZ+2s1p 181.72

DFT/B3LYP ψ†ψ 4cDC TZ+2s1p 169.96

DFT/CAMB3LYP ψ†ψ 4cDC TZ+2s1p 197.55

CCSD(T) ff 4cDC∗∗ TZ+2s1p 163.19

Exp.[27] 148(11)



TABLE VIII: Contact density gradient ρ
[1]Pt
0 (in Å−4) of the PtSi molecule computed at various level of theory. The derivative

is calculated at the experimental equilibrium interatomic distance Rexp
e = 2.0615 Å[39].

PtSi

method ρe evaluation Hamiltonian basis set ρ
[1]Pt
0

HF ψ†ψ 4cDC TZ -1168.75

HF ψ†ψ 4cDC TZ+2s1p -1183.83

DFT/SAOP ψ†ψ NR TZ+2s1p -135.64

DFT/SAOP ψ†ψ X2C-sf TZ+2s1p -2390.42

DFT/SAOP
〈
ρPt
〉

X2C-sf TZ+2s1p -732.09

DFT/SAOP ψ†ψ 4cDC-sf TZ+2s1p -729.65

DFT/SAOP ψ†ψ 4cDC TZ+2s1p -738.54

DFT/LDA ψ†ψ 4cDC TZ+2s1p -643.41

DFT/PBE ψ†ψ 4cDC TZ+2s1p -656.39

DFT/BLYP ψ†ψ 4cDC TZ+2s1p -625.41

DFT/PBE0 ψ†ψ 4cDC TZ+2s1p -789.17

DFT/B3LYP ψ†ψ 4cDC TZ+2s1p -728.07

DFT/B3LYPa ψ†ψ DKH(2,0) ANO-RCC -2182.95

DFT/B3LYPa ψ†ψ DKH(8,8) ANO-RCC -749.34

DFT/CAMB3LYP ψ†ψ 4cDC TZ+2s1p -837.70

CCSD(T) ff 4cDC TZ+2s1p -599.39

CCSD(T) ff 4cDC∗∗ TZ+2s1p -599.83

a M. Reiher and R. Mastalerz, private communication.



TABLE IX: Comparison of both the calculated and, where available, measured electron density gradient ρ[1]X (in Å−4) at the

Tl, Pb, and Pt nuclei and the field shift parameter V X (in 104 Å−2). Besides our best theoretical estimates computed at the four-

component molecular mean-field CCSD(T)/TZ+2s1p level (4cDC??) we also list non-relativistic (NR) DFT/SAOP/TZ+2s1p

data.

method Hamiltonian ρ[1]X V X

TlI

experiment[A]a 120.6(38) 3.20(10)

experiment[B]b 12.06(38)

DFT/SAOP NR 21.09 0.57

CCSD(T) 4cDC?? 142.26 3.81

DFT/SAOPc (ZORA) 21.1 0.61d

PbTe

experimenta 148(11) 2.12(16)

experimentb 14.8(11)

DFT/SAOP NR 19.64 0.28

CCSD(T) 4cDC?? 163.19 2.36

DFT/SAOPc (ZORA) 21.1 0.33d

PtSi

experiment[C]e -0.72(12)

DFT/SAOP NR -135.64 -1.14

CCSD(T) 4cDC?? -599.83 -5.05

DFT/SAOPe (ZORA) -136.5 -1.10

a original result published in Ref. 27 in 1982

b revised data published in Ref. 36 in 1985

c Ref. 38; a QZ4P basis set was used in the DFT calculations

d Ref. 40

e Ref. 39; a QZ4P basis set was used in the DFT calculations



[1] H. Geiger and E. Marsden. On a diffuse reflection of the α-particles. Proc. R. Soc.Lond. A, 82:495–500, 1909.

[2] J. J. Thomson. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of

corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of

atomic structure. Phil. Mag., 7:237–265, 1904.

[3] E. Rutherford. The Scattering of α and β particles by matter and the structure of the atom. Phil. Mag., 21:669, 1911.

[4] J. L. Heilbron. The scattering of α and β particles and Rutherford’s Atom. Arch. Hist. Exact Sci., 4:247, 1967.

[5] Y. Ishikawa and H. M. Quiney. On the use of an extended nucleus in Dirac-Fock Gaussian basis set calculations.

Int. J. Quant. Chem.: Quant. Chem. Symp., 21:523–532, 1987.

[6] O. Visser, P. J. C. Aerts, D. Hegarty, and W. C. Nieuwpoort. The use of Gaussian nuclear charge distributions for the

calculation of relativistic electronic wavefunctions using basis set expansions. Chem. Phys. Lett., 134:34–38, 1987.

[7] J. H. Van Vleck. On the isotope corrections in molecular spectra. J. Chem. Phys, 4:327, 1936.

[8] K. Heilig and A. Steudel. Changes in mean-square nuclear charge radii from optical isotope shifts. At. Data Nucl. Data

Tables, 14:613, 1974.

[9] W. H. King. Isotope Shifts in Atomic Spectra. Plenum Press, New York, 1984.

[10] J. Bigeleisen. Temperature dependence of the isotope chemistry of the heavy elements. Proc. Natl. Acad. Sci. U.S.A,

93:9393–9396, 2006.

[11] J. Bigeleisen. Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J. Am. Chem.

Soc., 118:3676–3680, 2006.

[12] Y. Fujii, M. Nomura, M. Okamoto, H. Onitsuka, F. Kawakami, and K. Takeda. An anomalous isotope effect of U-235 in

U(IV)-U(VI) chemical-exchange. Z. Naturforsch., 44a:395, 1989.

[13] M. Nomura, N. Higuchi, and Y. Fujii. Mass Dependence of Uranium Isotope Effects in the U(IV)-U(VI) Exchange Reaction.

J. Am. Chem. Soc., 118:9127, 1996.

[14] M. Abe, T. Suzuki, Y. Fujii, and M. Hada. An ab initio study based on a finite nucleus model for isotope fractionation in

the U(III)-U(IV) exchange reaction system. J. Chem. Phys., 128:144309, 2008.

[15] M. Abe, T. Suzuki, Y. Fujii, M. Hada, and K. Hirao. An ab initio molecular orbital study of the nuclear volume effects in

uranium isotope fractionations. J. Chem. Phys., 128:164309, 2008.

[16] E. A. Schauble. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems.

Geochim. Cosmochim. Acta, 71:2170, 2007.

[17] B. A. Bergquist and J. D. Blum. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in

aquatic systems. Science, 318:417, 2007.



[18] N. Estrade, J. Carignan, J. E. Sonke, and O. F. X. Donard. Mercury isotope fractionation during liquidvapor evaporation

experiments. Geochim. Cosmochim. Acta, 73:2693, 2009.

[19] J. G. Wiederhold, C. J. Cramer, K. Daniel, I. Infante, B. Bourdon, and R. Kretzschmar. Equilibrium mercury isotope

fractionation between dissolved Hg(II) species and thiol-bound Hg. Environ. Sci. Technol., 44:4191, 2010.
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[28] R. L. Mössbauer. Kernresonanzabsorption von Gammastrahlung in 191Ir. Naturwissenschaften, 45:538–539, 1958.
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Chim. Acta, 337:181–192, 2002.
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