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We introduce a minimal model of population range expansion in which the phenotypes of individ-
uals present no selective advantage and differ only in their diffusion rate. We show that such neutral
phenotypic variability can yield alone phenotype segregation at the front edge even in absence of
genetic noise, and significantly impact the dynamical properties of the expansion wave. We present
an exact asymptotic traveling wave solution and show analytically that phenotype segregation ac-
celerates the front propagation. The results are compatible with field observations such as invasions
of cane toads in Australia or bush crickets in Britain.

PACS numbers:

I. INTRODUCTION

The combination of random mutations and natural se-
lection plays a key role in evolution. In the case of large
well-mixed populations, it is found typically that mu-
tations that eventually become dominant must present
a selective advantage (i–e a larger effective growth rate)
over the wild type [1]. More recently, it appeared that the
case of expanding populations, which are a common phe-
nomenon in biology, can lead to strikingly different be-
haviors. It was observed that in population range expan-
sions even neutral mutations, i-e mutations that present
no selective advantage, can prevail at least transiently
due to large fluctuations at the edge of the population
traveling front, and lead to spectacular gene segregation
phenomena [2–4]. Such population waves are exemplified
by the hypothesized migration of humans from Africa [5],
or invasions of species such as cane toads in Australia
[6] or bush crickets in Britain [7], and can now be ob-
served at a smaller scale on the example of migrations
of microorganisms in a Petri dish [3]. Following these
observations, numerical models have been developed in
the ecology community to analyze quantitatively range
expansions [8–13]; these studies give further support to
the mechanism of phenotype selection, which was dubbed
spatial sorting in [14].

The standard mathematical models for population
waves are generally based on the Fisher-Kolmogorov
(FKPP) equation [15, 16], which is the simplest non lin-
ear equation that combines diffusion and growth. Be-
yond population genetics, this equation has been widely
used for example in ecology, epidemiology [17] or chem-
istry [18]. Fisher waves are still actively investigated from
the theoretical point of view and despite this effort, ex-
act results, which mostly concern the propagation speed
[19, 20], remain elusive especially in the presence of noise
or in space dimensions larger than one.

In this letter, we introduce a minimal model of popu-

lation dynamics based on a modified FKPP equation in
which mutations are neutral and affect only the mobil-
ity properties of individuals. Our approach is inspired
by the observations of range expansions of cane toads in
Australia [6] or bush crickets in Britain [7], as well as sev-
eral numerical studies[8–14] which highlighted the follow-
ing features: (i) The leading part of the expanding front
is mostly populated by the fastest phenotypes, that is
longer-legged individuals in the case of cane toads [6] and
longer-winged individuals in the case of bush crickets. (ii)
The proportion of fast phenotypes is the highest in loca-
tions of new arrivals and then declines over time. (iii) The
speed of the population wave increases with time. Our
analysis is based on a modified FKPP equation with an
additional mutation term that allows for variations of the
diffusion rate of individuals, for which we present an ex-
act asymptotic traveling wave solution and calculate an-
alytically the front speed. We show that such phenotypic
variability, when taken into account, can yield alone the
segregation of the fastest phenotypes at the front edge
in absence of genetic noise, and significantly accelerate
the propagation speed. Importantly, the results repro-
duce qualitatively the observations (i)-(iii) above made
on the basis of field experiments and numerical simula-
tions. The novelty of our approach lies on the modified
FKPP equation that we propose in Eq.(1), which enables
an analytical derivation of the main properties of pheno-
typic segregation in range expansions. We analyze in
this paper this equation in its minimal form, keeping in
mind that it could be modified to account more faithfully
for real systems. Given the wide spectrum of situations
described by the FKPP equation, potential applications
for example in the context of chemical kinetics are also
expected.
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FIG. 1: Fisher population waves for (a) a homogeneous
population with diffusion rate D0 and for (b) a popula-
tion with mutations that affect the diffusion rate so that
D ∈ [D0 − ∆D/2, D0 + ∆D/2]. It is found in case b that
a traveling wave solution exists and propagates faster than
the classical velocity of a FKPP wave v0 = 2

√
sD0 (case a).

The leading edge of the front is mostly populated by fastest
individuals (with diffusion rate D∗ > D0) that are selected
dynamically, while the population behind the front is charac-
terized by the steady state value D0.

II. MODEL

We consider the following 1d model (see Fig. 1). We
assume that each individual of a growing population is
characterized by a diffusion coefficient D, which is sub-
ject to mutations, and we denote by n(D,x, t) the den-
sity of such individuals of phenotype D at position x
and time t. We will also make use of the marginal den-
sity N(x, t) =

∫∞
0
n(D,x, t)dD and the probability dis-

tribution of the trait D at (x, t) defined by Px(D, t) ≡
n(D,x, t)/N(x, t). We assume that mutations, which
only affect D, are neutral and do not affect the popula-
tion growth rate s. Mutations are described phenomeno-
logically by a density current j[n(D,x, t)] in the pheno-
type space (an explicit example is given below). The
dynamics is then given by the following modified FKPP
equation :

∂tn = D∂2
xn+ sn(1−N)− ∂Dj. (1)

The diffusion term on the right-hand side accounts for
the mobility of the individuals, which is effectively mod-
elled by a diffusion process of coefficient D. The logistic
term sn(1 − N) accounts for the birth and death of in-
dividuals, where the growth rate s is independent of the
phenotype D. Note that here we omit number fluctua-
tions of the birth and death process. Last, the divergence
of the density current −∂Dj accounts for the dynamics
of mutations.

To get insight into the effect of the mutation term,
we first consider the case of a well-mixed population
in a bounded range (for example x ∈ [0, 1]). The sta-
tionary state (see also [21] for the analysis of a related
problem) is then given by N(x, t) = 1 for all x, with
Px(D, t) ≡ P0(D) independent of x and defined by j = 0.
The function P0(D) therefore characterizes the steady-
state distribution of the trait D in a well-mixed popula-
tion. We will consider the representative case of a distri-
bution P0 that is centered around a mean value D0 with

a typical width ∆D. Without loss of generality, a simple
choice for the density current is then

j = −α∂Dn(x,D, t) (2)

where α is the mutation rate, together with reflecting
boundary conditions (j = 0) at D = D− ≡ D0 −∆D/2
and D = D+ ≡ D0 + ∆D/2. With this choice of j, the
distribution P0 is then uniform over the range [D−, D+]
and the different phenotypes have no selective advantage.
Another example of interest is given by

j = −α [β(D −D0)n(x,D, t) + ∂Dn(x,D, t)] , (3)

where α is the mutation rate and the extra term β ac-
counts here for a selective advantage of phenotype D0.
This choice, together with the zero flux condition at D =
D− and D = D+, yields P0(D) ∝ exp

[
−β(D −D0)2/2

]
:

at stationary state in a bounded range, the trait D0 is
now favored, as is the case in many real situations. Alter-
native choices are possible to account more faithfully for
field experiments, and would lead qualitatively to simi-
lar results. We will focus below on the minimal choice
of Eq.(2), which captures the main features of the model
and keep calculations analytically tractable.

We now turn to the case of a range expansion and
assume that at t = 0 the population is seeded with the
uniform distribution P0 in a bounded interval of the x
axis. We show that despite the fact that mutations are
neutral, a traveling wave solution characterized by a non
homogeneous distribution of D, which we calculate in
the regime u ≡ x− v∗t� 1, emerges. We determine the
velocity v∗ and show that it is larger than the velocity
v0 = 2

√
sD0 expected from the classical FKPP model

with an homogeneous population of diffusion rate D0.
Let us introduce u ≡ x−vt where v is to be determined,

and look for a traveling front so that N(u → −∞) = 1
and N(u → +∞) = 0. Notations are kept unchanged in
the co-moving frame of velocity v and all functions of x
and t are assumed to depend on u only. Eq. (1) then
rewrites

0 = v∂un+D∂2
un+ sn(1−N) + α∂2

Dn. (4)

The key point of the following analysis is that one can
show self-consistently that in the limit u → ∞, one has
Px(D, t) ≡ Pu(D) → P∗(D), where P∗(D) is indepen-
dent of u. The dependences on u and D in n(D,u) are
therefore factorized at the leading edge of the front and
one can write in this limit: n(D,u) ' P∗(D)N(u).

This factorized form of the solution can be shown to
hold in a mathematically rigorous framework which will
be presented elsewhere. We give here the main ingredi-
ents of derivation. In the regime u→∞, n is small and
Eq.(4) can be linearized, which suggests the following
ansatz

n(D,u) = P∗(D) exp(−γu), (5)

with γ > 0. Eq.(4) then rewrites

0 = (−γv +Dγ2 + s)P∗(D) + α∂2
DP∗(D), (6)
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FIG. 2: Traveling wave solution of Eq.(1) obtained numer-
ically for D0 = 1.5, ∆D = 1, s = 1 and α = 0.01. a
Kymograph showing the propagation of the marginal den-
sity N(x, t). b Distribution of phenotypes in the traveling
wave at a given time t in the stationary state (the front is ap-
proximately at x = 90). A larger heterogeneity corresponding
to phenotype segregation is found at the leading edge of the
front.

where it should be noted that P∗(D) depends on γ. The
speed v of a front of prescribed profile characterized by
γ is then obtained by integration over D and follows:

v = D∗γ + s/γ, (7)

where D∗, which depends on γ, is determined below.
Eq.(6), completed by ∂DP∗|D=D− = ∂DP∗|D=D+ = 0 for
the choice (2) of the density current j, explicitly defines
the function P∗ and shows that it is independent of u in
the limit u → ∞, therefore proving that the factorized
form of Eq. (5) holds true. We stress that this argument
holds for any density current j, which would only modify
the ordinary differential equation (6) defining P∗. In the
explicit example of Eq. (2), the existence of a non zero
solution for Eq. (6) implies that :

Ai[1, µ(D∗ −D−)]Bi[1, µ(D∗ −D+)] (8)
−Bi[1, µ(D∗ −D−)]Ai[1, µ(D∗ −D+)] = 0

where µ = (γ2/α)1/3 and Ai and Bi denote Airy func-
tions. This last equation, which can not be solved ana-
lytically to the best of our knowledge, implicitly defines
D∗ as a function of γ, and completes the definition of v
in Eq.(7). The distribution P∗ is then given by

ZP∗ = Ai[µ(D∗−D)]−Ai[1, µ(D∗ −D−)]
Bi[1, µ(D∗ −D−)]

Bi[µ(D∗−D)],

(9)
where Z is a normalization constant that ensures that∫D+

D−
P∗(D)dD = 1. This result, together with the decou-

pling form of Eq.(5) explicitly characterizes the asymp-
totics of a front of prescribed profile characterized by γ.
In practice, it can be showed following classical argu-
ments [18] that in the case of a localized initial condition
in space the slowest solution is selected. The critical ve-
locity v∗ (and the corresponding γ∗) is therefore obtained
as the minimum of the function v(γ) defined by Eqs.(7)
and (8), and the density for u large follows

n(D,u) ∝ P∗(D)e−γ∗u. (10)
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FIG. 3: Numerical simulations of Eq.(1) for D0 = 1.5,
∆D = 1 and s = 1. a. Front velocity as a function of time
for different values of the mutation rate α. The front is ac-
celerated until it reaches the exact predicted velocity in the
stationary state (plain line). b. Shape of the front (log scale)
at the leading edge in the stationary state. The theoretical
prediction (plain lines) is compared to numerical simulations
(symbols and dashed lines) for different values of the mutation
rate α. c. Probability distribution of the trait D at the lead-
ing edge in the stationary state, where δD ≡ D − D−. The
theoretical prediction of Eq. (10) (plain lines) is compared to
numerical simulations (symbols and dashed lines). d. Prob-
ability distribution of the trait D in the stationary state at
different positions x, where δD ≡ D − D−. Here α = 0.01,
xf denotes the position of the front and x− = xf − 50 and
x+ = xf +10. The theoretical prediction P∗ (plain line) holds
at the leading edge x+ while the distribution is homogeneous
at x−, which is the steady state value P0 for the choice of
Eq.(2).

While in practice v∗ can be determined by a numerical
analysis of Eqs.(7) and (8), a useful and very accurate
approximate of v∗, which is in fact an exact upper bound,
denoted vu∗ , can be obtained by assuming D∗ constant in
Eq.(7). Under this hypothesis the minimization of v is
realized for γ = γu∗ ≡

√
s/D∗ and yields vu∗ = 2

√
sD∗,

where D∗ is determined by Eq. (8) taken at γ = γu∗ .
These asymptotic results have been checked numeri-

cally by solving Eq. (1) using a classical Euler numeri-
cal scheme, the diffusion part being considered implicitly
and the reaction part explicitly, and show that the up-
per bound vu∗ provides a very accurate estimate of the
exact value v∗. Figure 2 shows an example of the ob-
tained population wave which reaches a stationary state
of constant velocity after a transient acceleration regime
(Fig. 2a). Figure 2b indicates that the population is the
most heterogeneous at the edge of the front where the
segregation of the fastest phenotypes is observed, while
variations of the trait D decrease behind the front. More
quantitatively, we find that after the transient accelera-
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tion regime the wave advances at the predicted velocity
v∗ (see Fig. 3a). Numerical results clearly validate the
asymptotic result of Eq. (10) as seen in Fig. 3b,c, which
show that both the dependences on u and D of the den-
sity n(D,u) are captured by our analysis. Remarkably,
the approximate value vu∗ is numerically extremely close
to the exact result v∗ for all parameters analyzed. Last,
Fig. 3d confirms that the segregation of phenotypes with
larger diffusion rate D is more important at the leading
edge of the front, where it is characterized by the pre-
dicted distribution P∗(D), while the distribution Pu(D)
reaches its steady state value P0(D) (which is uniform
with the choice of Eq.(2)) at positions x far behind the
front.

III. DISCUSSION

Several comments are in order. First, the asymptotic
solution of Eq. (10) and the determination of the front
velocity v∗ are exact. Similar results, and in particular
the exact asymptotic decoupling of the u and D depen-
dences can be obtained along the same lines for other
choices of the density current j defined in Eq. (2). In
particular, the important case where a trait D0 presents
a selective advantage, as modeled by the current defined
in Eq. (3), can be analyzed in the same way and leads
to qualitatively similar results. Second, one finds that
for s/α � 1, D∗ → D0 and Pu(D) ' P0(D) = 1/∆D
for all u. As expected, when mutations are extremely
fast the population is locally well-mixed everywhere with
diffusion rate D0 and the dynamics follows the usual
FKPP equation with a front speed v0 = 2

√
sD0. In

the more realistic case of slow mutations, s/α is large
and the dynamics selects faster individuals at the lead-

ing edge so that P∗(D) favors larger values of D. In
the extreme case of very slow mutations (s/α→∞) one
has D∗ → D+ and P∗(D) ' δ(D − D+). The front
can then be significantly faster than the expected veloc-
ity v0 for a well-mixed population of diffusion rate D0

since v∗ → 2
√
s(D0 + ∆D/2) > v0. Third, it should be

emphasized that this segregation of fastest phenotypes,
which leads to an acceleration of the wave propagation,
is purely dynamical. It is obtained in the low noise limit,
and therefore strikingly differs from the mechanism of
segregation of neutral mutations studied in [2–4]. Last,
and importantly, our results qualitatively reproduce the
observations (i)-(iii) stated in introduction. Indeed, we
found that: (i) fastest phenotypes are segregated at the
leading edge of the front, as shown in Figs. 2b, 3c. (ii)
The proportion of fast phenotypes is higher at the edge
and decreases behind the front as shown in Figs. 2b,
3d. (iii) The speed of advance of the population wave
increases with time, as seen in Fig. 2a, and is larger than
the expected propagation speed for a well-mixed popula-
tion.

To conclude, we have proposed a minimal model of
population range expansion in which mutations are neu-
tral and affect only the mobility of individuals. We have
shown that such neutral phenotypic variability can yield
alone phenotype segregation at the front edge in absence
of genetic noise, and significantly impact the dynamical
properties of the expansion wave. An exact traveling
wave solution can be obtained asymptotically, and shows
that phenotype segregation accelerates the front propa-
gation. The results are compatible with available data
of invasions of cane toads in Australia or bush crickets
in Britain. Applications beyond the field of population
dynamics could be expected.
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