Ana Paula Estrada-Vargas

Jean-Jacques Lesage
email: jean-jacques.lesage@lurpa.ens-cachan

Ernesto López-Mellado

Stepwise Identification of Automated Discrete Manufacturing Systems

This paper deals with the identification of discrete event systems that are automated through a programmable logic controller (PLC). The behavior of the closed loop system (PLC and Plant) is observed during its operation and is represented by a single long sequence of input/output vectors. The proposed method allows building stepwise an interpreted Petri net model, which is updated when new behavior is observed. The identification strategy is composed of several polynomial time algorithms implemented in a software tool that creates and draws the IPN model

Introduction

Identification of discrete event systems (DES) from external observation of system behaviour has interesting applications such as reverse engineering for (partially) unknown systems, fault diagnosis, or system verification. Analogously to continuous identification techniques, identification methods for DES yield a mathematical model that represents the observed behaviour and closely approximates the actual DES' behaviour.

In recent years, the scientific community has proposed identification approaches for obtaining approximated models (Petri nets or automata) of DES whose behavior is unknown or ill-known. In the context of automated manufacturing systems, identification methods allow obtaining a first model that can be detailed using established modeling techniques and available knowledge of the system; such a model describes the controller-plant behavior during the closedloop functioning. Three main approaches for identifying DES have been proposed in literature [START_REF] Estrada-Vargas | A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems[END_REF].

The incremental synthesis approach, proposed by Meda et al. in [START_REF] Meda-Campaña | A passive method for on-line identification of discrete event systems[END_REF], [START_REF] Meda-Campaña | Identification of Concurrent Discrete Event Systems Using Petri Nets[END_REF] deals with unknown partially measurable DES exhibiting cyclic behavior. Several algorithms have been proposed allowing the on-line identification of concurrent DES from output sequences. Although the techniques are efficient, the obtained models may represent more sequences than those observed.

Another recent method [START_REF] Klein | Fault detection of Discrete Event Systems using an identification approach[END_REF] allows building efficiently a non deterministic finite automaton (NFA) from a set of input/output sequences, experimentally measured from DES to be identified. Under several hypotheses, the constructed NFA generates exactly the same input/output (I/O) sequences of given length than observed ones. The method was conceived for fault detection in a modelbased approach [START_REF] Roth | An FDI Method for Manufacturing Systems Based on an Identified Model[END_REF]. Extensions to this work propose an identification method performing optimal partitioning of concurrent subsystems for distributed fault detection purposes [START_REF] Roth | Black-box identification of discrete event systems with optimal partitioning of concurrent subsystems[END_REF].

The off-line techniques based on integer linear programming (ILP) approach lead to free-labeled Petri net models representing exactly the observed behavior [START_REF] Cabasino | Identification of Petri Nets from Knowledge of Their Language[END_REF]. However both the ILP problem statement from event sequences and the processing have exponential complexity. This approach is being explored for other IPN classes; representative publications of this approach are [START_REF] Cabasino | Identification of unbounded Petri nets from their coverability graph[END_REF] and [START_REF] Dotoli | Real time identification of discrete event systems using Petri nets[END_REF].

In this paper we address the problem of identifying a DES controlled by a PLC during its operation. Both controller's inputs and outputs are sampled from the initial state for building a single sequence of I/O vectors, which is processed yielding an interpreted Petri net (IPN) model. This approach is based on a previously presented efficient method for coping with concurrent partially observable DES [START_REF] Estrada-Vargas | An Identification Method for PLC-based Automated Discrete Event Systems[END_REF] which processes a set of cyclic input/output sequences yielding models including silent transitions and non-labelled places. This technique has been extended and adapted for identifying actual PLCbased controlled discrete manufacturing systems, which operate during a long time period performing repetitive tasks. Thus the main contribution of this paper with respect to the previous one is the ability for detecting cyclic behavior from the single I/O sequence and building progressively a safe IPN; this allows updating the model when new input-output vectors are added to the sequence.

The paper is organized as follows. In section 2 the background on Petri nets and languages is outlined. In section 3, the identification problem is stated and the stepwise method is presented. In section 4 a case study is dealt through a software tool implementing the proposed method.

Background

This section presents the basic concepts and notation of PN and IPN used in this paper. The symbol  t j (t j 

) denotes the set of all places p i such that I(p i , t j) ≠ 0 (O(p i , t j) ≠ 0). Such places are called input (output) places of t j . Analogously,  p i (p i ) denotes the set of input (output) transitions of p i .

The incidence matrix of

G is C = C +  C  , where C  = [c ij ]; c ij  = I(p i , t j); and C + = [c ij +]; c ij + = O(p i , t j
) are the pre-incidence and post-incidence matrices respectively.

A marking function M : P + represents the number of tokens residing inside each place; it is usually expressed as an |P|-entry vector. + is the set of nonnegative integers.

Definition 2: A Petri Net system or Petri Net (PN) is the pair N = (G,M 0), where G is a PN structure and M 0 is an initial marking.

In a PN system, a transition t j is enabled at marking M k if p i  P, M k (p i) ≥ I(p i , t j); an enabled transition t j can be fired reaching a new marking M k+1 which can be computed as M k+1 = M k + Cv k , where v k (i) = 0, i≠j, v k (j) = 1, this equation is called the PN state equation. The reachability set of a PN is the set of all possible reachable markings from M 0 firing only enabled transitions; this set is denoted by R(G,M 0).

A PN is called safe

ifM k  R(G, M 0), p i  P, M k (p i)  1.
Now it is defined IPN, an extension to PN that allows associating input and output signals to PN models.

Definition 3 : An IPN (Q, M 0) is a net structure Q = (G, , , , 
) with an initial marking M 0 where:

G is a PN structure,  = { 1 ,  2 , ...,  r } is the input alphabet, and  = { 1 ,  2 ,...,  q } is the output alphabet.

 : T {} is a labeling function of transitions, where  represents a system internal event externally uncontrollable; it is not allowed that the symbol  is associated to more than one t j  p i  .

 : R(Q,M 0)(+) q is an output function, that associates to each marking in R(Q,M 0) a q-entry output vector; q=|| is the number of outputs.  is represented by a q×|P| matrix, such that if the output symbol  i is present (turned on) every time that M(p j) ≥ 1, then

 (i, j) = 1, otherwise (i, j) = 0.
When an enabled transition t j is fired in a marking M k , then a new marking M k+1 is reached. This behavior is represented as M k   j t M k+1 ; the state equation is completed with the marking projection y k =  M k , where y k  (+) q is the k-th output vector of the IPN.

According to functions  and , transitions and places of an IPN (Q,M 0) can be classified as follows.

Definition 4: If (t i) ≠  the transition t i is said to be controllable (t i can be fired when the associated input symbol is presented). Otherwise it is uncontrollable (t i is autonomously fired). A place p i P is said to be measurable if the i-th column vector of  is not null, i.e. (,i) ≠ 0. Otherwise it is non-measurable. P = P m  P u where P m is the set of measurable places and P u is the set of non-measurable places. Definition 5: The l-length I/O language of an IPN (Q,M 0) is defined as:

                              ) () (,...,) () (,) () () , (2 2 1 1 0 l i l i i i i i l M t M t M t M Q £       where M i   1 i t M i+2 ...   l i t M i + l ; M i R(Q, M 0)

Stepwise Identification

..) () (...) 2 () 2 () 1 () 1 (                   j O j I O I O I w
, where [I(j)O(j)] T is the j-th observed I/O vector belonging to  m,n .

I P O I P O … Send I-O Send I-O Plant Controller I (j) O(j) I/O(j)
Definition 8: The observed input-output language of length l of a DES S is defined as l (S) = {}  {w(i + 1)

w(i + 2)…w(i + h)|1  i + h  l}.
Now the identification problem can be defined. Given a DES whose only available information is an observed I/O sequence w arbitrarily large and an accuracy parameter , the aim of the identification process is to obtain a safe IPN model (Q, M 0) such that (Q, M 0) = . The parameter is used to adjust the accuracy of the identified model, similarly as proposed in [START_REF] Klein | Fault detection of Discrete Event Systems using an identification approach[END_REF]. It is important to point out that the aim of obtaining a model through identification is not to represent only the observed language, but to represent the observed behaviour and to infer actual behaviour that has not been observed during data collection. In order to accomplish this inference, the parameter , is used as a measure of state equivalence. When -equivalent states are found, they are merged, increasing the accepted language of the IPN and consequently the modelled behaviour. The notion of state equivalence with respect to  is explained below.

Assumption: In this work it is considered that the I/O sequence is measured from the initial state of the global system (Plant and Controller). It is progressively updated with a new I/O vector, when any entry changes its value.

General strategy

The method allows the progressive construction of a safe IPN representing exactly the sampled input-output language of length κ +1 of the DES. From the I/O vector sequence, an event sequence is computed and a sequence of event substrings of length κ is built. Every substring is associated to a transition of a PN, which describes the causal relationship between event substrings. A PN node path formed by nonmeasurable places represents the substring sequence; this path is built taking into account the possible repetitive observed behaviour (internal model). Then simplifications may be applied. Notice that the number of non-observable places is not predefined. Finally, the model is completed by including observable places which are related to pertinent transitions in the PN according to output changes provoked by events; also input symbols are associated. This part of the algorithm can be concurrently performed at any moment, for example when a cycle is identified, whilst the internal model is updated by processing the new I/O vectors.

I/O sequence processing

Events sequence

The I/O vector sequence w is progressively built by adding new observed I/O vectors. In this way, a string of observed events are computed. Definition 9: An observed event vector (j) is the variation between two consecutive I/O vectors: (j) = w(j + 1)w(j). The m first entries of (j), denoted as ((j)) correspond to the variation between two consecutive input vectors I(j), I(j + 1) (input event). A symbolic input event '((j)) is a string representation of the input event vector ((j)); it is computed as:

                0) () 1 (1) () 1 (0 _ 1) () 1 (1 _)) ((' j I j I j I j I I j I j I I j i i i i i i i i if if if   
Then for a sequence w, a sequence of observed events (j) = (1) (2)... (j)... is obtained. During the process, if the difference has not been observed before, a new event e j is created ((j) = e j).

-length event traces

Events e j represent changes in the observable behaviour of the system. However two identical events may be generated during different internal conditions during the system execution. In order to distinguish within the internal behaviour when these changes are exhibited,  precedent events are considered. This is embedded in the notion of -length event trace. Definition 10: An event trace   (j) is the substring from  of length  whose last event is   (j).   (j) = (j   + 1)(j   + 2)…(j). This notion is useful to determine during the identification process if two states represent the same internal behaviour. Then the notion of equivalent states involves the history of  events that lead to such states.

Definition 11: Two states of the model representing the identified system are -equivalent if the event traces   (j) leading to such states are the same.

Identification algorithm

The procedure for building the IPN model from the I/O sequence can be summarized on the UML activity diagram of Figure 2. It consists of five main steps that are described below. Step 1. Initialization In this step, a PN structure is initiated. This is done by the following statements: //Create an initial empty set of transitions T, an initial empty event traces set ET, and an initial set of places P containing a place . //Put a token on and associate to it the first observed vector w [START_REF] Estrada-Vargas | A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems[END_REF]. Take such a place as current.

Step 2. Building events and traces Once the net is initiated, the procedure iterates on new I/O vectors. When an input or an output changes its value, an I/O vector is considered to update the events sequence and the events traces according to Definition 9 and Definition 10 respectively. Let e j be the last event in the trace ; the associated transition will be denoted as (more than one transition may have associated the same e j). The internal model building can be systematically performed following the next procedure. else consider as new.

If //
Step 4. PN structure simplification After performing step 3, the algorithm waits for an I/O change by returning to step 2. Nevertheless, notice that merging places through step 3 of the algorithm could lead to merging of equivalent transitions. When such a merging is performed, a cycle on the PN is created. This is considered as a representative change in the structure of the model, and thus, simultaneously with launching of step 2, step 4 is executed to make a PN simplification procedure. Such a procedure based on concurrence transformations has already been explained in [START_REF] Estrada-Vargas | Off-line Identification of Concurrent Discrete Event Systems Exhibiting Cyclic Behaviour[END_REF]. It basically consists of the analysis of different paths between two places containing transition permutations leading to concurrent components transformations. If there exist m! paths, it is verified if every one of them is a permutation from each other. When this is true, the subnet can be transformed into a concurrent component of G' preserving the same behaviour.

Step 5. Adding interpretation Once the PN has been simplified through step 4, input and output information is included on the model, obtaining an IPN representing the language of the DES that has been observed. Input information is added to the IPN by associating symbols to transitions according to the symbolic event input function of Definition 9. The procedures to add output information and simplify implicit non observable places are summarised below and deeply explained on [START_REF] Estrada-Vargas | Off-line Identification of Concurrent Discrete Event Systems Exhibiting Cyclic Behaviour[END_REF].

1. Create n measurable places corresponding to each one of the outputs of the system. 2. Add arcs to and from the measurable places to the transitions of the net, according to its associated event e j . 3. Put tokens in the corresponding measurable places to represent the first observed output vector. 4. If there is a non-measurable place whose inputs and outputs are exactly the same than any measurable place, remove such a non-measurable place and its input and output arcs. . An I/O sequence is progressively observed. The first measured I/O vector corresponds to the initial state of the DES: . When a second I/O vector is measured, the event vector is computed; the input event vector is and its corresponding symbolic input event is , i.e. the rising edge of a. Considering a value , we can compute the first event trace

. Notice that, in this case, trace and event are the same. This event trace is related with a transition of the IPN. The IPN constructed after observing two I/O vectors is on Figure 3. Until 8 th I/O vector, the situation is quite similar: a new event is observed and the model is updated.

When 9 th vector is measured, the event is computed and the trace is identified through Step 3 as an already observed trace . Since it leads to the same marking than the input place of , such a place and the output place of can be merged as observed on Figure 5. Two more cycles are found in this sequence and intermediate IPN models are created. We show only the PN obtained after founding the second cycle (Figure 7) and its equivalent model transformed by analysing concurrency (Figure 8). After applying the steps 4 and 5 the IPN obtained from this PN is showed in Figure 9. Remark. The simplification by analysis of concurrency in Step 4 is not strictly necessary for representing the event vector sequences; however the equivalent model with concurrent transitions may be simpler. The aim of this simplification is not minimizing the number of nodes in the model, but obtaining fairly reduced models useful for understanding the DES behaviour.

Method implementation and application

An identification tool

Based on the algorithms presented in section 3, a software tool has been developed to automate the IPN model synthesis. The architecture of the tool is showed in Figure 10.

Discussion

The method herein proposed allows dealing with complex automated DES because it takes into account technological characteristics of actual controlled systems, and because it is based on efficient algorithms. This feature is not still addressed in current literature on the matter in which several features considered in the current stated problem have not been dealt.

Although in [START_REF] Meda-Campaña | A passive method for on-line identification of discrete event systems[END_REF] and [START_REF] Meda-Campaña | Identification of Concurrent Discrete Event Systems Using Petri Nets[END_REF] cycle finding from single sequence is dealt, it is based on the observation of the same initially observed outputs vector, which is not very often the case for real systems; besides system's inputs are not taken into account. In [START_REF] Klein | Fault detection of Discrete Event Systems using an identification approach[END_REF], [START_REF] Roth | Black-box identification of discrete event systems with optimal partitioning of concurrent subsystems[END_REF], [START_REF] Estrada-Vargas | An Identification Method for PLC-based Automated Discrete Event Systems[END_REF] are considered both inputs and outputs, but cyclic sequences are supposed to be known. Techniques in [START_REF] Cabasino | Identification of Petri Nets from Knowledge of Their Language[END_REF], [START_REF] Cabasino | Identification of unbounded Petri nets from their coverability graph[END_REF], [START_REF] Dotoli | Real time identification of discrete event systems using Petri nets[END_REF] process as input data a language generated by the system, which is given as events sequences, regardless how the events are obtained from I/O data.

Conclusions

Stepwise identification of automated manufacturing systems has been addressed. This black box approach allows obtaining IPN models from a single input/output sequence that exhibits the closed loop behaviour of PLCbased controlled plants. The proposed technique builds progressively the IPN when new I/O vectors are measured during the operation of the automated DES. The identified model is a close approximation of the compound controller-plant behaviour, which can be detailed for controller redesign or model-based diagnosis purposes.

Current research focuses on the reduction of the obtained model by the analysis of the ulterior influence of inputs that apparently do not provoke changes in the outputs. Also, the inference of non observed behavior regarding concurrent sub-processes is an issue to deal with.

Definition 1 :

 1 An ordinary Petri Net structure G is a bipartite digraph represented by the 4-tuple G = (P, T, I, O) where: P = {p 1 , p 2 , ..., p |P| } and T = {t 1 , t 2 , ..., t |T| } are finite sets of vertices named places and transitions respectively; I(O) : P × T  {0,1} is a function representing the arcs going from places to transitions (from transitions to places).

3. 1 . 1 .

 11 Problem statement Consider a DES composed of a Plant and a Controller (a PLC) operating in a closed-loop as showed in Figure We assume that the data exchanged between Plant and PLC are binary signals. The input signals of the PLC (outputs of the Plant) are generated by the sensors of the Plant. The output signals of the PLC (inputs of the Plant) control the actuators of the Plant. The external behavior of such a DES system can be observed (and characterized) by the evolution of the value of all input/output (I/O) signals exchanged between the controller and the plant.

Figure 1 . 7 :

 17 Figure 1. Closed loop controller-plant DES

Figure 2 .

 2 Figure 2. Stages of the identification algorithm

3. 5 . Example 1

 51 Consider a DES with three output signals,  = {A, B, C}, and three input signals  = {a, b, c}. The entries of the binary I/O vectors have the following correspondence:

Figure 3 .

 3 Figure 3. PN representing e 1

Figure 4 .

 4 Figure 4. PN representing the sequence e 1 e 2

Figure 5 .

 5 Figure 5. Internal model for the first detected cycle Since a cycle is found, steps 4 and 5 of the algorithm are executed, leading to an intermediate IPN model showed on Figure 6.

Figure 6 .

 6 Figure 6. IPN for the first detected cycle Simultaneously to the creation of the intermediate IPN, more I/O vectors are added to the observed sequence and PN is updated:

Figure 7 .Figure 8 .

 78 Figure 7. PN corresponding to the whole I/O sequence

Figure 9 .

 9 Figure 9. IPN for the complete sequence

Figure 10

 10 Figure 10. Software architecture

 Figure 15. Model after applying simplification rule

 If the computed trace is new

	then		
				//create a transition
	to represent the trace	;
				//create an arc from current to
				//create a new place pout and
	associate it with correspondent marking ;
			//create an arc from	to pout ;
			//take	as current.
	else//If the computed trace is not new
	If			//If one of the output
	transitions	of current place represents the observed trace
	then			 take the output place of	as current
	else //If current place has not an output transition representing
	If				//If
	there is a transition	representing	such that its input place  has
	the same associated marking 	than current place.
	then take			//take  as pin
	tbT, I(pin, tb) (I(pin,tb), I(current,tb));
	tbT, O(pin, tb) (O(pin,tb), O(current,tb));
	// is a vector bitwise or operation;
			//merge current place with such an input place
			 //take the output place of the transition as current.

Acknowledgement

The first author is sponsored by CONACYT Mexico, grant number 50312.

The user interface allows capturing the input/output sequence and shows the obtained model graphically. Several data are provided to the tool: a text file containing the I/O sequence (with one line per I/O vector), the parameter , the names of the input and output signals, and the desired name of output file. Additionally it is specified the order in which inputs and outputs appear in the txt file (since due to data collection issues they could be inverted) and the index numbers of the signals to take into account if a mask is going to be applied.

Later, an input reader component processes the input file and transforms the input/output sequence into a vector sequence. These vectors will be delivered to a component called Algorithm in which the identification algorithm is implemented. The output of this component is a dot file that can be given to the Graph Visualization Software (Graphviz) to generate an image file jpg.

The presented identification tool has been tested on several examples of diverse size. Below we illustrate the use of such software tool through a small size case study.

Case study

For space considerations a small size application example is presented in this paper dealing with an automated manufacturing system; it is taken from [START_REF] Roth | An FDI Method for Manufacturing Systems Based on an Identified Model[END_REF]. The purpose of such a system is to sort parcels according to their size (Figure 11). It has 9 inputs signal sensor from the system: a 0 , a 1 , a 2 , b 0 , b 1 , c 0 , c 1 , k 1 , k 2 , and 4 outputs (signal to the actuators): A+, A-, B, C. Notice that in this IPN model there are paths formed by non observable places. This is due to the observation of input changes that do not affect the outputs. In order to obtain a more compact model a simplification strategy has been presented in [START_REF] Estrada-Vargas | An Identification Method for PLC-based Automated Discrete Event Systems[END_REF] and is recalled below. It consists in merging several places, representing internal behaviour whose detected events do not have effect on the outputs, into a single one where an output event must occur. Consider the following I/O vector sequence involving one input x and two outputs A, B: