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Abstract 

This paper deals with the identification of discrete 

event systems that are automated through a 

programmable logic controller (PLC). The behavior of 

the closed loop system (PLC and Plant) is observed 

during its operation and is represented by a single long 

sequence of input/output vectors. The proposed method 

allows building stepwise an interpreted Petri net model, 

which is updated when new behavior is observed. The 

identification strategy is composed of several polynomial 

time algorithms implemented in a software tool that 

creates and draws the IPN model 

1. Introduction 

Identification of discrete event systems (DES) from 

external observation of system behaviour has interesting 

applications such as reverse engineering for (partially) 

unknown systems, fault diagnosis, or system 

verification. Analogously to continuous identification 

techniques, identification methods for DES yield a 

mathematical model that represents the observed 

behaviour and closely approximates the actual DES’ 

behaviour.  

In recent years, the scientific community has 

proposed identification approaches for obtaining 

approximated models (Petri nets or automata) of DES 

whose behavior is unknown or ill-known. In the context 

of automated manufacturing systems, identification 

methods allow obtaining a first model that can be 

detailed using established modeling techniques and 

available knowledge of the system; such a model 

describes the controller-plant behavior during the closed-

loop functioning. Three main approaches for identifying 

DES have been proposed in literature [1]. 

The incremental synthesis approach, proposed by 

Meda et al. in [2], [3] deals with unknown partially 

measurable DES exhibiting cyclic behavior. Several 

algorithms have been proposed allowing the on-line 

identification of concurrent DES from output sequences. 

Although the techniques are efficient, the obtained 

models may represent more sequences than those 

observed. 

Another recent method [4] allows building efficiently 

a non deterministic finite automaton (NFA) from a set of 

input/output sequences, experimentally measured from 

DES to be identified. Under several hypotheses, the 

constructed NFA generates exactly the same input/output 

(I/O) sequences of given length than observed ones. The 

method was conceived for fault detection in a model-

based approach [5]. Extensions to this work propose an 

identification method performing optimal partitioning of 

concurrent subsystems for distributed fault detection 

purposes [6].  

The off-line techniques based on integer linear 

programming (ILP) approach lead to free-labeled Petri 

net models representing exactly the observed behavior 

[7]. However both the ILP problem statement from event 

sequences and the processing have exponential 

complexity. This approach is being explored for other 

IPN classes; representative publications of this approach 

are [8] and [9]. 

In this paper we address the problem of identifying a 

DES controlled by a PLC during its operation. Both 

controller’s inputs and outputs are sampled from the 

initial state for building a single sequence of I/O vectors, 

which is processed yielding an interpreted Petri net 

(IPN) model. 

This approach is based on a previously presented 

efficient method for coping with concurrent partially 

observable DES [10] which processes a set of cyclic 

input/output sequences yielding models including silent 

transitions and non-labelled places. This technique has 

been extended and adapted for identifying actual PLC-

based controlled discrete manufacturing systems, which 

operate during a long time period performing repetitive 

tasks. Thus the main contribution of this paper with 

respect to the previous one is the ability for detecting 

cyclic behavior from the single I/O sequence and 

building progressively a safe IPN; this allows updating 

the model when new input-output vectors are added to 

the sequence. 

The paper is organized as follows. In section 2 the 

background on Petri nets and languages is outlined. In 

section 3, the identification problem is stated and the 

stepwise method is presented. In section 4 a case study is 

dealt through a software tool implementing the proposed 

method. 



2. Background 

This section presents the basic concepts and notation 

of PN and IPN used in this paper. 

Definition 1: An ordinary Petri Net structure G is a 

bipartite digraph represented by the 4-tuple G = (P, T, I, 

O) where: P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are 

finite sets of vertices named places and transitions 

respectively; I(O) : P × T  {0,1} is a function 

representing the arcs going from places to transitions 

(from transitions to places). 

The symbol 

tj (tj


) denotes the set of all places pi such 

that I(pi, tj) ≠ 0 (O(pi, tj) ≠ 0). Such places are called 

input (output) places of tj. Analogously, 

pi (pi


) denotes 

the set of input (output) transitions of pi. 

The incidence matrix of G is C = C
+
  C


, where 

C

 = [cij


]; cij


 = I(pi, tj); and C

+
 = [cij

+
]; cij

+
 = O(pi, tj) are 

the pre-incidence and post-incidence matrices 

respectively.   

A marking function M : P  +
 represents the number 

of tokens residing inside each place; it is usually 

expressed as an |P|-entry vector.  + 
is the set of 

nonnegative integers. 

Definition 2: A Petri Net system or Petri Net (PN) is 

the pair N = (G,M0), where G is a PN structure and M0 is 

an initial marking. 

In a PN system, a transition tj is enabled at marking 

Mk if pi  P, Mk(pi) ≥ I(pi, tj); an enabled transition tj 

can be fired reaching a new marking Mk+1 which can be 

computed as Mk+1 = Mk + Cvk,  where vk(i) = 0, i≠j, 

vk(j) = 1, this equation is called the PN state equation. 

The reachability set of a PN is the set of all possible 

reachable markings from M0 firing only enabled 

transitions; this set is denoted by R(G,M0).  

A PN is called safe ifMk  R(G, M0), pi  P, 

Mk(pi)  1.  

Now it is defined IPN, an extension to PN that allows 

associating input and output signals to PN models. 

Definition 3 : An IPN (Q, M0) is a net structure 

Q = (G, , , , ) with an initial marking M0 where: 

G is a PN structure,  = {1, 2, ..., r} is the input 

alphabet, and  = {1, 2,..., q} is the output alphabet. 

 : T {} is a labeling function of transitions, 

where  represents a system internal event externally 

uncontrollable; it is not allowed that the symbol  is 

associated to more than one tj  pi

. 

 : R(Q,M0)(  +
)

q
 is an output function, that 

associates to each marking in R(Q,M0) a q-entry output 

vector; q=|| is the number of outputs.  is represented 

by a q×|P| matrix, such that if the output symbol i is 

present (turned on) every time that M(pj) ≥ 1, then 

 (i, j) = 1, otherwise (i, j) = 0. 

When an enabled transition tj is fired in a marking Mk, 

then a new marking Mk+1 is reached. This behavior is 

represented as Mk  jt
Mk+1; the state equation is 

completed with the marking projection yk =  Mk, where 

yk  (  +
)

q
 is the k-th output vector of the IPN. 

According to functions  and , transitions and places 

of an IPN (Q,M0) can be classified as follows. 

Definition 4:  If (ti) ≠  the transition ti is said to be 

controllable (ti can be fired when the associated input 

symbol is presented). Otherwise it is uncontrollable (ti  is 

autonomously fired). A place piP is said to be 

measurable if the i-th column vector of   is not null, i.e. 

(,i) ≠ 0. Otherwise it is non-measurable. P = P
m
  P

u
 

where P
m
 is the set of measurable places and P

u
 is the set 

of non-measurable places. 

Definition 5: The l-length I/O language of an IPN 

(Q,M0) is defined as: 















































)(

)(
,...,

)(

)(
,

)(

)(
),(

2

2

1

1
0

li

li

i

i

i

il

M

t

M

t

M

t
MQ£













 

where Mi  1i
t Mi+2...  li

t Mi + l; Mi R(Q, M0) 

3. Stepwise Identification 

3.1. Problem statement 

Consider a DES composed of a Plant and a Controller 

(a PLC) operating in a closed-loop as showed in Figure 

1. We assume that the data exchanged between Plant and 

PLC are binary signals. The input signals of the PLC 

(outputs of the Plant) are generated by the sensors of the 

Plant. The output signals of the PLC (inputs of the Plant) 

control the actuators of the Plant. The external behavior 

of such a DES system can be observed (and 

characterized) by the evolution of the value of all 

input/output (I/O) signals exchanged between the 

controller and the plant. 

 

Figure 1. Closed loop controller-plant DES 

At each end of cycle of the PLC, the current value of all 

Inputs and Outputs (called I/O vector) can be easily 

captured and recorded in a data base. Each new observed 

I/O vector (when at least one I/O changes its value) 

belongs to an I/O vector alphabet. We can concatenate 

such vectors to construct a sequence, which is the input 

of our identification algorithm. 

Definition 6: The I/O vector alphabet of a DES with 

m inputs and n outputs is m,n = {1,0}
(m+n)

. 

Definition 7: The observed input-output sequence of 

a DES S with m inputs and n outputs is:
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Definition 8: The observed input-output language of 

length l of a DES S is defined as  l
(S) = {}  {w(i + 1) 

w(i + 2)…w(i + h)|1  i + h  l}. 

Now the identification problem can be defined. Given a 

DES whose only available information is an observed 

I/O sequence w arbitrarily large and an accuracy 

parameter  , the aim of the identification process is to 

obtain a safe IPN model (Q, M0) such that 

     
 (Q, M0) =      . The parameter   is used to adjust 

the accuracy of the identified model, similarly as 

proposed in [4]. 

It is important to point out that the aim of obtaining a 

model through identification is not to represent only the 

observed language, but to represent the observed 

behaviour and to infer actual behaviour that has not been 

observed during data collection. In order to accomplish 

this inference, the parameter , is used as a measure of 

state equivalence. When -equivalent states are found, 

they are merged, increasing the accepted language of the 

IPN and consequently the modelled behaviour. The 

notion of state equivalence with respect to  is explained 

below. 

Assumption: In this work it is considered that the I/O 

sequence is measured from the initial state of the global 

system (Plant and Controller). It is progressively updated 

with a new I/O vector, when any entry changes its value. 

 

3.2. General strategy  

The method allows the progressive construction of a safe 

IPN representing exactly the sampled input-output 

language of length κ +1 of the DES.  

From the I/O vector sequence, an event sequence is 

computed and a sequence of event substrings of length κ 

is built. Every substring is associated to a transition of a 

PN, which describes the causal relationship between 

event substrings. A PN node path formed by non-

measurable places represents the substring sequence; this 

path is built taking into account the possible repetitive 

observed behaviour (internal model). Then 

simplifications may be applied. Notice that the number 

of non-observable places is not predefined. 

Finally, the model is completed by including observable 

places which are related to pertinent transitions in the PN 

according to output changes provoked by events; also 

input symbols are associated. This part of the algorithm 

can be concurrently performed at any moment, for 

example when a cycle is identified, whilst the internal 

model is updated by processing the new I/O vectors.  

 

3.3. I/O sequence processing 

3.3.1. Events sequence 

The I/O vector sequence w is progressively built by 

adding new observed I/O vectors. In this way, a string of 

observed events are computed.  

Definition 9: An observed event vector (j) is the 

variation between two consecutive I/O vectors: (j) =  

w(j + 1) – w(j). The m first entries of (j), denoted as 

((j)) correspond to the variation between two 

consecutive input vectors I(j), I(j + 1) (input event). A 

symbolic input event ’((j)) is a string representation of 

the input event vector ((j)); it is computed as: 
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Then for a sequence w, a sequence of observed events 

(j) = (1) (2)... (j)... is obtained. During the process, if 

the difference has not been observed before, a new event 

ej is created ((j) = ej). 

3.3.2. -length event traces 

Events ej represent changes in the observable behaviour 

of the system. However two identical events may be 

generated during different internal conditions during the 

system execution. In order to distinguish within the 

internal behaviour when these changes are exhibited,  

precedent events are considered. This is embedded in the 

notion of -length event trace.  

Definition 10: An event trace (j) is the substring 

from  of length  whose last event is (j). 

(j) = ( j   + 1)( j   + 2)…( j). 
This notion is useful to determine during the 

identification process if two states represent the same 

internal behaviour. Then the notion of equivalent states 

involves the history of  events that lead to such states. 

Definition 11: Two states of the model representing 

the identified system are -equivalent if the event traces 

(j) leading to such states are the same. 

 

3.4. Identification algorithm 

The procedure for building the IPN model from the I/O 

sequence can be summarized on the UML activity 

diagram of Figure 2. It consists of five main steps that 

are described below. 

 

Figure 2. Stages of the identification algorithm 

Initialization

Waiting for an
I/O vector

[New I/O vector arrives]

[No new I/O vector]

Building events
and traces

[An event trace is computed]

[No event trace is computed]

Building
internal model

[A new cycle is found]

[No cycle is found]

PN structure
simplification

Adding
interpretation



Step 1. Initialization 

In this step, a PN structure is initiated. This is done by 

the following statements: 

                     //Create an initial empty set of 

transitions T, an initial empty event traces set ET, and an initial set of 

places P containing a place     . 

                                        //Put a 

token on       and associate to it the first observed vector w(1). Take 

such a place as current. 

 

Step 2. Building events and traces 

Once the net is initiated, the procedure iterates on new 

I/O vectors. When an input or an output changes its 

value, an I/O vector is considered to update the events 

sequence and the events traces according to Definition 9 

and Definition 10 respectively. 

Let ej be the last event in the trace      ; the associated 

transition will be denoted as   
  

 (more than one 

transition may have associated the same ej). The internal 

model building can be systematically performed 

following the next procedure. 

 

If          //If the computed trace is new 

then                       
         

           

             
             

       //create a transition 

  
  

 to represent the trace      ; 

            
         //create an arc from current to   

  
 

                                        

                           //create a new place pout  and 

associate it with correspondent marking ; 

          
       //create an arc from   

  
 to pout ; 

              //take      as current. 

else//If the computed trace is not new 

If   
                   

          //If one of the output 

transitions   
  

 of current place represents the observed trace       

then                 
       take the output place of    

  
 as current  

else //If current place has not an output transition representing       

If    
         

      
             

               //If 

there is a transition   
  

 representing       such that its input place   
  

 has 

the same associated marking     
    than current place. 

then    take       
    //take   

  
 as pin 

tbT, I(pin, tb)      (I(pin,tb), I(current,tb));  

tbT, O(pin, tb)      (O(pin,tb), O(current,tb));  

//       is a vector bitwise or operation; 

               //merge current place with such an input place 

           
     //take the output place of the transition as current. 

else consider   
     as new. 

 

Step 4. PN structure simplification 

After performing step 3, the algorithm waits for an 

I/O change by returning to step 2. Nevertheless, notice 

that merging places through step 3 of the algorithm 

could lead to merging of equivalent transitions. When 

such a merging is performed, a cycle on the PN is 

created. This is considered as a representative change in 

the structure of the model, and thus, simultaneously with 

launching of step 2, step 4 is executed to make a PN 

simplification procedure. Such a procedure based on 

concurrence transformations has already been explained 

in [11]. It basically consists of the analysis of different 

paths between two places containing transition 

permutations leading to concurrent components 

transformations. If there exist m! paths, it is verified if 

every one of them is a permutation from each other. 

When this is true, the subnet can be transformed into a 

concurrent component of G’ preserving the same 

behaviour. 

 

Step 5. Adding interpretation 

Once the PN has been simplified through step 4, input 

and output information is included on the model, 

obtaining an IPN representing the language       of the 

DES that has been observed. Input information is added 

to the IPN by associating symbols to transitions 

according to the symbolic event input function of 

Definition 9. The procedures to add output information 

and simplify implicit non observable places are 

summarised below and deeply explained on [11]. 

 

1. Create n measurable places corresponding to each 

one of the outputs of the system. 

2. Add arcs to and from the measurable places to the 

transitions of the net, according to its associated 

event ej. 

3. Put tokens in the corresponding measurable places to 

represent the first observed output vector. 

4. If there is a non-measurable place whose inputs and 

outputs are exactly the same than any measurable 

place, remove such a non-measurable place and its 

input and output arcs. 

 

3.5. Example 1 

 Consider a DES with three output signals,  = {A, B, 

C}, and three input signals  = {a, b, c}. The entries of 

the binary I/O vectors have the following 

correspondence:           . An I/O 

sequence is progressively observed. The first measured 

I/O vector corresponds to the initial state of the DES: 

               . 

When a second I/O vector 

                is measured, the event 

vector                    is computed; 

the input event vector is             and its 

corresponding symbolic input event is          , i.e. 

the rising edge of a. 

Considering a value    , we can compute the first 

event trace          . Notice that, in this case, trace 

and event are the same. This event trace is related with a 

transition of the IPN. The IPN constructed after 

observing two I/O vectors is on Figure 3. 

 

 

Figure 3. PN representing e1 
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When a third I/O vector                 

arrives,                    ,       

       and         are computed and the model is 

updated, as showed in Figure 4. 

 

 

Figure 4. PN representing the sequence e1e2 

Until 8
th

 I/O vector, the situation is quite similar: a new 

event is observed and the model is updated.  

  

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 
 

  
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 
 
 

  
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 

  
 
 

   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
  
 
 
 
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 

 
 
 
 

 

 

When 9
th

 vector                 is 

measured, the event                    

is computed and the trace        is identified through 

Step 3 as an already observed trace   . Since it leads to 

the same marking than the input place of   
  , such a 

place and the output place of   
   can be merged as 

observed on Figure 5. 

 

 

Figure 5. Internal model for the first 
detected cycle 

Since a cycle is found, steps 4 and 5 of the algorithm are 

executed, leading to an intermediate IPN model showed 

on Figure 6. 

 

 

Figure 6. IPN for the first detected cycle 

Simultaneously to the creation of the intermediate IPN, 

more I/O vectors are added to the observed sequence and 

PN is updated: 

 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 
 

  
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 
 
 

  
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
  
 
 
 
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 
 

  
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 

 
 
 
 

  
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 

 

Two more cycles are found in this sequence and 

intermediate IPN models are created. We show only the 

PN obtained after founding the second cycle (Figure 7) 

and its equivalent model transformed by analysing 

concurrency (Figure 8). After applying the steps 4 and 5 

the IPN obtained from this PN is showed in Figure 9. 

 

Figure 7. PN corresponding to the whole 
I/O sequence 

 

Figure 8. Equivalent internal model 
representing concurrency 

Remark. The simplification by analysis of concurrency 

in Step 4 is not strictly necessary for representing the 

event vector sequences; however the equivalent model 

with concurrent transitions may be simpler. The aim of 

this simplification is not minimizing the number of 

nodes in the model, but obtaining fairly reduced models 

useful for understanding the DES behaviour. 

 
Figure 9. IPN for the complete sequence 

4. Method implementation and application 

4.1. An identification tool 

Based on the algorithms presented in section 3, a 

software tool has been developed to automate the IPN 

model synthesis. The architecture of the tool is showed 

in Figure 10. 

 

 

Figure 10. Software architecture 
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 The user interface allows capturing the input/output 

sequence and shows the obtained model graphically. 

Several data are provided to the tool: a text file 

containing the I/O sequence (with one line per I/O 

vector), the parameter , the names of the input and 

output signals, and the desired name of output file. 

Additionally it is specified the order in which inputs and 

outputs appear in the txt file (since due to data collection 

issues they could be inverted) and the index numbers of 

the signals to take into account if a mask is going to be 

applied. 

Later, an input reader component processes the input 

file and transforms the input/output sequence into a 

vector sequence. These vectors will be delivered to a 

component called Algorithm in which the identification 

algorithm is implemented. The output of this component 

is a dot file that can be given to the Graph Visualization 

Software (Graphviz) to generate an image file jpg. 

The presented identification tool has been tested on 

several examples of diverse size. Below we illustrate the 

use of such software tool through a small size case study. 

 

4.2. Case study 

For space considerations a small size application 

example is presented in this paper dealing with an 

automated manufacturing system; it is taken from [5]. 

The purpose of such a system is to sort parcels according 

to their size (Figure 11). It has 9 inputs signal sensor 

from the system: a0, a1, a2, b0, b1, c0, c1, k1, k2, and 4 

outputs (signal to the actuators): A+, A-, B, C. 

 

 

Figure 11. Layout of the system case study 

A sequence consisting of 216 I/O vectors has been 

observed; it is showed on Figure 12. Notice that cycles 

are not specified on the sequence and they must be 

identified. Binary values of each I/O vector correspond 

to signals A
+
, A

-
, B, C, k1, k2, a0, a1, a2, b0, b1, c0, and c1 

respectively. Notice that the input and output signals 

order in each vector is inverted (first outputs, later 

inputs).  

In a first stage the identified model based on the first 

31 I/O observed vectors is showed in Figure 13. It can be 

noticed that cylinder C has not worked yet, since big 

parcels have not yet arrived. 

 

Figure 12. I/O sequences of the case study 

 

 

Figure 13. Obtained model after 31 PLC 
cycles 

Using the complete sequence of I/O vectors the 

obtained model is showed in Figure 14. The 

identification procedure finds successfully cyclic 

behaviour in the single sequence of I/O vectors. 

Notice that in this IPN model there are paths formed 

by non observable places. This is due to the observation 

of input changes that do not affect the outputs. In order 

to obtain a more compact model a simplification strategy 

has been presented in [10] and is recalled below. It 

consists in merging several places, representing internal 

behaviour whose detected events do not have effect on 

the outputs, into a single one where an output event must 

occur. Consider the following I/O vector sequence 

involving one input x and two outputs A, B:  

0000  001001010

0000  101001010
1000  101001010
1000  100001010

1000  000001010
0110  000101010

0110  000100010

0110  000000010
0010  001000010

0000  001000110
0000  001000010

0000  001001010

0000  001001010
0000  101001010

1000  101001010
1000  100001010
1000  000001010

0110  000101010
0110  000100010

0110  000000010
0010  001000010
0000  001000110

0000  001000010
0000  001001010
0000  001001010
0000  101001010
1000  111001010

1000  110001010
1000  010001010
1000  000001010
1000  000101010
1000  000001010

0101  000011010

0101  000001000
0100  000001001
0100  000101000

0100  000001010
0000  001001010

0000  001001010

0000  101001010
1000  111001010

1000  110001010
1000  010001010

1000  000001010

1000  000101010
1000  000001010

0101  000011010
0101  000001000
0100  000001001

0100  000101000
0100  000001010

0000  001001010
0000  001001010
0000  101001010

1000  101001010
1000  100001010
1000  000001010
0110  000101010
0110  000001010

0110  000000010
0010  001000010
0000  001000110
0000  001000010
0000  001001010

0000  001001010

0000  101001010
1000  111001010
1000  110001010

1000  010001010
1000  000001010

1000  000101010

1000  000001010
0101  000011010

0101  000001010
0101  000001000

0100  000001001

0100  000101000
0100  000001010

0000  001001010
0000  001001010
0000  101001010

1000  111001010
1000  110001010

1000  010001010
1000  000001010
1000  000101010

1000  000001010
0101  000011010
0101  000001010
0101  000001000
0100  000001001

0100  000101000
0100  000001010
0000  001001010
0000  001001010
0000  101001010

1000  101001010

1000  100001010
1000  000001010
0110  000101010

0110  000001010
0110  000000010

0010  001000010

0000  001000110
0000  001000010

0000  001001010
0000  001001010

0000  101001010

1000  101001010
1000  100001010

1000  000001010
0110  000101010
0110  000100010

0110  000000010
0100  000000110

0000  001000110
0000  001000010
0000  001001010

0000  001001010
0000  101001010
1000  101001010
1000  100001010
1000  000001010

0110  000101010
0110  000100010
0110  000000010
0100  000000110
0000  001000010

0000  001001010

0000  001001010
0000  101001010
1000  101001010

1000  100001010
1000  000001010

0110  000101010

0110  000100010
0110  000000010

0100  000000110
0000  001000110

0000  001000010

0000  001001010
0000  001001010

0000  101001010
1000  111001010
1000  110001010

1000  010001010
1000  000001010

1000  000101010
1000  000001010
0101  000011010

0101  000011000
0101  000001000
0100  000001001
0100  000001000
0100  000101000

0100  000001000
0100  000001010
0000  001001010
0000  001001010
0000  101001010

1000  111001010

1000  110001010
1000  010001010
1000  000001010

1000  000101010
1000  000001010

0101  000011010

0101  000001010
0101  000001000

0100  000001001
0100  000001000

0100  000101000

0100  000001000
0100  000001010

0000  001001010
0000  001001010
0000  101001010

1000  111001010
1000  110001010

1000  010001010
1000  000001010
1000  000101010

1000  000001010
0101  000011010
0101  000001000
0100  000001001
0100  000101000

.

.

.

0000  001001010
0000  001001010
0000  101001010

1000  101001010
1000  100001010
1000  000001010
0110  000101010
0110  000100010
0110  000000010
0100  000000110
0000  001000110
0000  001000010
0000  001001010
0000  001001010

j-th observed I/O vector

1< j < 216



 
Figure 14. IPN for the case study 
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This sequence can be represented as: 

BAA x  1_
, which can be compacted as: 

BA x 1_
. This can be generalized to: 

B
eee

AB
e

A
e

A
e

A
kjikji  

...
...  

The application of this simplification procedure, also 

included in the software tool yields the IPN model 

showed in Figure 15. 

 

 

Figure 15. Model after applying 
simplification rule 

 

5. Discussion 

The method herein proposed allows dealing with 

complex automated DES because it takes into account 

technological characteristics of actual controlled 

systems, and because it is based on efficient algorithms. 

This feature is not still addressed in current literature on 

the matter in which several features considered in the 

current stated problem have not been dealt. 

Although in [2] and [3] cycle finding from single 

sequence is dealt, it is based on the observation of the 

same initially observed outputs vector, which is not very 

often the case for real systems; besides system’s inputs 

are not taken into account. In [4], [6], [10] are 

considered both inputs and outputs, but cyclic sequences 

are supposed to be known. Techniques in [7], [8], [9] 

process as input data a language generated by the 

system, which is given as events sequences, regardless 

how the events are obtained from I/O data. 



6. Conclusions 

Stepwise identification of automated manufacturing 

systems has been addressed. This black box approach 

allows obtaining IPN models from a single input/output 

sequence that exhibits the closed loop behaviour of PLC-

based controlled plants. The proposed technique builds 

progressively the IPN when new I/O vectors are 

measured during the operation of the automated DES. 

The identified model is a close approximation of the 

compound controller-plant behaviour, which can be 

detailed for controller redesign or model-based diagnosis 

purposes.  

Current research focuses on the reduction of the 

obtained model by the analysis of the ulterior influence 

of inputs that apparently do not provoke changes in the 

outputs. Also, the inference of non observed behavior 

regarding concurrent sub-processes is an issue to deal 

with. 
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