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ABSTRACT 
This paper investigates the possibility of using objective 

indicators to predict the subjective evaluation of a driver in a 
simulator. Situations of loss of adherence (LOA) were 
controlled and modulated in intensity and duration on a static 
and on a dynamic simulator (with and without a motion base). 
Multiple regression analyses were performed using the 
subjective evaluation of participants as the dependent variable, 
and the objective physical variables of the interaction 
driver/vehicle as the independent variables. The results 
assigned the most contributive variables to the accuracy of the 
model’s prediction for each subjective item, lateral acceleration 
and yaw rate for “control feeling” for instance. They also 
underlined the consistency of our approach and the influence of 
motion rendering on the perception of LOA intensity. A similar 
method could be used to evaluate the perception of various 
configurations of electronic stability control (ESC) systems. 

INTRODUCTION 
Electronic Stability Control (ESC) is an advanced driving 

assistance system (ADAS) that dynamically corrects vehicle 
trajectory according to the driver’s intentions in emergency 
situations [1][2]. It is particularly useful in cases of loss of 
adherence (LOA) in bends that are caused by excessive speed 
or a change in road grip, and can help to maintain vehicle 
control. The calibration and validation processes of ESC 
systems are time consuming. They require the development of 
physical prototypes based on expert drivers and specific terrain, 
especially for low adherence situations. Understanding drivers’ 
perceptions of and reactions to LOA situations would be useful 
for the engineering specification of ESC. Driving simulators are 
useful tools in vehicle design and perceptual studies. They 
allow the safe exploration of critical situations with naive 
drivers and without environmental bias [3]. Consequently, 
driving simulators are being used to study LOA episodes and 
ESC performance [4][5]. This study aimed at evaluating the 
possibility of using objective indicators to predict the subjective 
evaluation of vehicle behaviour in a simulator. 
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Measuring human perception has been a major challenge 
since the middle of the 19th century. In recent decades, with the 
emergence of human-centred design approach [6],there has 
been a clear need to provide measurement standards and 
methods. Numerous sensitivity analysis methods have been 
proposed and used in various fields [7]. These methods, 
together with the relationship between stimuli and sensory 
response, have been widely investigated in areas such as textile 
[8] and food quality [9][10]. Multiple linear regression models
based on the Weber-Fechner law seem to give good results for
predicting textile quality [11] or food preferences [12].
However little has been done in the field of vehicle dynamics.
We thus propose to explore the use of this approach to explain
and predict drivers’ perceptions of LOA situations.

This paper presents two driving simulator experiments in 
which episodes of LOA were triggered to produce significant 
modifications of the vehicle trajectory without loss of control 
and road departure. Intensity and duration of the LOA were 
manipulated. Previous studies [13][14] have focused on 
developing an evaluation method to describe LOA episodes by 
means of subjective indicators using a non-structured-scaled 
questionnaire [15] and determining to what extent objective and 
subjective indicators were related [16].  

In this study, the first objective was to develop models to 
explain each subjective item from the questionnaire and to 
determine which objective variables contributed the most to the 
accuracy of the predictions. Another objective was to determine 
the influence of motion rendering on the selected models and 
their predictions. 

MATERIALS AND METHODS 

PARTICIPANTS 

STATIC SIMULATOR 
A total of 20 participants (4 females, 16 males) aged 

between 20 and 24 (mean age: 21.4) participated in the first 
experiment on the static simulator. They had held a driving 
licence for 3.4 years on average and drove between 1000 and 
25000 km per year (mean: 6325 km).  

DYNAMIC SIMULATOR 
A total of 20 participants (5 females, 15 males) aged 

between 19 and 58 years old (mean age: 36.8) participated in 
the second experiment. They had held a driving licence for 16.7 
years on average and drove between 1000 and 40000 km per 
year (mean: 17538 km).  

PROCEDURE 
The same graphics database was used in both experiments. 

It reproduced an open countryside driving environment. 
Behavioural measures (lateral position, steering angle, lateral 
acceleration, etc.) were recorded during the trials at 20 Hz. All 
trials were performed on a short section of the driving 
environment, which comprised a straight line followed by a 
bend (total distance: 700 m; mean radius in the bend: 111 m) 
without traffic. 

Modifying the adherence under the wheels when the 
vehicle reached a defined point in the bend yielded LOA. The 
intensity (adherence coefficient) and duration of the simulated 
LOA in the bend were manipulated as independent variables 
(IV). An adherence coefficient decrease corresponds to an 
increase in the intensity of LOA. These values of intensity and 
duration values were chosen to induce perceptible but 
controllable LOA simulated on the four wheels. The LOA 
situation induced a skid towards the outside of the bend. The 
environment did not give clues about a potential LOA (such as 
snow, rain or a mark on the road). 

Participants were asked to keep to their lane without 
cutting the corner, even if there was no oncoming traffic. After 
a 10-minute practice session, they drove around the test bend at 
a predefined speed. An automatic gearbox and a speed 
regulator helped subjects in the first experiment. For the second 
experiment, the subjects received verbal assistance from the 
person conducting the experiment, in order to maintain a 
constant speed and stay focused on steering control. Four trials 
without any LOA were performed first in order to offer the 
participants the time to familiarize themselves with the task. 
For the LOA, a 3*3 factorial design was used (3 levels of 
intensity: 0.1, 0.3 & 0.5; 3 levels of duration: 250 ms, 500 ms 
& 750 ms). Nine experimental trials followed four preliminary 
trials representing mild and strong LOA episodes. The 
preliminary trials were conducted in order to familiarize the 
participants with the range of steering perturbations they would 
encounter during the experiment, but they were not analysed. A 
Williams Latin Squares design [17] was adopted to control rank 
and carry-over effects. After each trial, a questionnaire about 
the subjects’ perception of the event was displayed. As a first 
approach, the items were chosen to evaluate LOA perception 
using “actual” drivers rather than professional expert drivers. 
The latter  are commonly used to evaluate the dynamic 
handling of a car during the design process. 

Subjective item Question 

Perceived intensity The LOA appeared to be weak/strong 

Perceived duration The LOA appeared to be short/long 
Danger I perceived a danger during the bend 
Control feeling I easily kept my vehicle in the lane 

Table 1: Questionnaire and definition of the rating scales 
for the LOA (Variable Yj) 

Thus, a voluntary choice was to made to use nontechnical 
vocabulary. Two items were about the perception of the LOA 
itself (intensity and duration) and two others about its 
consequences in terms of perceived danger and feeling of 
control (Table 1). The aim here was not to use an extensive 
vocabulary to evaluate the participants’ perceptions in detail, 
but to evaluate a method that relies on subjective and objective 
indicators. 

Answers to the questions were given by means of 
continuous horizontal scroll bars representing two ends of a 
continuous scale (0: totally disagree to 10: totally agree). 
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OBJECTIVE INDICATORS 
Three types of objective indicators can describe a driving 

situation: vehicle dynamics, driver’s inputs and environmental 
indicators. The latter are even more easily recordable or 
computable in a driving simulator where the environment is 
managed. The specific case of LOA induces significant 
variations in vehicle dynamics and requires an appropriate 
response from the driver to keep the vehicle on the road.  

For each trial, a time to stability (TTS) was computed. It 
corresponds to the time taken by the driver after the onset of 
LOA to bring the vehicle speed drift back into a stability 
envelope. The stability envelope is defined as the average 
standard deviation of the speed drift measured in the control 
condition for all the participants. The angular drift speed 

( ) was calculated from the longitudinal speed (Vx) and 
the lateral speed (Vy): 

(Equation 1)

Objective indicator Unit Acronym 
Time to stability Seconds TTS 
Maximum lateral 
acceleration 

Meters.seconds-2 LA 

Maximum slip angle Degrees SA 
Maximum heading 
speed 

Degrees.seconds-1 HS 

Maximum steering 
wheel angle 

Degrees SW 

Maximum lateral 
deviation 

Meters LD 

Root mean square of 
the lateral deviation 

Meters LDrms 

Table 2: Definition of the objective indicators (variables Xi) 

According to the consequences of an LOA event on 
vehicle behaviour, pertinent indicators were computed in the 
TTS interval. The maximum lateral acceleration (LA, in m.s-2), 
maximum slip angle (SA, in deg), maximum heading speed 
(HS, in deg.s-1) and TTS were chosen for the vehicle dynamics; 
the maximum steering wheel angle (SW, in deg) for drivers’ 
inputs; and the maximum lateral deviation (LD, in m) and root 
mean square of the lateral deviation during TTS (LDrms, in m) 
for the environmental indicators (table 2). 

APPARATUS 

STATIC SIMULATOR 
The first experiment was conducted on a fixed-base 

simulator at the IRCCyN laboratory (Fig. 1a). It consists of a 
compact size passenger car with actual instrument panel, 
clutch, brake and accelerator pedals, handbrake, ignition key 
and an adjustable seat with seat belt. It is equipped with a 

TRW© active steering system for realistic "scale one" force-
feedback. Transmission was carried out using an automatic 
gearbox. Vibrators are installed underneath the driver seat and 
upper position of the steering column to render engine noise 
and vibrations. The audio system reproduces the audio 
environment for an interactive vehicle. It comprises an 
amplifier, four speakers and a subwoofer. 

Figure 1: (a) IRCCyN driving simulator. (b) Ultimate 
Renault driving simulator 

The SCANeR©II software package was used with the 
CALLAS© dynamic vehicle model [18]. The visual 
environment was displayed on three 32-inch LCD monitors, 
each with a resolution of 1280 x 720. One monitor was 
positioned in front of the driver, with two laterals inclined at 
45° from the front one, viewed from a distance of about 1 m 
and covering 115° of visual angle. A simple generic speed 
regulator was used, consisting of a PID corrector with a 
nominal speed of 75 km/h, using the automatic gearbox mode 
in order to reject inter-subject velocity bias. This also allowed 
the subject to concentrate on the steering task. 

DYNAMIC SIMULATOR 
The second experiment was conducted on the high-

performance dynamic Ultimate simulator [19] at the Renault 
Technical Center for Simulation (Fig. 1b). It consists of a 
compact size passenger car based on a real Laguna interior 
design. The cab is mounted on a large X-Y table and a hexapod 
motion system to render physical accelerations and rotations. 
Transmission is carried out using a manual gearbox. A system 
of sound synthesis is used to reproduce engine noise and the 
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audio environment for an interactive vehicle. Active steering 
force feedback is computed by a proprietary model and 
reproduced by a TRW electric power steering system. 

The SCANeR© Studio software package was used with a 
real-time version of the MADA (Advanced Modelling of 
Vehicle Dynamic) vehicle dynamic software, developed by 
RENAULT. The visual environment was displayed on a 
cylindrical screen (radius 1.9 m) by three single-chip DLP 
projectors, each with a resolution of 1024 x 768. The system 
covers a visual angle of 150°. Speed regulation was unavailable 
for this experiment. 

DATA ANALYSIS 
The objective indicators mentioned above are composed of 

a set of basic properties i, for which a measured value Xi has 
been obtained. Each basic property can be considered as a 
stimulus that may be perceived by the driver, and may create an 
associated sensation Ai. It is said that the Weber-Fechner law 
can be applied to represent the relation between a stimulus and 
its sensory response in a fairly wide area of this stimulus. We 
hypothesize that the Weber-Fechner law is also valid for the 
study of such a complicated stimulus as basic property i. Thus, 
we used a logarithmic transformation on the measured values Xi 
to obtain Ai, objective variables used in the next modelling step. 

The purpose of this study was not to find all the parameters 
for each basic property. We concentrated on “high level” 
subjective descriptors, which enable us to describe the situation 
from a non-expert driver point of view. In order to simplify the 
method, we assume that the perception of these descriptors is a 
weighted sum of the basic properties. Let j be a subjective 
descriptor and Yj the magnitude of its sensation, we propose a 
multivariable linear model, where Yj is the dependent variable 
and Ai are the independent variables: 

(Equation 2) 

Multiple linear regression models were determined to 
predict each subjective descriptor from both static and dynamic 
simulator data. The selection of the best model was made with 
a step-by-step procedure according to the AIC criterion (Akaike 
information criterion, a measure of the relative goodness of fit 
of models - best model selection procedure; STATISTICA, 
2004). 

Parameters estimates for all models were tested using t-
test. To evaluate the quality of the models, we used a two-fold 
validation procedure. For each subjective descriptor and each 
simulator, we have a dataset of 180 observations (20*9). We 
split it randomly into two blocks of N=90 observations, the first 
one to determine the multiple regression models (training) and 
the second one to evaluate the predictive capabilities of the 
models (holdout validation).  

Three indicators were used to estimate the quality of the 
linear adjustment: 

• The determination coefficient of the regression R2. It
represents the percentage of variance taken into
account by the linear model,

• The p-value of the Fisher’s test (variance analysis –

significance of the model), 
• The Mean Absolute Percentage Error (MAPE). It

represents the forecast accuracy of the model
(equation 3): the smaller the MAPE, the better the
forecast accuracy. MAPE is a measure of how high or
low are the differences between the predictions and
actual data. For e.g., a 15% MAPE means on average
that the predictions from a model will be 15% higher
or lower than in actuality. The MAPE was computed
on the validation set.

(Equation 3) 

The MAPE can be compared to the MAPEn of a « naive » 
model, which would simply predict the average value of all the 
data, for each observation. 

(Equation 4) 

To assess the quality of the model, we propose to compute 
the predictive confidence, a measure of the improvement 
gained by the model over chance. The predictive confidence is 
defined by: 

(Equation 5) 

We also compute the Pearson coefficient correlation (r) 

between the predicted values  by the models and the actual 
observed values Yj on the validation sample, to evaluate the 
quality of the predictions. 

RESULTS 

For each subjective variable Yj, a two variables model was 
chosen according to the AIC criterion (Eq.6). 

(Equation 6) 
In the followings tables, all parameters are given with their 

standard deviation for each multiple regression linear model on 
the static (table 3) and the dynamic simulator (table 4). For 
each subjective variable Ai, the standardized coefficient (βi*) is 
given to show the more contributive variable of each model. 
Residuals analyses have been performed to check basic 
hypotheses of the generalized analysis. 
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Yj β0 SD β1 SD β1* A1 β2 SD β2* A2 F p R² Total 
variance 

Perceived 
Intensity 

-8.49 3.34 2.41 0.57 0.53 SA 3.45 1.36 0.32 HS 91.38 <.05 0.68 10.39 

Perceived 
duration 

-12.69 4.34 3.97 0.98 0.62 SW -0.49 0.48 -0.16 LDrms 14.81 <.05 0.25 9.08

Danger -11.94 2.60 3.80 2.13 0.32 LA 2.42 1.37 0.32 SW 2.30 <.05 0.39 12.56 
Control 
feeling 

28.38 2.94 -0.49 0.41 -0.13 TTS -7.55 1.13 -0.72 HS 99.88 <.05 0.70 9.47 

Table 3: Models parameters, selected objective variables and statistics of multiple linear regressions for subjective variables 
on static simulator (without motion base) 

Yj β0 SD β1 SD β1* A1 β2 SD β2* A2 F p R² Total 
variance 

Perceived 
intensity 

-17.90 2.77 6.62 1.18 0.53 LA 3.57 1.28 0.26 HS 46.36 <.05 0.52 11.39 

Perceived 
duration 

8.68 3.58 -6.73 2.72 -0.62 LA 7.74 0.48 0.13 SA 23.02 <.05 0.35 10.00 

Danger -13.57 3.98 4.71 1.19 0.42 LA 2.50 1.20 0.22 SW 22.20 <.05 0.38 9.19 
Control 
feeling 

26.64 2.55 -0.86 0.64 -0.13 SA -6.90 1.11 -0.62 HS 44.20 <.05 0.50 9.11

Table 4: Models parameters, selected objective variables and statistics of multiple linear regressions for subjective variables 
for dynamic simulator (with motion base) 

The followings tables give the results of the MAPE criteria 
(equation 3), the predictive confidence (equation 5) and the 
coefficient correlation between predicted and actual values for 
each model on static (table 5) and dynamic simulator (table 6). 

Yj MAPE Pc r 
Perceived 
intensity 

0.72 45.57 0.77 

Perceived 
duration 

0.93 23.76 0.58 

Danger 0.82 30.92 0.55 
Control 
feeling 

0.30 55.38 0.77 

Table 5: MAPE, Pc and correlation coefficient indicators 
for model forecast on static simulator 

Yj MAPE Pc r 
Perceived 
intensity 

0.43 42.70 0.74 

Perceived 
duration 

0.48 36.52 0.58 

Danger 0.63 12.88 0.62 
Control 
feeling 

0.38 50.55 0.77 

Table 6: MAPE, Pc and correlation coefficient indicators 
for model forecast on dynamic simulator 

Figure 2 represents the correlation between observed and 
predicted scores for all subjective indicators on the static and 
dynamic simulators for the evaluation data sample. 
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Figure 2: Correlation between actual and predicted scores for feeling of control , perceived intensity and danger (n=90) for 
static (a,b,c) and dynamic (d,e,f) simulator. Solid line: actual correlation, dotted line: perfect correlation (actual=predicted) 
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Without 
motion base 

With 
motion base 

Yj H Sig. H Sig. 
Perceived 
intensity 26.63 n.s 20.63 n.s

Perceived 
duration 34.84 p<.05 34.84 p<.05 

Danger 83.8 p<.05 48.19 p<.05 
Control 
feeling 34.58 p<.05 41.42 p<.05 

Table 7: Kruskal-Walis test results for between-subject 
effect on subjective items; df=19 and n=90 for each 

experiment 

A significant between-subject effect was observed (Table 7) on 
the subjective items for both experiments, except on “perceived 
intensity”. 

DISCUSSION 
The first objective of the study was to evaluate how the 

chosen models could explain the variability of the subjective 
items and which objective variable was the most influential in 
each model. The results of the model selection method applied 
on the subjective items showed similar trends with both the 
static and dynamic simulators in terms of explanation 
capabilities. The models were able to explain more than 50 % 
of the variability for perceived intensity and feeling of control. 
However, poorest results were observed for perceived duration 
(static: R² = 0.25 and dynamic: R² = 0.35) and danger (static: R² 
= 0.39 and dynamic: R² = 0.38). This could be explained by the 
large between-subjects variability observed on these items.  

Heading speed was the second contributive variable for 
explaining perceived intensity in both dynamic and static 
simulators. This suggests that heading speed variation had a 
primary influence in detecting and assessing variation of LOA 
intensity. Interestingly, the most contributive variable in the 
models differed in both experiments. On the static simulator, 
the slip angle was the most contributive variable, while the 
lateral acceleration dominated on the dynamic simulator. This 
suggests that the perception of LOA intensity was mostly 
influenced by vestibular and other inertial cues. However, in 
the absence of motion rendering, drivers principally relied on 
visual cues to estimate the strength of  the LOA . 

The feeling of control was mainly influenced by heading 
speed variation, in both the static and dynamic simulators. In 
both cases, the second contributive variable has a very weak 
normalized coefficient. This suggests that heading speed 
variation was the most influent variable in explaining the 
subjective assessment of feeling of control. 

As suggested by a previous study [14], the duration of the 
LOA was poorly perceived in the simulator, which could 
explain the poor fit of the model. This also does not allow us to 
discuss the selected contributive objective variables, which 
differed in both experiments. The models obtained for 
perceived danger did not show a much larger explanatory 

power, but the same objective variables contributed the most 
for both simulators. The level of lateral acceleration and 
quantity of steering wheel angle needed to correct the trajectory 
had a primary influence on perceived danger. This supports the 
idea that drivers control a variable safety margin of perceived 
lateral acceleration according to their anticipated steering 
deviations when negotiating bends [20]. 

From a global point of view, the models obtained with the 
static simulator explained more variability than those obtained 
in the dynamic condition. A plausible explanation is that the 
static simulator gave fewer cues to subjectively assess LOA 
events and that a simple multiple linear regression model is 
sufficient to fit the data. Through motion rendering, the 
dynamic simulator provided more complex stimuli to the 
driver, closer to a real driving situation. Models with 
interactions should be preferred, especially to take into account 
visuo-vestibular interactions that come into play in the 
perception of self-motion [21]. In this case a linear model may 
not be sufficient.  

It remains now to examine the capabilities of the selected 
models to predict new scores. Even if the selected models for 
both static and dynamic simulators were not able to capture all 
the variability of subjective items assessment, they gave good 
correlation scores (around 0.75) for predicting values of 
perceived intensity and feeling of control. For feeling of 
control, errors in prediction (as measured by the MAPE) were 
quite similar in the static and dynamic conditions. This suggests 
that motion rendering had little influence on this subjective 
item. Given that the variation of heading speed was the most 
contributive variable, the fidelity of the heading motion 
restitution should be investigated. For perceived intensity, 
errors in prediction are markedly better in the dynamic 
condition (MAPE = 0.43) than in the static condition (MAPE = 
0.72); again, this suggests a determining influence of motion 
rendering on the perception of LOA intensity. The selected 
models for predicting perceived duration and danger have 
coefficients of correlation that are too small; thus, further 
investigations will be necessary to improve them. 

The predictive confidence values are the highest for 
“perceived intensity” and “feeling of control ”. For both 
simulators, these subjective items are predicted with the highest 
accuracy. For all subjective items, we noticed that the 
predictive confidence values are in the same range for both 
static and dynamic simulator. This underlines the consistency 
of our approach. 

CONCLUSION 
Multiple regression analyses were used to evaluate the 

relations between the subjective judgements and the vehicle 
dynamics for loss of adherence episodes. Mathematical models 
based on established psychophysical principles (the Weber-
Fechner law) were tested. They were able to explain more than 
50% of the variance for two subjective items out of four. This 
study highlights the objective indicators of vehicle behaviour 
that influence the variation of each subjective indicator the 
most. This study is a preliminary approach to objectivize 
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drivers’ perceptions and to help the tuning of ADAS by means 
of a simulator. Further research is planned to optimize the 
model prediction in various situations. A similar method might 
be used to objectivize how drivers perceive various 
configurations of ESC. 

BIBLIOGRAPHY 

[1] Liebemann, E.K., Meder, K., Schuh, J. and Nenninger,
G., 2004, “Safety and Performance Enhancement: The
Bosch Electronic Stability Control (ESP),” SAE Paper
No. 2004-21-0060, Detroit, MI, USA.

[2] Erke, A., 2008, “Effects of electronic stability control
(ESC) on accidents: A review of empirical evidence,”
Accident Analysis & Prevention, 40(1), pp. 167-173.

[3] Kemeny, A., 2009, “Driving Simulation for Virtual
testing and perception studies,” Proceedings of DSC
Europe Conference 2009, Monte-Carlo, pp. 15-23.

[4] Watson, G., Papelis, Y. and Ahmad, O., 2006, “Design of
Simulator Scenarios to Study Effectiveness of Electronic
Stability Control Systems,” Transportation Research
Record, 1980, pp. 79-86.

[5] Papelis, Y.E., Watson, G.S. and Brown, T.L., 2010, “An
empirical study of the effectiveness of electronic stability
control system in reducing loss of vehicle control,”
Accident Analysis & Prevention, 42(3), pp. 929-934.

[6] Rossi, G.B. and Berglund, B., 2011, “Measurement
involving human perception and interpretation,”
Measurement, 44(5), pp. 815-822.

[7] Christopher Frey, H. and Patil, S.R., 2002, “Identification
and Review of Sensitivity Analysis Methods,” Risk
Analysis, 22(3), pp. 553-578.

[8] Giboreau A., Navarro S., Faye P., Dumortier J., 2001,
Sensory evaluation of automotive fabrics: the
contribution of categorization tasks and non verbal
information to set-up a descriptive method of tactile
properties. Food Quality and Preference, 2(5–7), 2001,
pp 311-322.

[9] Williams, A.A., 1994, “Flavour quality — Understanding
the relationship between sensory responses and chemical
stimuli. What are we trying to do? The data, approaches
and problems,” Food Quality and Preference, 5(1-2), pp.
3-16.

[10] Skovgaard, M., 1995, “Modelling relations between
instrumental and sensory measurements in factorial
experiments,” Food Quality and Preference, 6, pp. 239-
244.

[11] Mazzuchetti, G., Demichelis, R., Songia, M. and
Rombaldoni, F., 2008, “Objective Measurement of
Tactile Sensitivity Related to a Feeling of Softness and
Warmth,” Fibres & Textiles in Eastern Europe, 16(4), pp.
67-71.

[12] Cliff, M.A., Dever, M.C., Hall, J.W. and Girard, B.,
1995, “Development and evaluation of multiple
regression models for prediction of sweet cherry liking,”
Food Research International, 28(6), pp. 583-589.

[13] Denoual, T., Mars, F., Petiot, J.-F., Reymond, G. and
Kemeny, A., 2010, “Drivers’ perception of simulated
loss of adherence in bends,” Trends in driving simulation
design and experiments, A. Kemeny, F. Merienne, S.
Espié, eds., Les collections de l’INRETS, Paris, pp. 43-
53.

[14] Denoual, T., Mars, F., Petiot, J.-F., Reymond, G. and
Kemeny A., 2011, “Drivers’ Perception of Loss of
Adherence in Bends: Influence of Motion Rendering,”
Journal of Computing and Information Science in
Engineering, 11(4), 041004.

[15] Strigler, F., Touraille, C., Sauvageot, F., Barthelemy, J.
and Issanchou, S., 1998, “Les épreuves,” évaluation
sensorielle: manuel méthodologique, F. Depledt, F.
Strigler, eds., Lavoisier, pp. 45-83.

[16] Petiot, J.-F. and Yannou, B., 2004, “Measuring consumer
perceptions for a better comprehension, specification and
assessment of product semantics,” International Journal
of Industrial Ergonomics, 33(6), pp. 507-525.

[17] Williams, E.J., 1949, “Experimental Designs Balanced
for the Estimation of Residual Effects of Treatments,”
Australian Journal of Scientific Research, Series A:
Physical Sciences, 2, pp. 149-168.

[18] Lechner, D., Delanne, Y., Schaefer, G. and Schmitt, V,
1997, “Méthodologie de validation du logiciel de
dynamique automobile CALLAS,” Ingénieur de
l’automobile, 713, pp. 10-38.

[19] Dagdelen, M., Berlioux, J.C., Panerai, F., Reymond, G.
and Kemeny A., 2006, “Validation process of the
ULTIMATE high-performance driving simulator,”
Proceedings of DSC Europe Conference 2006, Paris, pp.
37-48.

[20] Reymond, G., Kemeny, A., Droulez, J. and Berthoz, A.,
2001, “Role of lateral acceleration in curve driving:
driver model and experiments on a real vehicle and a
driving simulator,” Human Factors, 43(3), pp. 483-495.

[21] Kemeny, A. and Panerai, F., 2003, “Evaluating
perception in driving simulation experiments,” Trends in
Cognitive Sciences, 7(1), pp. 31-37.


