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Abstract

We present a new algorithm for generating uniformly at random words of any
regular language L. When using floating point arithmetics, its bit-complexity
is O(q log2 n) in space and O(qn log2 n) in time, where n stands for the length
of the word, and q stands for the number of states of a finite deterministic au-
tomaton of L. We implemented the algorithm and compared its behavior to the
state-of-the-art algorithms, on a set of large automata from the VLTS bench-
mark suite. Both theoretical and experimental results show that our algorithm
offers an excellent compromise in terms of space and time requirements, com-
pared to the known best alternatives. In particular, it is the only method that
can generate long paths in large automata.

Keywords: random generation, regular languages, automata

1. Introduction

The problem of randomly and uniformly generating words from a regular
language was first addressed by Hickey and Cohen (1983), as a particular case
of context-free languages. Using the so-called recursive method (Wilf, 1977;
Flajolet et al., 1994), they gave an algorithm in O(qn) space and time for the
preprocessing stage and O(n) for the generation, where n denotes the length of
the word to be generated, and q denotes the number of states of a deterministic
finite automaton of L. Later, Goldwurm (1995) showed that the memory space
can be reduced to O(q), by using a parsimonious approach to keep in memory
only a few coefficients. These results are in terms of arithmetic complexity,
where any number is supposed to take O(1) space and each basic arithmetic
operation takes O(1) time. As for the bit complexity, the above formulas must
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be multiplied by O(n) due to the exponential growing of the involved coefficients
according to n.

If floating point arithmetic is used (Denise and Zimmermann, 1999) for
the Hickey and Cohen (1983) algorithm, almost uniform generation can be per-
formed in O(qn log n) bit complexity for the preprocessing stage (in time and
memory), and O(n log n) for the generation. Meanwhile, the parsimonious ver-
sion of Goldwurm cannot be subject to floating point arithmetic, because of the
numerical instability of the involved operations (Oudinet, 2010).

Another technique, the so-called Boltzmann generation method (Duchon
et al., 2004), is well fitted for approximate size generation: it makes possible
to generate words of size between (1 − ε)n and (1 + ε)n, for a fixed value ε,
in average linear time according to n (Flajolet et al., 2007). As for exact size
generation, the average complexity of generation is in O(n2), although it can
be lowered to O(n) if the automaton of L is strongly connected. Bolztmann

generation needs a preprocessing stage whose complexity is in O(qk logk′
n), for

some constants k ≥ 1 and k′ ≥ 1 whose precise values are not given in (Duchon
et al., 2004) and subsequent papers, to our knowledge.

Recently, Bernardi and Giménez (2010) developed a new divide and con-
quer approach for generating words of regular languages, based on the re-
cursive method. If using floating point arithmetic, their algorithm runs in
O(qn log(qn)) in the worst case, with a preprocessing in O(q3 log n log2(qn))
time and O(q2 log n log(qn)) space. Moreover the average complexity of the
generation stage can be lowered to O(qn) if using a bit-by-bit random number
generator.

Here we present a new algorithm named dichopile, also based on a divide-
and-conquer approach, although drastically different from the above one. When
using floating point arithmetics, its bit-complexity is O(q log2 n) in space and
O(qn log2 n) in time.

The paper is organized as follows. In Section 2 we present the dichopile al-
gorithm and we compute its complexity in space and time. Section 3 is devoted
to experiments: we compare the running time and space requirements of C++
programs that implement dichopile and the other state-of-the-art algorithms,
on a set of large automata from the VLTS benchmark suite (Garavel and De-
scoubes, 2003). Finally we discuss in Section 4 the advantages and drawbacks of
each of the algorithms, from both theoretical and experimental points of view.
As shown in Table 4, it turns out that, compared to the known best alterna-
tives, our algorithm offers an excellent compromise in terms of space and time
requirements.

2. The Dichopile algorithm

At first, let us briefly recall the general principle of the classical recursive
method for regular languages. Let us consider a deterministic finite automaton
of L with q states {1, 2, . . . , q}. Obviously, there is a one-to-one correspondence
between the words of L and the paths in A starting at the initial state and
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ending at any final state. For each state s, we write ls(n) for the number of
paths of length n starting from s and ending at a terminal state. Such values
can be computed with the following recurrences on n (where F denotes the set
of final states in A): 

ls(0) = 1 if s ∈ F
ls(0) = 0 if s 6∈ F
ls(i) =

∑
s→s′

ls′(i− 1) ∀i > 0
(1)

Let Ln = 〈l1(n), l2(n), . . . , lq(n)〉. The recursive method proceeds in two steps:

• Compute and store Lk for all 1 ≤ k ≤ n. This calculation is done starting
from L0 and using Formula 1.

• Generate a path of length n by choosing each state according to a suitable
probability to ensure uniformity among every path of length n. Thus, the
probability of choosing the successor si when the current state is s and
the path has already n−m states is:

P(si) =
lsi(m− 1)

ls(m)
. (2)

Note that in order to choose the successor of the initial state, we only need
Ln and Ln−1. Then, Ln−1 and Ln−2 allow to choose the next state and so on.
Thus, if we have a method that compute efficiently Ln, Ln−1, . . . , L0 in descend-
ing order, we can store the two last vectors only and reduce space complexity
compared to recursive method, which stores all Lk’s in memory. This inverse
approach constitutes the principle of Goldwurm (1995)’s method. In (Oudinet,
2010), the inverse recurrence is stated for regular languages, and it is shown that
the algorithm is numerically instable, thus forbidding the use of floating-point
arithmetics.

2.1. General principle

The idea of our dichopile algorithm is as follows. Compute the number of
paths of length n from the number of paths of length 0 while saving in a stack
a logarithmic number of intermediate steps: the number of paths of length n/2,
of length 3n/4, of length 7n/8, etc. When we need to compute the number of
paths of length n− i, we compute it again from the intermediate stage that is at
the top of the stack. Figure 1 illustrates the principle of this algorithm. Recall
that Lj denotes the vector of q numbers of paths of length j, that is the ls(j)’s
for all states s.

Algorithm 1 draws uniformly at random a path of length n by successively
computing the numbers of paths of length i in descending order. This algorithm
takes as inputs:

• a deterministic finite automaton A;
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0 n/2 3n
4 n

[ ]
L0

Ln/2

L3n/4

Ln
...

Step 0: compute Ln from L0

0 j n− i n

[ ]
L0

Lj
...

Step i: pop Lj from the stack

0 j
j+n−i

2 n− i n

[ ]
L0

Lj
...

Lk

Step i: compute Ln−i from Lj

Figure 1: Principle of the dichopile algorithm.
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Algorithm 1 Draw a path of length n with the dichopile algorithm.

Require: an automaton A, a vector L0, a length n, and a function F that
computes Lj from Lj−1

Ensure: returns a path σ of length n.
s← s0 {initialize s to the initial state}
push (0, L0)
for i← 0 to n do {Iteration for computing Ln−i}

(j, L cur)← top of the stack
if j > n− i then {useless value on the stack, get the next one}

pop from the stack
(j, L cur)← top of the stack

end if
while j < n− i− 1 do {compute Ln−i from Lj}
k ← j+n−i

2
for m← j + 1 to k do
L cur ← F (L cur)

end for
push (k, L cur) {push Lk to the stack}
j ← k

end while
if j = n− i− 1 then
L cur ← F (L cur)

end if
if i > 0 then {wait until L suc is defined to have L cur = Ln−i and
L suc = Ln−i+1}

choose the next transition ti in A according to s, L cur and L suc
σ ← σ.ti {concatenation of the transition}
s← the extremity of ti

end if
L suc← L cur

end for
return σ
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Lk

Ln

lg(n− k)

After step 0

Lk

Ln−i

lg(n− k − i)

After step i

Figure 2: The stack size is maximal after the first iteration of the dichopile algorithm.

• a vector L0 of q numbers defined as in the first two items of Formula 1;

• the path length n;

• and a function F that computes Lj from Lj−1, thus F computes the ls(j)’s
for all s ∈ S using the third item of Formula 1.

It uses a stack and two local variables L cur and L suc, which are vectors
of q numbers. The vector L suc saves the previous value of L cur.
Step i = 0 computes Ln from L0, pushing to the stack the vectors Ln/2, L3n/4,
L7n/8, etc. All the divisions are integer divisions.
Step i seeks to compute Ln−i. For that, it starts by retrieving the top of the
stack Lj (if j > n − i then it takes the next item on the stack) and computes
Ln−i from Lj , pushing to the stack a logarithmic number of intermediate vectors
Lk.
At the end of each iteration of the main loop and just before updating L suc,
we have L cur = Ln−i and L suc = Ln−i+1. Then, using Formula 2, we can
draw the successor state according to the current state and values contained in
these two vectors.

2.2. Complexity analysis

Theorem 1. Using floating-point numbers with a mantissa of size O(log n), bit
complexities of Algorithm 1 are O(q log2 n) in space and O(dqn log2 n) in time,
where d stands for the maximal out-degree of the automaton.

Proof. Unlike the classical recursive method, there is no preprocessing phase.
Values cannot be saved between two path generations because the content of
the stack changes during the drawing.

The space complexity depends on the stack size. After the first iteration,
there are lg n elements on the stack, and there will never be more elements on the
stack in subsequent iterations: if Lk is on top of the stack at the i-th iteration,
there were lg(n − k) elements above Lk after the first iteration and there will
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be lg(n − k − i) elements after the i-th iteration; Hence, fewer elements. This
property is illustrated in Figure 2. Each stack element contains an integer (≤ n)
and q path numbers represented by floating-point numbers with a mantissa of
size O(log n), i.e. O(q log n) bits per item. Hence the size occupied by the stack
is O(q log2 n) bits.

The time complexity depends on the number of calls to function F and this
number depends on the difference between the last stacked value (j) and the one
to compute (n−i). To calculate this complexity, we refer to a diagram describing
the successive calculations done by the algorithm using two functions, f and g,
which call each other. The calculation scheme is shown in Figure 3.

0 n/2 3n
4

7n
8 n

f(n)

f(n/2) f(n/4) f(n/8) f(1)

Figure 3: Recursive scheme of the number of calls to function F done by Algorithm 1. We
omit floor and ceiling notations to clarify the figure.

The function f counts the number of calls to function F. For f(n), it will first
call F n times. Then, since the first saved value is bn/2c, it will call f(bn/2c−1).
The next saved value is b3n/4c, hence the call to f(bn/4c − 1), and so on.

Thus, the number of calls to F to generate a path of length n is equal to
f(n), which is defined as:

f(1) = 1

f(n) = n+

blgnc∑
i=1

f(b n
2i
c − 1)

As the number of terms in the sum is not a constant, we cannot apply
directly the Master theorem nor the Akra-Bazzi theorem(Akra and Bazzi, 1998).
However, their theorem 1 does apply to the generalized case where the number
of terms in the sum, k, is a variable of n. This theorem allows us to ignore both
the floor function and the minus 1 in the index of f since the same asymptotic
behavior is kept. Thus, we study the asymptotic behavior of T defined as follows:

T (n) = n+

blgnc∑
i=1

T (
n

2i
)

Lemma 2. The function T has the following recurrence form:

T (n) = 2T (n/2) + n/2 ∀n ≥ 2
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Proof.

T (2) = 2 + T (1) = 3 = 2T (1) + 1

T (2n) = 2n+

blg 2nc∑
i=1

T (
2n

2i
)

= 2n+

b1+lgnc∑
i=1

T (
n

2i−1
)

= 2n+

blgnc∑
i=0

T (
n

2i
)

= n+

n+

blgnc∑
i=1

T (
n

2i
)

 + T (n)

= 2T (n) + n

Thanks to Lemma 2, we can apply the master theorem (Cormen et al., 2001,
sect. 4.3) on T . As n/2 ∈ Θ(n), we are in the second case of the master theorem,
which states:

T (n) ∈ Θ(n log n)

Hence a time complexity of f(n) in Θ(n log n) calls to function F . The cost
of a call to the function F is in O(dq log n) because it corresponds to compute
ls(i) from Li−1 for all s ∈ S, using a floating-point arithmetic with numbers of
O(log n) bits. Thus, a bit complexity of O(dqn log2 n) in time.

3. Experimental results

In this section, we present the experiments we did to measure and compare
the relative efficiency of Dichopile with regards to the other algorithms for the
uniform random generation of words in regular languages. We first describe
the implementation and the methodology used to conduct those experiments in
Section 3.1. Then, we present an explanation together with empirical evidence
of the numerical instability of Goldwurm’s method in Section 3.2. As written
previously the proof is given in details in (Oudinet, 2010), but we also briefly
present it here for the sake of completeness. Finally, we draw cross views of the
time and the memory used for each algorithm (except Boltzmann) to generate
paths in various automata, from 289 states to more than 107 states.

3.1. Implementation and methodology

All the algorithms for the uniform random generation of words in regular
languages, but Boltzmann, are implemented and freely available in our free
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Name # states # transitions # labels Branching factor avg [min – max]

vasy 0 1 289 1224 2 4.24 [4 – 8]
vasy 1 4 1183 4464 6 3.77 [2 – 5]
vasy 5 9 5486 9676 31 1.76 [0 – 6]
vasy 10 56 10849 56156 12 5.18 [4 – 6]
vasy 12323 27667 12323703 27667803 119 2.25 [0 – 13]

Table 1: Detailed description of the VLTS benchmark suite.

C++ library: Rukia1. This library is based on several other libraries: the
BGL (Boost Graph Library) to manipulate graphs (Siek et al., 2000), the GMP
(Gnu Multiple Precision) library (Granlund, 1991) and the Boost Random li-
brary (Maurer and Watanabe, 2000) in order to generate random numbers.
Note that Goldwurm’s method should not use a floating-point arithmetic be-
cause of its numerical instability (see Section 3.2 for an in-depth explanation).
Unfortunately we could not implement the Boltzmann method: it needs to pre-
compute a numerical parameter whose value depends on the generating series of
the language. And computing this value for huge automata is still an unsolved
problem, up to our knowledge.

In order to evaluate those algorithms, we have selected a pool of automata
from the VLTS (Very Large Transition Systems (Garavel and Descoubes, 2003))
benchmark suite. These automata correspond to real industrial systems. Each
name of an automaton writes vasy X Y, where X is the number of states divided
by 1000, and Y is the number of transitions divided by 1000. The general
properties of these automata can be found in Table 1. The number of paths, in
those automata, grows exponentially according to the path length. Thus, there
are for example more than 10479 paths of length 1000 in vasy 1 4 automaton.

We did all our experiments on a virtual machine on a dedicated server whose
hardware is composed of an Intel Xeon 3GHz processor with 32GiB memory.
An experiment was to measure the amount of memory used and the elapsed
time by an algorithm to generate a path of a certain length in an automaton.
Each experiment was run 5 times and only the average value is presented (The
standard deviation is always lower than 5% of the average value, which means
it is not necessary to repeat the experiment more than 5 times). In case where
the path generator was too fast to be measured by the timer (less than 10
milliseconds), 100 paths were generated and the average time was divided by
100.

3.2. Numerical instability of Goldwurm’s method

Denise and Zimmermann (1999) proved that the operations used by the
recursive method are numerically stable. We experimentally checked that it
is also true for our implementation of the recursive method: Figure 4 shows

1http://rukia.lri.fr
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that the maximal relative error is less than 10−17; hence, our implementation is
numerically stable. The relative error is computed as follows:

Err = max
s∈S

0<i≤n

|ls(i)− l̃s(i)|
ls(i)

(3)

where l̃s(i) (resp. ls(i)) is the number of paths of length i starting from the
state s and computed with a floating-point (resp. exact) arithmetic.

 1e-19

 1e-18

 1e-17

200 2000 8000 10000

R
e
la

ti
v
e
 e

rr
o
r

Length (n)

vasy_1_4
vasy_5_9

Figure 4: Measurement on two automata of the maximum relative error for the recursive
method, defined by Equation (3).

On the other hand, the extra operations performed by Goldwurm’s method
are numerically unstable as illustrated by the maximal relative error computed
on our implementation of this method (see Figure 5). Such extra operations
for rational languages correspond to the computation of the following formulae
(see (Oudinet, 2010) for details):

ls(i) =
∑
s′

rs,s′ × l′s(i+ 1) with rs,s′ ∈ Q
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If εsi is the error of ls(i), then the error propagation is as follows:

εsn−1 =
∑
t

εtn × |rst|

εn = max
s
εsn

εn−1 ≤ max
s

∑
t

εn|rst|

εn−1 ≤

[
max

s

∑
t

|rst|

]
εn

Thus, the error propagation follows a geometric distribution with parameter
maxs,s′ |rs,s′ |. In other word, Goldwurm’s method is numerically unstable as
soon as there is a |rs,s′ | greater than 1, which is the case in the automata studied.
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Figure 5: Measurement on two automata for the Goldwurm’s method of the maximum relative
error, defined by Equation (3).

3.3. Memory requirement

Here we present the memory consumption for the three methods that use
floating-point arithmetic: the recursive method (Denise and Zimmermann, 1999),
the Divide and Conquer method (Bernardi and Giménez, 2010), and our Di-
chopile algorith. (We also conducted the same experiments using exact arith-
metic, those results are presented in Appendix A.)
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Memory (MiB)

Automaton Length Rec DaC Dichopile

vasy 0 1 1000 33 67 16
2000 49 71 16
4000 79 76 16
8000 141 80 16

16000 265 85 16
32000 512 90 16
64000 1005 95 17

128000 1993 101 18

vasy 1 4 1000 81 840 17
2000 144 915 17
4000 271 990 17
8000 523 1064 17

16000 1029 1139 17
32000 2040 1215 18
64000 4061 1290 18

128000 8105 1366 19

vasy 5 9 1000 312 - 21
2000 605 8 21
4000 1191 8 22
8000 2363 8 22

16000 4707 8 23
32000 9395 8 23
64000 18770 8 24

128000 8 8 25

vasy 10 56 1000 601 8 29
2000 1181 8 29
4000 2340 8 30
8000 4657 8 31

16000 9293 8 31
32000 8 8 32
64000 8 8 33

128000 8 8 35

vasy 12323 27667 1000 8 8 13111
2000 8 8 13769
4000 8 8 14427
8000 8 8 -

Table 2: Comparison of the memory requirement to generate paths in various automata by:
the recursive method (Rec) using floating-point arithmetic, the divide and conquer method
(DaC), and the Dichopile method. The symbol 8 means that the method needs more than
32GiB of memory, and the symbol - means the value is unavailable due to a timeout during
the preprocessing
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Table 2 shows the results of comparing the memory requirement for the
three methods, when generating a path of a defined length in various au-
tomata. Even though the space complexity of Bernardi and Giménez’s divide-
and-conquer (DaC) method is close to the space complexity of the recursive
method in terms of path length, the difference of space consumption for those
two methods is huge due to the size of automata considered here. In conse-
quence, the divide-and-conquer method could not be used with automata of
5-thousand states and more. Dichopile performed much better than the two
other methods and was the only one capable of generating paths in an automa-
ton of more than 107 states.

3.4. Execution time

In addition to the measurement of space consumption, we also measured
elapsed time for the three same methods in order to generate a path in various
automata. Results for the other methods are provided in Appendix A.

Table 3 shows elapsed time for the three methods. The preprocessing time (Pre),
which has to be done only once whatever the number of paths generated, is sep-
arated from the running time (Draw)2. For example, the elapsed time necessary
to generate 1000 paths with one method is equal to Pre + 1000× Draw.

Figure 6 shows memory consumption and elapsed time to generate 1000
paths for each method. In those experiments, the recursive method was faster
than the two other methods but Dichopile was capable of generating longer
paths in larger automata. Again, even though the time complexity of divide-
and-conquer is the best with regards to the path length, the automata considered
in our experiments are too large to see the advantage of divide-and-conquer.

Finally, the recursive method is fast but does not scale up very well (both in
terms of long path or large automaton). The divide-and-conquer algorithm is
well-suited for very long paths but for small automata only. Thus, the Dichopile
algorithm is an efficient algorithm to generate long paths in large automata.

2The stack used by Dichopile has to be computed again from scratch in order to generate
a new path. Thus, there is no preprocessing time for this method.
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Time (s)

Rec DaC Dichopile

Automaton Length Pre Draw Pre Draw Pre Draw

vasy 0 1 1000 0.1 0.001 48 0.04 0 0.2
2000 0.2 0.002 53 0.08 0 0.5
4000 0.3 0.004 60 0.16 0 1.0
8000 0.6 0.008 65 0.32 0 2.2

16000 1.3 0.016 69 0.64 0 4.8
32000 2.6 0.032 72 1.3 0 10
64000 5.2 0.063 78 2.5 0 22

128000 10 0.13 84 5.1 0 46

vasy 1 4 1000 0.3 0.001 3442 0.4 0 0.8
2000 0.6 0.002 3839 0.8 0 1.9
4000 1.3 0.004 4222 1.6 0 3.9
8000 2.6 0.009 4540 3.4 0 8.4

16000 5.1 0.019 4939 7 0 18
32000 10 0.038 5279 13 0 38
64000 21 0.08 5638 28 0 80

128000 43 0.15 5907 56 0 169

vasy 5 9 1000 1.4 0.001 ∞ 0 2.5
2000 3.1 0.002 - 0 5.2
4000 6.2 0.003 - 0 11
8000 13 0.007 - 0 23

16000 27 0.015 - 0 48
32000 52 0.03 - 0 100
64000 107 0.06 - 0 208

128000 - - - 0 432

vasy 10 56 1000 7 0.001 - 0 11
2000 18 0.001 - 0 24
4000 41 0.003 - 0 52
8000 81 0.008 - 0 111

16000 165 0.016 - 0 236
32000 333 0.032 - 0 500
64000 - - 0 1058

128000 - - 0 2222

vasy 12323 27667 1000 - - 0 10033
2000 - - 0 21047
4000 - - 0 44053
8000 - - 0 ∞

Table 3: Comparison of the execution time to generate paths in various automata by: the
recursive method (Rec) using floating-point arithmetic, the divide and conquer method (DaC),
and the Dichopile method. The symbol ∞ means that the generation was not complete after
24 hours of execution, and the symbol - means the value is unavailable due to a memory
overflow during the preprocessing.
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Figure 6: Cross view of the results presented in Table 2 and Table 3, assuming 1000 paths are
generated. Thus, each time value corresponds to Pre + 1000× Draw.
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4. Conclusion

Table 4 summarizes the bit complexities in time and in space of the known
algorithms to generate random words in regular languages. Since our goal is
to be able to explore at random very large models, we are interested in the
complexity in terms of both the path length n and the automaton size q. For
the sake of clarity, we consider as constants the following values: the maximum
degree d of the automaton and the mantissa size b chosen for the floating-point
numbers. The inverse method using floating-point arithmetic is crossed out
since it can not be used due to its numerical instability.

Table 4: Summary of the binary complexities in time and in space according to the method
used. We consider the path length n and the number of states q in the automaton.

Time

Method Arith Space Preprocessing Generation

recursive exact O(qn2) O(qn2) O(n2)
inverse exact O(qn) O(q2 + qn2) O(qn2)
recursive float O(qn log n) O(qn log n) O(n log n)
inverse float O(q log n) O(q2 + qn log n) O(qn log n)

divide and conquer float O(q2 log n log(qn)) O(q3 log n log2(qn)) O(qn log(qn))

Boltzmann float O(q) O(qk logk′
n) O(n2)

dichopile float O(q log2 n) O(1) O(qn log2 n)

From the point of view of space complexity, obviously the best algorithm is
the Boltzmann method with its O(q) complexity. The main limitation of the
recursive method is the space needed to store the counting table. Even when
using floating-point arithmetic, the space complexity is still O(qn log n), which
becomes very problematic for large n and q. The inverse method has similar
problems, with its O(qn) complexity. Both divide and conquer and dichopile
perform well due to their polylogarithmic complexity in n, but dichopile uses
more than q times less memory than divide and conquer (up to a constant
factor). This is illustrated by the experimental results (Table 2) where dichopile
can manage huge automata while divide and conquer cannot. On the other
hand, for small automata and long paths, divide and conquer uses much less
memory than the recursive method, as expected.

If for any reason, the tiny difference from the uniformity induced by the use
of a floating-point arithmetic is not acceptable, the inverse method can be used
as it offers the best space complexity, but it requires a long generation time
(experimental results for this method can be seen in Appendix A.2). Exactly
uniform generation can also be done by combining floating-point arithmetic and
exact arithmetic (Denise and Zimmermann, 1999), but the space complexity
becomes larger than for the quasi-uniform generation shown here. For example,
the bit space complexity becomes O(qn2) for the recursive method and O(q2n)
for the divide-and-conquer algorithm.
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Regarding the time complexity only, the best algorithm is the classical recur-
sive scheme with its O(n log n) complexity in floating point arithmetic. As for
Boltzmann, the rejection procedure necessary to obtain paths of length n raises
the time complexity to O(n2) in the general case. Both divide and conquer and
dichopile are linear in q and almost linear in n, with an advantage for divide
and conquer. Regarding the experiments (Table 3), this hierarchy is respected:
when divide and conquer has enough memory for running, it runs faster than
dichopile; and both are outperformed by the recursive method. Note that, as
stated by Bernardi and Giménez (2010), faster versions of these three algorithms
could be implemented, by using a bit-by-bit random number generator.

Altogether, the classical recursive method is fast (after the preprocessing
stage), but is unusable for large n and q due to its huge space requirement.
On the other hand, the Boltzmann method needs little memory but is slow3

according to n. Unfortunately, as written in Section 3, we could not experiment
the Boltzmann method because computing the value of its parameter for large
automata is still an unsolved problem, up to our knowledge. Both divide and
conquer and dichopile are excellent compromises. From a theoretical point of
view, the latter offers a better space complexity, and comparatively the increase
of time complexity according to n is quite acceptable. Experiments confirm that
divide and conquer is well fitted for small automata and long words: it needs
much less memory than the recursive method and the time for generating a
word remains very reasonable. On the other hand, dichopile is the only method
that can generate long paths in large automata.
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Appendix A. Experimental results using exact arithmetic

Beside results presented in Section 3, we also conducted experiments using
exact arithmetic for the recursive method and the Goldwurm’s method. Com-
paring performances of those methods with the ones using floating-point arith-
metic is not useful because methods with floating-point arithmetic are faster
and need less memory than their counterparts using exact arithmetic. For the
sake of completeness, we present here results for the recursive method then for
the Goldwurm’s method using exact arithmetic.

Appendix A.1. The recursive method using exact arithmetic

In this section, we measured the performance of the original algorithm from
Hickey and Cohen (1983). Its bit complexity is in O(qn2) space and time for the
preprocessing stage and O(n2) for the generation, where n denotes the length of
the path to be generated, and q denotes the number of states of a deterministic
finite automaton.

Table A.5 shows the memory usage and the elapsed time to generate a path
depending on the length of the path and the size of the automaton. We note
that the generation is very fast but the space needed to store the counting table
is very important and thus limits the length of paths that can be drawn.
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Automaton Length Mem (MiB) Pre (s) Draw (s)

vasy 0 1 1000 63 0.2 0.001
2000 178 0.6 0.004
4000 614 2.1 0.013
8000 2312 7.5 0.043

16000 9015 29 0.14
32000 8 -

vasy 1 4 1000 177 0.7 0.002
2000 560 2.1 0.005
4000 1996 6.9 0.013
8000 7555 25 0.04

16000 29423 93 0.13
32000 8 -

vasy 5 9 1000 465 2.6 0.001
2000 1339 7.1 0.004
4000 4378 20 0.009
8000 15634 55 0.024

16000 8 -

vasy 10 56 1000 1961 16 0.003
2000 6888 46 0.006
4000 25753 147 0.019
8000 8 -

vasy 12323 27667 1000 8 -

Table A.5: Generation of a path of length n by the recursive method using exact arithmetic.
The symbol 8 means there is not enough memory to build the counting table, and the symbol
- means the value is unavailable due to a memory overflow during the preprocessing.
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Appendix A.2. The inverse recursive method using exact arithmetic

In this section, the parsimonious version of Goldwurm is used to keep in
memory a few coefficients only. As this version is numerically unstable, floating-
point arithmetic cannot be used. The space complexity is in O(qn) bits. Gen-
eration of a path of length n is done in O(qn2), after a pre-processing time in
O(q2 + qn2).

Table A.6 shows memory usage and elapsed time to generate a path in the
automata vasy 0 1, vasy 1 4 and vasy 5 9. Path length varies from 1000 to
128, 000. The computation of the values needed for reversing the recurrences
was not possible for the other automata, due to insufficient memory resources.

Thanks to reducing space complexity, it is possible to generate much longer
paths. Thus, a path of length 64, 000 was generated with this method in the
automaton vasy 5 9. While with the recursive method using exact arithmetic,
we could not get paths of length 16, 000 in the same automaton. However,
the generation time is much longer: almost 10 minutes for a path of length
8, 000 while the same path can be generated in 24 milliseconds by the recursive
method.
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Automaton Length Mem (MiB) Pre (s) Draw (s)

vasy 0 1 1000 19 0.1 12
2000 20 0.3 29
4000 20 1.2 83
8000 20 4.7 269

16000 22 18 926
32000 25 77 3426
64000 31 342 13296

128000 43 1462 52413

vasy 1 4 1000 44 0.3 301
2000 44 1.0 730
4000 45 3.6 1933
8000 49 14 5881

16000 58 63 19559
32000 61 266 70664
64000 110 1079 ∞

128000 180 4351 ∞
vasy 5 9 1000 31 0.4 36

2000 33 1.0 83
4000 35 3.8 210
8000 40 19 579

16000 49 79 1798
32000 69 312 6104
64000 108 1208 22145

128000 298 4680 ∞

Table A.6: Generation of a path of length n by the inverse method using exact arithmetic.
The symbol ∞ means that the generation was not complete after 24 hours of execution.
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