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The energetic effects of passive motion of the arms and addition of torsion springs to the 

arms joints of a nine-link planar bipedal robot are studied for walking gaits. Only the 

locomotor system of the biped is actuated. Starting from a cyclic optimal motion of the 

biped with the arms stuck to the trunk, we explored the existence of a passive motion of 

the arms produced by the dynamics of the locomotor system of the biped. Multiples 

solutions including large amplitude of arms motion exist if the duration of walking step 

corresponds to the natural period of arms oscillation. The effect of torsion springs on the 

natural period and the cost functional is explored. Finally, costs functional of reference 

trajectories and trajectories with passive motions of the arms are compared. 

1.1.   Introduction 

Several studies are done on the definition of walking gaits [1, 2]. For many 

researchers, trajectories of walking are achieved by using optimization [3].  

Bipedal walking gaits with arms are also studied. Many of these studies interest 

with the generation of upper body motion aiming at improving the motion 

stability of the robot biped [4]; likely by the compensation of yaw moment [5]. 

Few studies and results are available to describe the effects of arms on bipedal 

walking gaits especially on the energy consumption. Aoustin and Formal'skii 

studied the optimal arm swinging of a planar biped [6]. Walking gaits are 

ballistic and torques are applied only during the impact. They showed that for a 

given period of the walking gait step and a length of the step, there is optimal 

amplitude of arm swing for which a cost functional is minimum. The effect of 

arms motions on the energy consumption, where the robot biped is fully 

actuated or only joints of the locomotor system are actuated, has not yet been 

shown. 
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The scope of this work is to investigate the dynamical effects of a passive 

motion of the arms on the energy consumption of a planar bipedal robot during 

its walking gait. 

 

We first look for if a passive motion of the arms, due to the dynamic of 

actuated locomotor system, may exist for the walking gait. It is shown that large 

amplitude passive motion of the arms can be obtained for only an appropriate 

duration of the walking step. The introduction of torsion springs into shoulder 

joints is also studied to enable large passive motion of the arms with various 

walking periods. Finally, we show the dynamical effects of this passive motion 

of the arms on the energy consumption during walking of a planar bipedal robot. 

1.2.   Presentation of the biped and walking gait 

The biped under study, presented in the figure 1, is a nine-link planar biped 

composed of two identical legs, two identical one-link arms and a torso. Each 

leg consists of a femur, a tibia and a rigid foot. All joints are revolute and have 

only one degree of freedom such that they can only move in the sagittal plane. 

Our biped is 2D equivalent of humanoid robot HYDROiD [7]. Desired gaits 

consist of single support phases separated by instantaneous and perfectly 

inelastic contact on the ground. This contact is supposed to be without impact. 

 

 
Figure 1. Planar generalized coordinates and applied torques. 

 

       The walking step starts with a single support phase and ends with the 

contact of the swing foot on the ground where the feet change their role, i.e. the 

stance foot becomes the swing foot and vice versa. The instantaneous contact on 

the ground is supposed to be with a flat foot and there is no rotation on the heel 

or toe of stance foot during swinging phase. The swinging foot also touches the 

ground with a flat contact. We consider that the stance leg lifts off the ground 

after the contact of the swing foot with the ground [6].  
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1.3.   Modeling of the robot  biped 

The dynamic modeling is based on the assumption that the stance foot remains 

fix on the ground, i.e. there is no take off, no sliding and no rotation during the 

single support phase. As a result, stance foot is considered as base link of the 

robot biped. 

 

       Two models of our biped are used: the first takes into account that the arms 

are stuck to the trunk such that we consider a seven-link biped; the second 

considers revolute joints in the shoulders. The generalized coordinates of the 

biped are described by the vector of absolute angles q= [q1 q2 … qn]
 t
. Γ= [Γ1 Γ2 

… Γ6]
 t
 is the joint torque vector of the locomotor system of the biped. Where 

n=6 or 8, depending on the biped model. 

1.4.   Methodology 

The study is done by the following steps: 

1.4.1.   Finding the natural period of arms oscillation: 

We consider the biped arm as a simple pendulum suspended from a frictionless 

pivot. For small oscillations, the pendulum swings with a natural period 

about            . The natural period depends on the mass, length, and inertia 

and slightly on initial values of angular variable and angular velocity. The 

natural period of upper parts oscillation of the biped is chosen in order to 

coordinate arms motion with the motion of the locomotor system.   

1.4.2.   Generation of optimal trajectories for the biped with the arms 

stuck to the trunk: 

The desired gait is cyclic and consists of a single support phase and an 

instantaneous impactless flat foot contact with the ground. We use a polynomial 

of fourth order for the evolution of the actuated joints’ motions as a function of 

time to generate a reference trajectory which minimizes the following criterion: 

                                                        

   
 

 
   

 

 

     (1) 

 

      where d is the step length and T is the time period of one step. 

We used the SQP method (Sequential Quadratic Programming) [8] with the 

fmincon function of Matlab to solve the parametric optimization problem. 

Inequality constraints on the ZMP position, the torques and the contact between 



 4 

the stance foot and the ground are considered to find the optimal reference 

trajectory. 

1.4.3.   Generation of optimal trajectories with passive movement of the 

arms: 

Optimal reference trajectories, for the biped with the arms stuck to the trunk, are 

used for the biped with passive motions of the arms. The upper parts trajectories 

      are due to the dynamic of the locomotor system and are calculated as 

following: 

 A system of equations (2) is obtained from the partitioning the matrices of the 

dynamic model: 

 
      

      
  

   
   

   
  

  
   

   
    

  (2) 

 

where the index    refers to the upper parts and the index    refers to the lower 

parts.         
 is the accelerations vector of the upper parts of the biped, 

        
 is the accelerations vector of the locomotor system of the biped, 

                           and         are submatrices of inertia 

matrix A     ,        and        
 are submatrices of   which is a 

vector of Coriolis, centrifugal and gravity forces.        
 is the actuation 

matrix. 

      Then, the upper parts trajectories can be deduced through the numerical 

integration of the equation (3) with the initial conditions of the angular 

configurations and velocities of the arms             : 

 

       
               (3) 

 

      where               (See figure 1). 

 

      By taking into account the exchange of the role of the arms between the final 

time (t= T) of a step and the initial time (t= 0) of the next step, the following 

equalities must be respected to satisfy the cyclicity conditions:  

 

                                   (4) 

    

     where               vectors of angular and velocities variables of the arms at 

the initial time t=0 respectively.               vectors of angular and velocities 
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variables of the arms at the final time t=T respectively.    is the permutation 

matrix which does the exchange of the role of arms. 

       To design the passive motion of the arms, it is necessary to find the solution 

       of system of equation (3) with the boundary values satisfying the 

equalities (4).  A Newton-Raphson method is used to solve the boundary 

problem. Then, trajectories with the passive motion of the arms can be 

optimized. 

1.5.   Results 

1.5.1.   Time period is constant: 

The time period required such that the arms swing and then return to their initial 

positions is two times that of the period T of walking step. Therefore, optimal 

reference trajectories are obtained with a walking period T which is equal to half 

of the natural period To of arms oscillation which means T =To/2=0.595s. By 

using these reference trajectories for the biped with passive motion of the arms, 

two possibilities appear depending on initial conditions               : a passive 

motion of the arms with large amplitude and a passive one with very small 

amplitude which is almost null. A passive motion with large amplitude is 

possible if and only if the period of walking stride (two steps) is close enough to 

the natural period of the arms oscillation. 

  
Large amplitude motion Small amplitude motion 

Figure 2. Walking gait as a sequence of snapshot figures is shown at walking speed V=0.8 m/s, 

T=0.57 s 
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For walking speed V=0.8 m/s, the two types of passive motions are obtained 

only if the period T is between 0.56s and 0.61s which is close to To/2, this 

interval of T is related to walking speed. If the period T does not belong to the 

previous interval, only arms motion with small amplitude can be found. Figure 2 

shows the two types of passive motion at walking speed of V=0.8 m/s and 

period T=0.57 sec. In the following, time period is considered as a variable of 

optimization.  

1.5.2.   Time period is a parameter of optimization: 

When reference trajectories are optimized without fixing the time period, 

optimal time period will be significantly shorter, between 0.35s and 0.4s. Then, 

passive motions with large amplitude of the arms are not possible. The use of 

torsion spring in arms joints decreases the natural period and enables to obtain 

large amplitude of the arms. The time period is used as a parameter of 

optimization. Then, we found optimum reference trajectories for several walking 

speeds. Springs' coefficient k is used as a variable of optimization while finding 

optimal trajectories of the biped with passive motions of the arms. Criterion is 

calculated for optimal trajectories. Arms passive trajectories with large 

amplitudes have costs functional lower than these of reference trajectories for all 

walking speeds, figure 3.  

 
Figure 3. Evolution of energy criterion versus walking speed.  

 

The optimal k is about [8-12] N/rad and differs slightly from one walking speed 

to another. To understand the effect of the springs, we take an optimal trajectory 
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obtained at a walking speed 0.75 m/s and we changed only the value of the 

springs' coefficient. The maximum amplitude of arms motion and the cost 

functional are obtained as functions of k. Figure 4, shows that large amplitude of 

the arms can be obtained when k=[9.6-13.5] N/rad. Cost functional is minimal 

when  k is equal to 11.3 N/rad for a walking speed of V=0.75 m/s. The desired 

amplitude of arms passive motion can be obtained by changing the springs' 

coefficient.  

 

 
Figure 4. Evolution of energy criterion and maximum amplitude of arms motion versus k at V=0.75 

m/s. 

1.6.   Conclusion and Perspectives 

Two types of optimum passive motions of the arms were found during walking 

of the biped: one with very small amplitude (about one or two degrees) and one 

with large amplitude. Large amplitude motion can only be obtained if the time 

period of a step is close enough to half of the natural period of arms oscillation 

which can be changed by means a torsion spring applied in the arms joints. Cost 

functional is lower when arms swing with large amplitude passive motion in 

comparison with both optimal reference trajectories and small amplitude arms 

motion. It is worth to compare this passive motion with a case where the arms 
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are actuated. In this work, we assumed that the swinging leg hits the ground 

with a flat foot and the support leg immediately leaves the ground. In future 

works, we study other types of walking gaits having double support phases and 

impacts besides single support phases such that the swing foot arrives the 

ground with non flat foot and do a rotation motion until the complete contact 

with the ground. 
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