
HAL Id: hal-00716504
https://hal.science/hal-00716504

Submitted on 10 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stepwise Identification of Automated Discrete
Manufacturing Systems

Ana-Paula Estrada-Vargas, Jean-Jacques Lesage, Ernesto López-Mellado

To cite this version:
Ana-Paula Estrada-Vargas, Jean-Jacques Lesage, Ernesto López-Mellado. Stepwise Identification of
Automated Discrete Manufacturing Systems. 16th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, Sep 2011, Toulouse, France. Track4-6 8p. �hal-00716504�

https://hal.science/hal-00716504
https://hal.archives-ouvertes.fr

Stepwise Identification of Automated Discrete Manufacturing Systems

Ana Paula Estrada-Vargas
1,2

, Jean-Jacques Lesage
2
, Ernesto López-Mellado

1
, Members IEEE

1
CINVESTAV Unidad Guadalajara. Av. del Bosque 1145. Col. El Bajío 45015 Zapopan, Mexico

2
LURPA Ecole Normale Supérieure de Cachan. 61, Av. du Président Wilson. 94235 Cachan Cedex, France

{elopez,aestrada}@gdl.cinvestav.mx, Jean-Jacques.lesage@lurpa.ens-cachan

Abstract

This paper deals with the identification of discrete

event systems that are automated through a

programmable logic controller (PLC). The behavior of

the closed loop system (PLC and Plant) is observed

during its operation and is represented by a single long

sequence of input/output vectors. The proposed method

allows building stepwise an interpreted Petri net model,

which is updated when new behavior is observed. The

identification strategy is composed of several polynomial

time algorithms implemented in a software tool that

creates and draws the IPN model

1. Introduction

Identification of discrete event systems (DES) from

external observation of system behaviour has interesting

applications such as reverse engineering for (partially)

unknown systems, fault diagnosis, or system

verification. Analogously to continuous identification

techniques, identification methods for DES yield a

mathematical model that represents the observed

behaviour and closely approximates the actual DES’

behaviour.

In recent years, the scientific community has

proposed identification approaches for obtaining

approximated models (Petri nets or automata) of DES

whose behavior is unknown or ill-known. In the context

of automated manufacturing systems, identification

methods allow obtaining a first model that can be

detailed using established modeling techniques and

available knowledge of the system; such a model

describes the controller-plant behavior during the closed-

loop functioning. Three main approaches for identifying

DES have been proposed in literature [1].

The incremental synthesis approach, proposed by

Meda et al. in [2], [3] deals with unknown partially

measurable DES exhibiting cyclic behavior. Several

algorithms have been proposed allowing the on-line

identification of concurrent DES from output sequences.

Although the techniques are efficient, the obtained

models may represent more sequences than those

observed.

Another recent method [4] allows building efficiently

a non deterministic finite automaton (NFA) from a set of

input/output sequences, experimentally measured from

DES to be identified. Under several hypotheses, the

constructed NFA generates exactly the same input/output

(I/O) sequences of given length than observed ones. The

method was conceived for fault detection in a model-

based approach [5]. Extensions to this work propose an

identification method performing optimal partitioning of

concurrent subsystems for distributed fault detection

purposes [6].

The off-line techniques based on integer linear

programming (ILP) approach lead to free-labeled Petri

net models representing exactly the observed behavior

[7]. However both the ILP problem statement from event

sequences and the processing have exponential

complexity. This approach is being explored for other

IPN classes; representative publications of this approach

are [8] and [9].

In this paper we address the problem of identifying a

DES controlled by a PLC during its operation. Both

controller’s inputs and outputs are sampled from the

initial state for building a single sequence of I/O vectors,

which is processed yielding an interpreted Petri net

(IPN) model.

This approach is based on a previously presented

efficient method for coping with concurrent partially

observable DES [10] which processes a set of cyclic

input/output sequences yielding models including silent

transitions and non-labelled places. This technique has

been extended and adapted for identifying actual PLC-

based controlled discrete manufacturing systems, which

operate during a long time period performing repetitive

tasks. Thus the main contribution of this paper with

respect to the previous one is the ability for detecting

cyclic behavior from the single I/O sequence and

building progressively a safe IPN; this allows updating

the model when new input-output vectors are added to

the sequence.

The paper is organized as follows. In section 2 the

background on Petri nets and languages is outlined. In

section 3, the identification problem is stated and the

stepwise method is presented. In section 4 a case study is

dealt through a software tool implementing the proposed

method.

2. Background

This section presents the basic concepts and notation

of PN and IPN used in this paper.

Definition 1: An ordinary Petri Net structure G is a

bipartite digraph represented by the 4-tuple G = (P, T, I,

O) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are

finite sets of vertices named places and transitions

respectively; I(O) : P × T  {0,1} is a function

representing the arcs going from places to transitions

(from transitions to places).

The symbol

tj (tj


) denotes the set of all places pi such

that I(pi, tj) ≠ 0 (O(pi, tj) ≠ 0). Such places are called

input (output) places of tj. Analogously,

pi (pi


) denotes

the set of input (output) transitions of pi.

The incidence matrix of G is C = C
+
  C


, where

C

 = [cij


]; cij


 = I(pi, tj); and C

+
 = [cij

+
]; cij

+
 = O(pi, tj) are

the pre-incidence and post-incidence matrices

respectively.

A marking function M : P +
 represents the number

of tokens residing inside each place; it is usually

expressed as an |P|-entry vector. +
is the set of

nonnegative integers.

Definition 2: A Petri Net system or Petri Net (PN) is

the pair N = (G,M0), where G is a PN structure and M0 is

an initial marking.

In a PN system, a transition tj is enabled at marking

Mk if pi  P, Mk(pi) ≥ I(pi, tj); an enabled transition tj

can be fired reaching a new marking Mk+1 which can be

computed as Mk+1 = Mk + Cvk, where vk(i) = 0, i≠j,

vk(j) = 1, this equation is called the PN state equation.

The reachability set of a PN is the set of all possible

reachable markings from M0 firing only enabled

transitions; this set is denoted by R(G,M0).

A PN is called safe ifMk  R(G, M0), pi  P,

Mk(pi)  1.

Now it is defined IPN, an extension to PN that allows

associating input and output signals to PN models.

Definition 3 : An IPN (Q, M0) is a net structure

Q = (G, , , , ) with an initial marking M0 where:

G is a PN structure,  = {1, 2, ..., r} is the input

alphabet, and  = {1, 2,..., q} is the output alphabet.

 : T {} is a labeling function of transitions,

where  represents a system internal event externally

uncontrollable; it is not allowed that the symbol  is

associated to more than one tj  pi

.

 : R(Q,M0)(+
)

q
 is an output function, that

associates to each marking in R(Q,M0) a q-entry output

vector; q=|| is the number of outputs.  is represented

by a q×|P| matrix, such that if the output symbol i is

present (turned on) every time that M(pj) ≥ 1, then

 (i, j) = 1, otherwise (i, j) = 0.

When an enabled transition tj is fired in a marking Mk,

then a new marking Mk+1 is reached. This behavior is

represented as Mk  jt
Mk+1; the state equation is

completed with the marking projection yk =  Mk, where

yk  (+
)

q
 is the k-th output vector of the IPN.

According to functions  and , transitions and places

of an IPN (Q,M0) can be classified as follows.

Definition 4: If (ti) ≠  the transition ti is said to be

controllable (ti can be fired when the associated input

symbol is presented). Otherwise it is uncontrollable (ti is

autonomously fired). A place piP is said to be

measurable if the i-th column vector of  is not null, i.e.

(,i) ≠ 0. Otherwise it is non-measurable. P = P
m
  P

u

where P
m
 is the set of measurable places and P

u
 is the set

of non-measurable places.

Definition 5: The l-length I/O language of an IPN

(Q,M0) is defined as:















































)(

)(
,...,

)(

)(
,

)(

)(
),(

2

2

1

1
0

li

li

i

i

i

il

M

t

M

t

M

t
MQ£













where Mi  1i
t Mi+2...  li

t Mi + l; Mi R(Q, M0)

3. Stepwise Identification

3.1. Problem statement

Consider a DES composed of a Plant and a Controller

(a PLC) operating in a closed-loop as showed in Figure

1. We assume that the data exchanged between Plant and

PLC are binary signals. The input signals of the PLC

(outputs of the Plant) are generated by the sensors of the

Plant. The output signals of the PLC (inputs of the Plant)

control the actuators of the Plant. The external behavior

of such a DES system can be observed (and

characterized) by the evolution of the value of all

input/output (I/O) signals exchanged between the

controller and the plant.

Figure 1. Closed loop controller-plant DES

At each end of cycle of the PLC, the current value of all

Inputs and Outputs (called I/O vector) can be easily

captured and recorded in a data base. Each new observed

I/O vector (when at least one I/O changes its value)

belongs to an I/O vector alphabet. We can concatenate

such vectors to construct a sequence, which is the input

of our identification algorithm.

Definition 6: The I/O vector alphabet of a DES with

m inputs and n outputs is m,n = {1,0}
(m+n)

.

Definition 7: The observed input-output sequence of

a DES S with m inputs and n outputs is:

...
)(

)(
...

)2(

)2(

)1(

)1(


























jO

jI

O

I

O

I
w , where [I(j)O(j)]

T
is the j-th

observed I/O vector belonging to m,n.

I P O I P O …

Send I-O Send I-O

Plant

Controller
I (j) O(j)

I/O(j)

Definition 8: The observed input-output language of

length l of a DES S is defined as l
(S) = {}  {w(i + 1)

w(i + 2)…w(i + h)|1  i + h  l}.

Now the identification problem can be defined. Given a

DES whose only available information is an observed

I/O sequence w arbitrarily large and an accuracy

parameter , the aim of the identification process is to

obtain a safe IPN model (Q, M0) such that

 (Q, M0) = . The parameter is used to adjust

the accuracy of the identified model, similarly as

proposed in [4].

It is important to point out that the aim of obtaining a

model through identification is not to represent only the

observed language, but to represent the observed

behaviour and to infer actual behaviour that has not been

observed during data collection. In order to accomplish

this inference, the parameter , is used as a measure of

state equivalence. When -equivalent states are found,

they are merged, increasing the accepted language of the

IPN and consequently the modelled behaviour. The

notion of state equivalence with respect to  is explained

below.

Assumption: In this work it is considered that the I/O

sequence is measured from the initial state of the global

system (Plant and Controller). It is progressively updated

with a new I/O vector, when any entry changes its value.

3.2. General strategy

The method allows the progressive construction of a safe

IPN representing exactly the sampled input-output

language of length κ +1 of the DES.

From the I/O vector sequence, an event sequence is

computed and a sequence of event substrings of length κ

is built. Every substring is associated to a transition of a

PN, which describes the causal relationship between

event substrings. A PN node path formed by non-

measurable places represents the substring sequence; this

path is built taking into account the possible repetitive

observed behaviour (internal model). Then

simplifications may be applied. Notice that the number

of non-observable places is not predefined.

Finally, the model is completed by including observable

places which are related to pertinent transitions in the PN

according to output changes provoked by events; also

input symbols are associated. This part of the algorithm

can be concurrently performed at any moment, for

example when a cycle is identified, whilst the internal

model is updated by processing the new I/O vectors.

3.3. I/O sequence processing

3.3.1. Events sequence

The I/O vector sequence w is progressively built by

adding new observed I/O vectors. In this way, a string of

observed events are computed.

Definition 9: An observed event vector (j) is the

variation between two consecutive I/O vectors: (j) =

w(j + 1) – w(j). The m first entries of (j), denoted as

((j)) correspond to the variation between two

consecutive input vectors I(j), I(j + 1) (input event). A

symbolic input event ’((j)) is a string representation of

the input event vector ((j)); it is computed as:

















0)()1(

1)()1(0_

1)()1(1_

))(('

jIjI

jIjII

jIjII

j

ii

iii

iii

 if

 if

 if





Then for a sequence w, a sequence of observed events

(j) = (1) (2)... (j)... is obtained. During the process, if

the difference has not been observed before, a new event

ej is created ((j) = ej).

3.3.2. -length event traces

Events ej represent changes in the observable behaviour

of the system. However two identical events may be

generated during different internal conditions during the

system execution. In order to distinguish within the

internal behaviour when these changes are exhibited, 

precedent events are considered. This is embedded in the

notion of -length event trace.

Definition 10: An event trace (j) is the substring

from  of length  whose last event is (j).

(j) = (j   + 1)(j   + 2)…(j).
This notion is useful to determine during the

identification process if two states represent the same

internal behaviour. Then the notion of equivalent states

involves the history of  events that lead to such states.

Definition 11: Two states of the model representing

the identified system are -equivalent if the event traces

(j) leading to such states are the same.

3.4. Identification algorithm

The procedure for building the IPN model from the I/O

sequence can be summarized on the UML activity

diagram of Figure 2. It consists of five main steps that

are described below.

Figure 2. Stages of the identification algorithm

Initialization

Waiting for an
I/O vector

[New I/O vector arrives]

[No new I/O vector]

Building events
and traces

[An event trace is computed]

[No event trace is computed]

Building
internal model

[A new cycle is found]

[No cycle is found]

PN structure
simplification

Adding
interpretation

Step 1. Initialization

In this step, a PN structure is initiated. This is done by

the following statements:

 //Create an initial empty set of

transitions T, an initial empty event traces set ET, and an initial set of

places P containing a place .

 //Put a

token on and associate to it the first observed vector w(1). Take

such a place as current.

Step 2. Building events and traces

Once the net is initiated, the procedure iterates on new

I/O vectors. When an input or an output changes its

value, an I/O vector is considered to update the events

sequence and the events traces according to Definition 9

and Definition 10 respectively.

Let ej be the last event in the trace ; the associated

transition will be denoted as

 (more than one

transition may have associated the same ej). The internal

model building can be systematically performed

following the next procedure.

If //If the computed trace is new

then

 //create a transition

 to represent the trace ;

 //create an arc from current to

 //create a new place pout and

associate it with correspondent marking ;

 //create an arc from

 to pout ;

 //take as current.

else//If the computed trace is not new

If
 

 //If one of the output

transitions

 of current place represents the observed trace

then
  take the output place of

 as current

else //If current place has not an output transition representing

If

 

 //If

there is a transition

 representing such that its input place 

 has

the same associated marking 
 than current place.

then take 
 //take 

 as pin

tbT, I(pin, tb) (I(pin,tb), I(current,tb));

tbT, O(pin, tb) (O(pin,tb), O(current,tb));

// is a vector bitwise or operation;

 //merge current place with such an input place

  //take the output place of the transition as current.

else consider
 as new.

Step 4. PN structure simplification

After performing step 3, the algorithm waits for an

I/O change by returning to step 2. Nevertheless, notice

that merging places through step 3 of the algorithm

could lead to merging of equivalent transitions. When

such a merging is performed, a cycle on the PN is

created. This is considered as a representative change in

the structure of the model, and thus, simultaneously with

launching of step 2, step 4 is executed to make a PN

simplification procedure. Such a procedure based on

concurrence transformations has already been explained

in [11]. It basically consists of the analysis of different

paths between two places containing transition

permutations leading to concurrent components

transformations. If there exist m! paths, it is verified if

every one of them is a permutation from each other.

When this is true, the subnet can be transformed into a

concurrent component of G’ preserving the same

behaviour.

Step 5. Adding interpretation

Once the PN has been simplified through step 4, input

and output information is included on the model,

obtaining an IPN representing the language of the

DES that has been observed. Input information is added

to the IPN by associating symbols to transitions

according to the symbolic event input function of

Definition 9. The procedures to add output information

and simplify implicit non observable places are

summarised below and deeply explained on [11].

1. Create n measurable places corresponding to each

one of the outputs of the system.

2. Add arcs to and from the measurable places to the

transitions of the net, according to its associated

event ej.

3. Put tokens in the corresponding measurable places to

represent the first observed output vector.

4. If there is a non-measurable place whose inputs and

outputs are exactly the same than any measurable

place, remove such a non-measurable place and its

input and output arcs.

3.5. Example 1

 Consider a DES with three output signals,  = {A, B,

C}, and three input signals  = {a, b, c}. The entries of

the binary I/O vectors have the following

correspondence: . An I/O

sequence is progressively observed. The first measured

I/O vector corresponds to the initial state of the DES:

 .

When a second I/O vector

 is measured, the event

vector is computed;

the input event vector is and its

corresponding symbolic input event is , i.e.

the rising edge of a.

Considering a value , we can compute the first

event trace . Notice that, in this case, trace

and event are the same. This event trace is related with a

transition of the IPN. The IPN constructed after

observing two I/O vectors is on Figure 3.

Figure 3. PN representing e1

1

1

e
t

When a third I/O vector

arrives, ,

 and are computed and the model is

updated, as showed in Figure 4.

Figure 4. PN representing the sequence e1e2

Until 8
th

 I/O vector, the situation is quite similar: a new

event is observed and the model is updated.

When 9
th

 vector is

measured, the event

is computed and the trace is identified through

Step 3 as an already observed trace . Since it leads to

the same marking than the input place of
 , such a

place and the output place of
 can be merged as

observed on Figure 5.

Figure 5. Internal model for the first
detected cycle

Since a cycle is found, steps 4 and 5 of the algorithm are

executed, leading to an intermediate IPN model showed

on Figure 6.

Figure 6. IPN for the first detected cycle

Simultaneously to the creation of the intermediate IPN,

more I/O vectors are added to the observed sequence and

PN is updated:

Two more cycles are found in this sequence and

intermediate IPN models are created. We show only the

PN obtained after founding the second cycle (Figure 7)

and its equivalent model transformed by analysing

concurrency (Figure 8). After applying the steps 4 and 5

the IPN obtained from this PN is showed in Figure 9.

Figure 7. PN corresponding to the whole
I/O sequence

Figure 8. Equivalent internal model
representing concurrency

Remark. The simplification by analysis of concurrency

in Step 4 is not strictly necessary for representing the

event vector sequences; however the equivalent model

with concurrent transitions may be simpler. The aim of

this simplification is not minimizing the number of

nodes in the model, but obtaining fairly reduced models

useful for understanding the DES behaviour.

Figure 9. IPN for the complete sequence

4. Method implementation and application

4.1. An identification tool

Based on the algorithms presented in section 3, a

software tool has been developed to automate the IPN

model synthesis. The architecture of the tool is showed

in Figure 10.

Figure 10. Software architecture

1

1

e
t 2

2

e
t

5

5

e
t1

1

e
t 2

2

e
t 3

3

e
t 4

4

e
t

6

6

e
t 7

7

e
t

A B C1_a    1_c 0_c 0_a

7

7

e
t

1

1

e
t

5

5

e
t

2

2

e
t

5

8

e
t

3

3

e
t

4

9

e
t

4

4

e
t

6

6

e
t

8

10

e
t

7

7

e
t

1

1

e
t

5

5

e
t

2

2

e
t

3

8

e
t

4

4

e
t

6

6

e
t

8

10

e
t

0_a1_a

1_c







0_c

1_bA

B

C

User
interface

Input
Reader

Memory

Algorithm Graphviz

Options

I-O vectors

Input files

dot file

IPN (jpg file)

Memory

 The user interface allows capturing the input/output

sequence and shows the obtained model graphically.

Several data are provided to the tool: a text file

containing the I/O sequence (with one line per I/O

vector), the parameter , the names of the input and

output signals, and the desired name of output file.

Additionally it is specified the order in which inputs and

outputs appear in the txt file (since due to data collection

issues they could be inverted) and the index numbers of

the signals to take into account if a mask is going to be

applied.

Later, an input reader component processes the input

file and transforms the input/output sequence into a

vector sequence. These vectors will be delivered to a

component called Algorithm in which the identification

algorithm is implemented. The output of this component

is a dot file that can be given to the Graph Visualization

Software (Graphviz) to generate an image file jpg.

The presented identification tool has been tested on

several examples of diverse size. Below we illustrate the

use of such software tool through a small size case study.

4.2. Case study

For space considerations a small size application

example is presented in this paper dealing with an

automated manufacturing system; it is taken from [5].

The purpose of such a system is to sort parcels according

to their size (Figure 11). It has 9 inputs signal sensor

from the system: a0, a1, a2, b0, b1, c0, c1, k1, k2, and 4

outputs (signal to the actuators): A+, A-, B, C.

Figure 11. Layout of the system case study

A sequence consisting of 216 I/O vectors has been

observed; it is showed on Figure 12. Notice that cycles

are not specified on the sequence and they must be

identified. Binary values of each I/O vector correspond

to signals A
+
, A

-
, B, C, k1, k2, a0, a1, a2, b0, b1, c0, and c1

respectively. Notice that the input and output signals

order in each vector is inverted (first outputs, later

inputs).

In a first stage the identified model based on the first

31 I/O observed vectors is showed in Figure 13. It can be

noticed that cylinder C has not worked yet, since big

parcels have not yet arrived.

Figure 12. I/O sequences of the case study

Figure 13. Obtained model after 31 PLC
cycles

Using the complete sequence of I/O vectors the

obtained model is showed in Figure 14. The

identification procedure finds successfully cyclic

behaviour in the single sequence of I/O vectors.

Notice that in this IPN model there are paths formed

by non observable places. This is due to the observation

of input changes that do not affect the outputs. In order

to obtain a more compact model a simplification strategy

has been presented in [10] and is recalled below. It

consists in merging several places, representing internal

behaviour whose detected events do not have effect on

the outputs, into a single one where an output event must

occur. Consider the following I/O vector sequence

involving one input x and two outputs A, B:

0000 001001010

0000 101001010
1000 101001010
1000 100001010

1000 000001010
0110 000101010

0110 000100010

0110 000000010
0010 001000010

0000 001000110
0000 001000010

0000 001001010

0000 001001010
0000 101001010

1000 101001010
1000 100001010
1000 000001010

0110 000101010
0110 000100010

0110 000000010
0010 001000010
0000 001000110

0000 001000010
0000 001001010
0000 001001010
0000 101001010
1000 111001010

1000 110001010
1000 010001010
1000 000001010
1000 000101010
1000 000001010

0101 000011010

0101 000001000
0100 000001001
0100 000101000

0100 000001010
0000 001001010

0000 001001010

0000 101001010
1000 111001010

1000 110001010
1000 010001010

1000 000001010

1000 000101010
1000 000001010

0101 000011010
0101 000001000
0100 000001001

0100 000101000
0100 000001010

0000 001001010
0000 001001010
0000 101001010

1000 101001010
1000 100001010
1000 000001010
0110 000101010
0110 000001010

0110 000000010
0010 001000010
0000 001000110
0000 001000010
0000 001001010

0000 001001010

0000 101001010
1000 111001010
1000 110001010

1000 010001010
1000 000001010

1000 000101010

1000 000001010
0101 000011010

0101 000001010
0101 000001000

0100 000001001

0100 000101000
0100 000001010

0000 001001010
0000 001001010
0000 101001010

1000 111001010
1000 110001010

1000 010001010
1000 000001010
1000 000101010

1000 000001010
0101 000011010
0101 000001010
0101 000001000
0100 000001001

0100 000101000
0100 000001010
0000 001001010
0000 001001010
0000 101001010

1000 101001010

1000 100001010
1000 000001010
0110 000101010

0110 000001010
0110 000000010

0010 001000010

0000 001000110
0000 001000010

0000 001001010
0000 001001010

0000 101001010

1000 101001010
1000 100001010

1000 000001010
0110 000101010
0110 000100010

0110 000000010
0100 000000110

0000 001000110
0000 001000010
0000 001001010

0000 001001010
0000 101001010
1000 101001010
1000 100001010
1000 000001010

0110 000101010
0110 000100010
0110 000000010
0100 000000110
0000 001000010

0000 001001010

0000 001001010
0000 101001010
1000 101001010

1000 100001010
1000 000001010

0110 000101010

0110 000100010
0110 000000010

0100 000000110
0000 001000110

0000 001000010

0000 001001010
0000 001001010

0000 101001010
1000 111001010
1000 110001010

1000 010001010
1000 000001010

1000 000101010
1000 000001010
0101 000011010

0101 000011000
0101 000001000
0100 000001001
0100 000001000
0100 000101000

0100 000001000
0100 000001010
0000 001001010
0000 001001010
0000 101001010

1000 111001010

1000 110001010
1000 010001010
1000 000001010

1000 000101010
1000 000001010

0101 000011010

0101 000001010
0101 000001000

0100 000001001
0100 000001000

0100 000101000

0100 000001000
0100 000001010

0000 001001010
0000 001001010
0000 101001010

1000 111001010
1000 110001010

1000 010001010
1000 000001010
1000 000101010

1000 000001010
0101 000011010
0101 000001000
0100 000001001
0100 000101000

.

.

.

0000 001001010
0000 001001010
0000 101001010

1000 101001010
1000 100001010
1000 000001010
0110 000101010
0110 000100010
0110 000000010
0100 000000110
0000 001000110
0000 001000010
0000 001001010
0000 001001010

j-th observed I/O vector

1< j < 216

Figure 14. IPN for the case study

























































1
0

1

0
1

1

0
1

0

B
A

x

This sequence can be represented as:

BAA x  1_
, which can be compacted as:

BA x 1_
. This can be generalized to:

B
eee

AB
e

A
e

A
e

A
kjikji  

...
...

The application of this simplification procedure, also

included in the software tool yields the IPN model

showed in Figure 15.

Figure 15. Model after applying
simplification rule

5. Discussion

The method herein proposed allows dealing with

complex automated DES because it takes into account

technological characteristics of actual controlled

systems, and because it is based on efficient algorithms.

This feature is not still addressed in current literature on

the matter in which several features considered in the

current stated problem have not been dealt.

Although in [2] and [3] cycle finding from single

sequence is dealt, it is based on the observation of the

same initially observed outputs vector, which is not very

often the case for real systems; besides system’s inputs

are not taken into account. In [4], [6], [10] are

considered both inputs and outputs, but cyclic sequences

are supposed to be known. Techniques in [7], [8], [9]

process as input data a language generated by the

system, which is given as events sequences, regardless

how the events are obtained from I/O data.

6. Conclusions

Stepwise identification of automated manufacturing

systems has been addressed. This black box approach

allows obtaining IPN models from a single input/output

sequence that exhibits the closed loop behaviour of PLC-

based controlled plants. The proposed technique builds

progressively the IPN when new I/O vectors are

measured during the operation of the automated DES.

The identified model is a close approximation of the

compound controller-plant behaviour, which can be

detailed for controller redesign or model-based diagnosis

purposes.

Current research focuses on the reduction of the

obtained model by the analysis of the ulterior influence

of inputs that apparently do not provoke changes in the

outputs. Also, the inference of non observed behavior

regarding concurrent sub-processes is an issue to deal

with.

Acknowledgement

The first author is sponsored by CONACYT Mexico,

grant number 50312.

References

[1] A.P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage. “A

Comparative Analysis of Recent Identification

Approaches for Discrete-Event Systems”, Mathematical

Problems in Engineering. Volume 2010, Hindawi.

doi:10.1155/2010/453254

[2] M. Meda-Campaña, E. López-Mellado, “A passive

method for on-line identification of discrete event

systems”, Proc. of the IEEE Int. Conf. on Decision and

Control, Orlando, Florida, USA. pp. 4990-4995, Dec

2001

[3] M. Meda-Campaña, E. López-Mellado, “Identification

of Concurrent Discrete Event Systems Using Petri Nets”,

Proc. of the IMACS 2005 World Congress, Paris, France,

pp.1-7, Jul 2005

[4] S. Klein, L. Litz, J.-J. Lesage, “Fault detection of

Discrete Event Systems using an identification

approach”, 16th IFAC World Congress, CDROM paper

n°02643, 6 pages, Praha (Czech Republic), July 2005

[5] M. Roth, J.-J. Lesage, L. Litz, “An FDI Method for

Manufacturing Systems Based on an Identified Model”,

Proc. of IFAC Symposium on Information Control

Problems in Manufacturing (INCOM 2009), Moscow,

Russia, pp. 1389-1394, June 2009

[6] M. Roth, J.-J. Lesage, L. Litz, “Black-box identification

of discrete event systems with optimal partitioning of

concurrent subsystems”, Proc. of the American Control

Conf. (ACC 2010), Baltimore, Maryland, USA, pp.

2601-2606, June 2010

[7] M.P. Cabasino, A. Giua and C. Seatzu, “Identification of

Petri Nets from Knowledge of Their Language”, Discrete

Event Dynamic Systems, Vol. 17, No. 4, pp. 447-474,

2007

[8] M. P. Cabasino, A. Giua, C. Seatzu, “Identification of

unbounded Petri nets from their coverability graph”,

Proc. of the IEEE Int. Conf. on Decision & Control, San

Diego, CA, USA, pp. 434 – 440, Dec 2006.

[9] M. Dotoli, M. P. Fanti, A. M. Mangini, “Real time

identification of discrete event systems using Petri nets”,

Automatica, Vol. 44, No. 5, pp. 1209-1219, May 2008.

[10] A.P. Estrada-Vargas, E. Lopez-Mellado, J-J. Lesage.

"An Identification Method for PLC-based Automated

Discrete Event Systems". Proc. of the IEEE Int. Conf. on

Decision and Control, pp.6740-6746. Atlanta, USA. Dec.

2010.

[11] A.P. Estrada-Vargas, E. López-Mellado, J.-J. Lesage.

“Off-line Identification of Concurrent Discrete Event

Systems Exhibiting Cyclic Behaviour”. Proc. of IEEE

Int. Conf. on Systems Man and Cybernetics, San Antonio

Tx, USA, pp. 181-186, Oct 2009.

