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From self- to self-stabilizing with service
guarantee 1-hop weight-based clustering ?

Colette Johnen and Fouzi Mekhaldi

LaBRI, University of Bordeaux, CNRS. F-33405 Talence Cedex, France

Abstract. We propose a transformer building a silent self-stabilizing
with service guarantee 1-hop clustering protocol T P of an input silent
self-stabilizing 1-hop clustering protocol P. From an arbitrary configu-
ration, T P reaches a safe configuration in at most 3 rounds, where the
following useful minimal service is provided: “each node belongs to a
1-hop cluster having an effective leader”. During stabilization of T P,
the minimal service is preserved, so the clustering structure is available
throughout the entire network. The minimal service is also maintained
despite the occurrences of some external disruptions, called highly toler-
ated disruptions, denoted HT D. T P reaches a terminal (also legitimate)
configuration in at most 4∗SP rounds where SP is the stabilization time
of P protocol. Moreover, T P requires only 2 bits per node more than P.

1 Introduction

One of the most wanted properties of distributed systems is the fault tolerance
and adaptivity to topological changes, which consists of the system’s ability to
react to faults and perturbations in a well-defined manner. Self-stabilization [12]
is one approach to design fault-tolerant distributed systems. A self-stabilizing
system, regardless of its initial configuration, converges in finite time, called sta-
bilization period, without any external intervention to a legitimate configuration
where the intended system behavior is exhibited. Self-stabilizing protocols are
thus attractive since they do not require any correct initialization (any configura-
tion can be the initial one), they can recover from any transient failure, and they
are adaptive to topology changes in dynamic networks, like ad-hoc networks.
Self-stabilization with service guarantee. Despite of self-stabilization ad-
vantages, this approach has a major limitation: during stabilization periods, a
self-stabilizing protocol does not guarantee any property (except the eventual
convergence) even if perturbations could be handled in a safe manner. Thus,
self-stabilization is suited for distributed systems with intermittent disruptions,
where the delay between successive disruptions is so large that the system can re-
cover to a legitimate configuration providing its optimum service for some time.
However, in large scale dynamic networks, the network topology changes very
often, and the paradigm of self-stabilization is no more satisfying. Indeed, the
system may be continuously disrupted, causing a total loss of service. As conse-
quence, the availability and reliability of self-stabilizing systems are compromised
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when disruptions are frequent. To overcome these drawbacks, the paradigm self-
stabilization with service guarantee has been recently introduced in [17,20,18].
A protocol P is self-stabilizing with service guarantee if: (1) P is self-stabilizing;
(2) from an arbitrary configuration, P quickly reaches a safe configuration, where
a safety property is satisfied, so a minimal service is provided; (3) the safety prop-
erty (minimal service) holds during progress of P towards the optimum service
(i.e., during stabilization despite actions of P) and, (4) the safety property (min-
imal service) is also maintained despite the occurrences of some specific external
disruptions, called highly tolerated disruptions, denoted HT D.

Whatever the occurrences of HT D disruptions, the useful minimal service is
still provided. Whereas, other disruptions are handled by self-stabilization, i.e.,
after their occurrences, the system may behave arbitrarily, but it will quickly
reach a safe configuration. Therefore, the service guarantee property is provided
through both: fast recovering to the minimal service, and preservation of the
minimal service despite the occurrences of HT D disruptions.

Clustering. This work addresses the transformation of a silent self-stabilizing 1-
hop weight-based clustering protocol to a self-stabilizing with service guarantee
one. The clustering of networks consists of partitioning network nodes into non-
overlapping groups called clusters. Each cluster has a single head, called leader,
that acts as local coordinator of the cluster, and eventually a set of standard
nodes. In 1-hop clusters, the standard nodes are neighbor (at distance 1) of their
leader. Clustering is found very attractive in infrastructure-less networks, like
ad-hoc networks, since it limits the responsibility of network management only
to leaders, and it allows the use of hierarchical routing. This is why numerous
clustering protocols were proposed in the literature [1,2,6,11,15,17,19,20,21,23].

When the clustering is weight-based, each node of the network has a weight
value that can change during time. The weight value represents the capability
of nodes to be leaders. Hence, in weight-based clustering protocols, leaders are
chosen according to their weight value in order to be the most suitable nodes in
their clusters. Protocols proposed in [1,6,16,17,19,20] are weight-based.

Related works. Self-stabilization with service guarantee is related to snap-
stabilization [4], safe convergence [21] and super-stabilization [13]. The common
goal of these approaches is to provide a desired safety property during the con-
vergence phase, after the occurrence of one or several well defined events.
A protocol is snap-stabilizing if it always behaves according to its specification
whatever its initial configuration. The safety property in snap-stabilization is
user-centric [10] (not system-centric as in safe convergence, super-stabilization
and self-stabilization with service guarantee approaches). It ensures that the an-
swer to a properly initiated request by the protocol is correct. This approach is
thus suited for service-oriented protocols, but not to silent protocols like cluster-
ing protocols. The safe convergence ensures that (1) the system quickly converges
to a safe configuration, and (2) the safety property stays satisfied during the sta-
bilization under protocol actions. However, external disruptions are not handled
in safe convergence. Let us study the self-stabilizing with service guarantee pro-
tocol [18] building the knowledge of 1-hop neighbor clusters. The stabilization
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time of this protocol is 4 rounds as the time to reach a safe configuration. In this
case, the safe convergence contributes nothing compared to the self-stabilization
(they become equivalents). The main specifity of [18] is the maintain of safety
property in spite of disruptions made by clustering protocol (i.e., reconstruc-
tion of clusters). A super-stabilizing protocol guarantees that (1) starting from
a legitimate configuration, a safety property is preserved after only one specific
topology change (of a set HT D), and (2) the safety property is maintained dur-
ing recovering to a legitimate configuration assuming that no more topology
change occurs during stabilization phase. Self-stabilization with service guaran-
tee provides and maintains the safety property even before stabilization, unlike
super-stabilization. For example, the super-stabilizing coloring algorithm [13]
stabilizes in O(N) rounds (N is the number of nodes), but from an illegitimate
configuration it does not quickly converge to a safe configuration. Furthermore,
a self-stabilizing with service guarantee protocol preserves the safety property
in spite of several HT D disruptions that are simultaneous or not. Whereas, a
super-stabilizing protocol handles only one disruption: if disruptions occur in
bursts, super-stabilizing protocol handles them as a self-stabilizing protocol.

Some transformers related to previous approaches were proposed. In [22], the
proposed protocol transforms almost all non self-stabilizing protocols to self-
stabilizing one. The method proposed in [8] transforms a self-stabilizing wave
protocol with a unique initiator to a snap-stabilizing one. In [7], authors propose
a snap-stabilizing version of four fundamental protocols: reset, snapshot, leader
election, termination detection, based on a snap-stabilizing PIF (Propagation of
Information with Feedback) algorithm. Thereafter, they propose a method to
provide a snap-stabilizing version of any protocol. In [3], the proposed method
transforms a self-stabilizing protocol constructing spanning tree and optimizing
any arbitrary tree metric to a loop-free super-stabilizing protocol.
Motivation and Contributions. The stabilization time of weight-based clus-
tering protocols is proportional to the network diameter [20]. Nevertheless, a
crucial challenge of ad-hoc networks is the fast establishment and maintenance
of clustering structure in spite of topological changes like node/link failures.

In this paper, we propose a generic scheme to transform a silent self-stabilizing
1-hop weight-based clustering protocol P, to a silent self-stabilizing with service
guarantee protocol, called transformed protocol T P. T P quickly reaches, in at
most 3 rounds, a safe configuration from any initial one, and thereafter it reaches
a terminal configuration in at most 4 ∗SP rounds where SP is stabilization time
of P protocol. In a safe configuration, each standard node belongs to a cluster,
and each cluster has an effectual leader; so the clustering structure is available
throughout the entire network. This safety property holds during stabilization
phases even despite the occurrence ofHT D disruptions (Definition 5). Moreover,
compared to P protocol, T P requires only 2 extra bits per node.
Paper outline. The rest of the paper is organised as follows. In section 2,
communication and computation models are defined, and the general form of
original protocol P is described. Transformed protocol T P is presented in section
3. In sections 4 , 5 and 6, we give the sketch proof of service guarantee, correctness
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and termination of T P protocol. Finally, in section 7, the memory space and
time complexity of T P protocol as well as the futur works are discussed.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where vertex set V
is the set of (mobile) nodes and edge set E is the set of communication links.
A link (u, v) ∈ E if and only if u and v can directly communicate (links are
bidirectional); so, u and v are neighbors. We note by Nv the set of v’s neighbors:
Nv = {u ∈ V | (u, v) ∈ E}. Furthermore, every node v in the network is assigned
a unique identifier, and a weight value wv (a real number). The weight value of a
node can increase or decrease during time reflecting changes in the node’s state.
For the sake of simplicity, we assume that nodes weight are different (the tie in
node’s weight could be broken using nodes identifier id).

We use the local shared memory model introduced in [12]. Each node v main-
tains a set of local variables such that v can read its own variables and those of
its neighbors, but it can modify only its variables. The state of a node is defined
by the values of its local variables. The union of states of all nodes determines
the configuration of the system. The program of each node is a set of rules. Each
rule has the form: Rulei :< Guardi >−→< Actioni >. The guard of a v’s rule
is a Boolean expression involving the state of the node v, and those of its neigh-
bors. The action of a v’s rule updates v’s state. A rule can be executed only if
it is enabled, i.e., its guard evaluates to true. A node is said to be enabled if at
least one of its rules is enabled. In a terminal configuration, no node is enabled.

Nodes are not synchronized; nevertheless several nodes may perform their
actions at the same time. During a computation step ci → ci+1, one or several en-
abled nodes perform an enabled action and the system reaches the configuration
ci+1 from ci. A computation e is a sequence of configurations e = c0, c1, ..., ci, ...,
where ci+1 is reached from ci by one computation step: ∀i > 0, ci → ci+1. We
say that a computation e is maximal if it is infinite, or if it reaches a terminal
configuration. A computation is weakly fair, if for any node v that is always
enabled along this computation, it eventually performs an action. In this paper,
we study only weakly fair computations. We note by C the set of all possible con-
figurations, and by E the set of all weakly fair computations. The set of weakly
fair computations starting from a particular configuration c ∈ C is denoted Ec.
EA denotes the set of weakly fair computations where the initial configuration
belongs to the set of configurations A ⊂ C.

We say that a node v is neutralized during a computation step cs ci → ci+1,
if v is enabled in ci and disabled in ci+1, but it did not execute any action during
cs. The neutralization of a node v happens when one v’s neighbor changes its
state during cs, and after this change, the guard of all v’s actions are not verified.

We use the round notion to measure the time complexity. The first round
of a computation e = c1, ..., cj , ... is the minimal prefix e1 = c1, ..., cj , such that
every enabled node v in c1 either executes a rule or it is neutralized during a
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computation step of e1. Let e2 be the suffix of e such that e = e1e2. The second
round of e is the first round of e2, and so on.
Definition 1 (Attractor). Let B1 and B2 be subsets of C. B2 is an attractor
from B1, if and only if the following conditions hold:
• Convergence: ∀c ∈ B1, If (Ec = ∅) then c ∈ B2

∀e ∈ EB1(e = c1, c2, ...),∃i > 1, ci ∈ B2

• Closure: ∀e ∈ EB2(e = c1, ...),∀i > 1 : ci ∈ B2.

Definition 2 (Self-stabilization). A distributed system S is self-stabilizing if
and only if there exists a non-empty set L ⊆ C, called set of legitimate configu-
rations, such that the following conditions hold:
• L is an attractor from C.
• Configurations of L match the specification problem.

A self-stabilizing protocol is silent if once the system is stabilized, no node
modifies its state.
Stabilization time. The stabilization time is the number of disjoint rounds of
a computation reaching a legitimate configuration from any initial one.
Definition 3 (Self-stabilization with service guarantee). Let SP be the
safety predicate that stipulates the minimal service (safety property), and HT D
be the set of highly tolerated disruptions. A self-stabilizing system has service
guarantee despite HT D if and only if the set of configurations satisfying SP is:
• An attractor from C.
• Closed under any disruption of HT D.

2.1 The original protocol P
We are placing in the context of clustering protocols where nodes proclaim them-
selves leaders like [1,2,6,11,15,17,19,20,23], and not in the context of protocols
where leaders are nominated by other nodes like [5,9].

The general form of the original silent self-stabilizing weight-based 1-hop
clustering protocol P is described in Protocol 1. Such protocol has four class
of rules. The Election, Affiliation and Resignation rules for a node v update at
least the head identity of v’s cluster (i.e., Head(v)). Whereas the Complementary
rules (named Complement(v)) update other variables if there exist.

Protocol 1 : The original protocol P on node v.
Output variables
• Head(v) ∈ Nv ∪ {v}; Head(v) returns the head’s identity of the v’s cluster.
• NextHead(v) ∈ Nv ∪ {v}; NextHead(v) returns the identity of head that will be

chosen by the affiliation or resignation rule if it is enabled. It return v if the Election
rule is enabled. Otherwise, it returns Head(v).

Rules
Election(v) : GE(v) −→ AE(v); The election rule
Affiliation(v) : GA(v) −→ AA(v); The affiliation rule
Resignation(v) : GR(v) −→ AR(v); The resignation rule
Complement(v) : GC(v) −→ AC(v); Complementary rules if there exist
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The variable Head(v) indicates the identity of v’s head and, whether v is a leader
(i.e., Head(v) = v) or v is a standard node (i.e., Head(v) 6= v).

Note that rules of P protocol are not necessarily explicitly written in this
form, but they can be distinguished according to how they update Head(v) vari-
able. Any rule does not updating Head(v) is classified as Complementary rule.
Election rule is enabled only by standard nodes verifying the election guard GE
(1st Precondition). Upon execution of Election rule, the standard node becomes
leader. Conversely, Resignation rule is enabled only by leaders verifying the res-
ignation guard GR (2nd Precondition), and after execution of Resignation rule,
the leader chooses a new head and it becomes a standard node. Nodes having
Affiliation rule enabled are standard nodes verifying the affiliation guard GA (3rd

Precondition). By performing this rule, the standard node changes its cluster.
Both actions AE, AR and AA are called clustering actions because they modify
Head(v) and they set it to NextHead(v). When Election rule is enabled, then
NextHead(v) = v (1st Precondition). If Resignation or Affiliation rule is enabled,
then NextHead(v) 6= v (2nd and 3rd Preconditions), NextHead(v) 6= Head(v) and
NextHead(v) is currently leader (4th Precondition).
P is weight-based clustering protocol. In weight-based clustering protocols,

each node v has a dynamic input value, its weight named wv, representing its
suitability to be leader. Such protocols select nodes having a higher weight to be
leader, and try as soon as possible to assign standard nodes to the best leader
in their neighborhood. Thus, the value of NextHead in such protocols depends
intrinsically on the weight of nodes (see 5th Precondition on P).

The fact that P is self-stabilizing and weight-based, is summarized by the fol-
lowing Preconditions 1-5, whereas Preconditions 6-7 are consequences of silence
property of P. The formal description of these preconditions in follows facilitates
the proof of service guarantee, correctness and termination of T P protocol.

1. GE(v)⇒ Head(v) 6= v ∧ NextHead(v) = v

2. GR(v)⇒ Head(v) = v ∧ NextHead(v) 6= v

3. GA(v)⇒ Head(v) 6= v ∧ NextHead(v) 6= v

4. GA(v) ∨ GR(v)⇒
NextHead(v) 6= Head(v) ∧ Head(NextHead(v)) = NextHead(v) (1)

5. The function updating NextHead is based on node’s weight,
(NextHead(v) 6= Head(v))⇒ (NextHead(v) = v) ∨ (wNextHead(v) > wv) (2)

6. Along a computation where a standard node v never changes of cluster (so,
its Head(v) value), v performs a finite number of time Complementary rules.

7. Along a computation where the cluster of a leader v does not change, v
performs a finite number of time Complementary rules.

3 The transformed protocol T P

During stabilization of P protocol, a node may not belong to a cluster. One goal
of T P protocol is to avoid such situation: once a node is in a cluster, it will belong
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to a cluster having an effectual leader during all stabilization period despite the
occurrence of HT D events. The main idea of transformation is to control the
execution of P protocol by changing/adding some rules in order: (1) to form
temporary clusters, (2) to delay actions by making cluster-heads resign only after
their clusters become empty, and by avoiding standard nodes to affiliate with a
currently resigning leader. Moreover, this transformation modifies the execution
of P since it forces some nodes to become leaders although the Election rule is
disabled in P protocol. This forced election does not impact the final clusters
produced by T P protocol compared to final clusters of P (see Correction proofs,
Sec 5). Transformed protocol T P is described in Protocols 2 and 3.

Protocol 2 : Variables and predicates of the Transformed Protocol T P.

Output variables

• Statusv ∈ {CH, O, NO, NCH}; Hierarchical status of node v. It can be Cluster-
head (CH), Ordinary (O), Nearly Ordinary (NO) and Nearly Cluster-head (NCH).

Input variables

• Readyv ∈ {RO, RCH}; It indicates if v is ready to become cluster-head (Readyv =
RCH) or ordinary (Readyv = RO).

Predicates

• Is_Leader(v) ∈ {T, F}; It indicates if v is a leader or a standard node.
If Head(v) = v then v is leader (Is_Leader(v) = T ), otherwise v is a standard node
(Is_Leader(v) = F ); i.e., Is_Leader(v) ≡ (Head(v) = v).

• ClusterEmpty(v) ∈ {T, F}; It indicates if the v’s cluster is empty or not.
ClusterEmpty(v) ≡ ∀u ∈ Nv, Head(u) 6= v.

• MustAffiliate(v) ∈ {T, F}; It indicates if node v must affiliate with the NextHead

or not. MustAffiliate(v) ≡ GA(v) ∧ StatusNextHead(v) = CH.

• MustResign(v) ∈ {T, F}; It indicates if node v has to resign and join the cluster
headed by NextHead or not. MustResign(v) ≡ GR(v) ∧ StatusNextHead(v) = CH.

• MustBecomeHead(v) ∈ {T, F}; It indicates if the node v has to become cluster-head:
if GE(v) is enabled or v cannot affiliate with NextHead and it cannot join an existing
cluster. MustBecomeHead(v) ≡ GE(v) ∨ (¬MustAffiliate(v) ∧ StatusHead(v) 6= CH).

Our transformation is applied to a class of original clustering protocols that
can have a deep difference between them. The original protocol may build a dom-
inating set, independent dominating set, k-fold dominating set, capacitated dom-
inating set, connected or weakly connected dominating set etc. The transformed
protocol builds the same kind of clusters as the original protocol. The computa-
tions of original protocol are however modified to ensure the service guarantee
to T P protocol despite HT D disruptions. Protocols GDMAC [1], building a k-
fold dominating set, and BSC [19] building a capacitated dominating set, are
transformed respectively to R-GDMAC [20], and R-BSC [17] using our transformer.
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Status = O Status = NCH

Status = CHStatus = NO

Pre-Election

TElection
Rollback-Election

Pre-Resignation

TResignation
Rollback-Resignation

TAffiliation

Fig. 1. Status transition in T P protocol

To ensure the service guarantee, T P
protocol maintains, in addition to vari-
ables of P protocol, a variable Status
that indicates the hierarchical status
of a node. The hierarchical status of
a node v is : cluster-head (Statusv =
CH), ordinary node (Statusv = O),
nearly ordinary (Statusv = NO), or
nearly cluster-head (Statusv = NCH).
The status transition diagram of a node
v is illustrated in Figure 1, where transitions are the rules executed by v (and
defined in Protocol 3).

Protocol 3 : Rules of the Transformed Protocol T P.
Correct1(v) : Is_Leader(v) ∧ (Statusv = O ∨ Statusv = NCH) −→ Statusv := CH

Correct2(v) : ¬Is_Leader(v) ∧ (Statusv = CH ∨ Statusv = NO) −→ Statusv := O

Pre-Election(v) : Statusv = O ∧ ¬Is_Leader(v) ∧ MustBecomeHead(v)
−→ Statusv := NCH;

TElection(v) : Statusv = NCH ∧ ¬Is_Leader(v) ∧ Readyv = RCH ∧
MustBecomeHead(v) −→ Statusv := CH; AE(v);

Rollback-Election(v) : Statusv = NCH ∧ ¬Is_Leader(v) ∧ ¬MustBecomeHead(v) ∧
¬MustAffiliate(v) −→ Statusv := O;

Pre-Resignation(v) : Statusv = CH ∧ Is_Leader(v) ∧ MustResign(v)
−→ Statusv := NO;

TResignation(v) : Statusv = NO ∧ Is_Leader(v) ∧ ClusterEmpty(v) ∧
Readyv = RO ∧ MustResign(v) −→ Statusv := O; AR(v);

Rollback-Resignation(v) : Statusv = NO ∧ Is_Leader(v) ∧ ¬MustResign(v)
−→ Statusv := CH;

TAffiliation(v) : ¬Is_Leader(v) ∧ MustAffiliate(v) −→ Statusv := O; AA(v);

TComplement(v) : GC(v) −→ AC(v); // Complementary rules are not changed.

The value of Ready variable is an input to T P protocol, and it is updated
by an upper-layer hierarchical protocol, called UHP. Ready does not have any
impact on the transformation of P to T P, i.e., T P is self-stabilizing with service
guarantee without using Ready variable. Ready allows just the control of T P
actions by UHP in order to ensure the service guarantee of UHP protocol. For
example, UHP can be the knowledge of neighbor clusters protocol proposed in
[18], where the minimal service is “the permanent availability of paths leading
to the head of each neighbor cluster”. Ready is thus an interface that enables
the implantation of self-stabilizing with service guarantee protocols on the top
of T P protocol, as hierarchical routing protocols. The value RO (resp. RCH) of
Readyv indicates that v is ready to become ordinary (resp. cluster-head) without
violating some properties on UHP. For ordinary nodes the default value of Ready
is RO, and for cluster-heads the default value is RCH.
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Assumption 1 Let v be a node. If Statusv = NCH (resp. Statusv = NO)
and Readyv = RO (resp. Readyv = RCH), there exist successive enabled actions
from the UHP protocol that set Readyv to RCH (resp. RO) in a finite time.

Predicates and Rules. Correction rules Correct1(v) and Correct2(v) update
initially the value of Status(v) according to the value of Is_Leader(v) predicate.
Only one of these rules is enabled at a time by a node v. After execution of one
of these rules, both rules are disabled forever on v.

Affiliation process. In P protocol, a node v affiliates to NextHead’s cluster if
GA(v) is satisfied. However, if v and NextHead(v) perform respectively Affiliation
and Resignation rules during the same computation step, v will be affiliated to
a standard node (v is now orphan, because its head is not leader). To avoid
generating orphan nodes, T P protocol authorises the affiliation of v to cluster
of NextHead only if GA(v)∧StatusNextHead(v) = CH (i.e., MustAffiliate(v)).

Resignation process. For the same reason above, it is not enough that a leader
v satisfying GR(v) resigns its leadership. Otherwise, v could be orphan, and it
could generate orphan nodes after its resignation. This is why in T P proto-
col, a leader v must satisfy the predicate MustResign(v), and its cluster should
be empty before becoming a standard node. The resignation process is thus
done in two steps. First, a cluster-head v satisfying MustResign(v) has the Pre-
Resignation rule enabled. By the execution of Pre-Resignation rule, v becomes
nearly ordinary (it still behaves as leader). In this state (i.e., Statusv = NO), no
node u having NextHeadu = v can join the v’s cluster because ¬MustAffiliate(u)
and ¬MustResign(u) are satisfied. Furthermore, the members of v’s cluster have
to leave their cluster, because they satisfy MustAffiliate ∨ MustBecomeHead,
and so they eventually quit the v’s cluster. In the other hand, while v is nearly
ordinary, UHP protocol will update Ready to RO in a finite time (Assumption
1). Once the v’s cluster is empty (i.e., ClusterEmpty(v) = T ) and Readyv = RO,
the rule TResignation(v) is enabled. By performing TResignation(v) rule, v be-
comes ordinary, and the Resignation action AR(v) is executed. If MustResign(v)
becomes unsatisfied when Statusv = NO, then Rollback-Resignation(v) rule is
enabled. Execution of Rollback-Resignation stops the resignation process.
These conditions guarantee that during the construction/maintenance of clus-
ters, no cluster-head abandons its leadership and generates orphan nodes.

Election process. A standard node v has to become leader if MustBecomeHead(v)
is verified: either due to the satisfaction of GE(v), or because v has to leave its
cluster (the v’s head is nearly ordinary) but v cannot affiliate with another clus-
ter. The election process is done in two steps. First, an ordinary node satisfy-
ing MustBecomeHead(v) has the Pre-Election rule enabled. After its execution, v
takes the nearly cluster-head status (it still behaves as a standard node). While v
is nearly cluster-head, the protocol UHP will update Ready to RCH in a finite
time (Assumption 1). Once Readyv = RCH and MustBecomeHead(v) is satis-
fied, the rule TElection is enabled for v. By executing TElection(v), v becomes
cluster-head, and it performs the Election action AE(v). If MustBecomeHead(v)
is no more satisfied when Statusv = NCH, then Rollback-Election(v) rule is
enabled. Its execution leads v to ordinary status and stops the election process.
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4 Service guarantee of the transformed protocol T P

In this section, we prove that T P protocol quickly reaches a safe configuration,
in at most 3 rounds. Moreover, the safety property is preserved under any action
of T P protocol and also despite the occurrence of HT D disruptions.

Lemma 1. A1 = {c ∈ C | ∀v ∈ V :
(
Is_Leader(v)⇒ Statusv ∈ {CH, NO}

)
∧(

¬Is_Leader(v) ⇒ Statusv ∈ {NCH, O}
)
} is closed under actions of T P

protocol.

Proof. Let v be a node, and let c be a configuration of A1.
According to preconditions, only the execution of AE(v) action changes the value
of Is_Leader(v) from F to T . In the protocol T P, the rule TElection(v) is the
only rule that calls AE(v) action. However, it sets also the variable Statusv to
CH. Thus, after the execution of TElection(v) rule, the reached configuration
belongs to A1.
Similarly, only the execution of AR(v) action changes the value of Is_Leader(v)
from T to F . In the protocol T P, the rule TResignation(v) is the only rule that
calls AR(v) action. However, it sets also the variable Statusv to O. Thus, after
the execution of TResignation(v) rule, the reached configuration belongs to A1.
In the configuration c, Correct1(v) or Correct2(v) rules are disabled. The ex-
ecution of TAffiliation(v) rule does not change the value of Is_Leader(v) nor
the value of Statusv. The execution of Pre-Election, Rollback-Election, Pre-
Resignation, Rollback-Resignation rules maintains the system in A1.
Starting from c, all actions keep the system in a configuration of A1. Therefore,
A1 is closed. �

Lemma 2. A1 is an attractor from C in at most one round.

Proof. Let c be a configuration of C but not of A1. In c, there exists a node v that
satisfies

(
¬Is_Leader(v)∧Statusv ∈ {CH, NO}

)
∨

(
Is_Leader(v)∧Statusv ∈

{NCH, O}
)
.

In c, v is enabled because the rule Correct1(v) or Correct2(v) is enabled. By fair-
ness, v performs Correct1(v) (if Is_Leader(v)) or Correct2(v) (otherwise). After
v’s action, a configuration of A1 is reached because (Is_Leader(v)∧ Statusv =
CH) ∨ (¬Is_Leader(v) ∧ Statusv = O). Therefore, starting from any configu-
ration, A1 is reached in at most one round. As A1 is closed (Lemma 2); A1 is an
attractor from C. �

Observation 1 In a configuration of A1, the rules Correct1(v) and Correct2(v)
are disabled for any node v.

Definition 4 (Safety Predicate). Let us define the safety predicate SP as
follows: SPv ≡ Head(Head(v)) = Head(v)

SP ≡ ∀v ∈ V : SPv

Notation 1 Let c be a configuration, and X be a variable or a predicate. We
note by X [c] the value of X in the configuration c.
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Lemma 3. Following the execution of TElection, TResignation or TAffiliation
rule by a node v, SPv is satisfied.

Proof. Let c1 be a configuration of A1, and cs be a computation step of T P
protocol c1

cs−→ c2. Let v be a node. During cs, if v performs the TElection rule,
the predicate SPv is verified in c2 (Head(v)[c2] = v).
Let us study the case where v performs TResignation or TAffiliation rule during
cs. We note u the head selected by v during cs (NextHead(v)[c1] = u). In c1, we
have Statusu = CH, otherwise predicates MustResign(v) and MustAffiliate(v)
are not satisfied in c1. SPv[c2] is satisfied because u cannot modify the value of
Head(u) by performing TResignation or TAffiliation rule during cs. �

Lemma 4. The set of configurations A2 = A1 ∩ {c ∈ C | SP is satisfied } is
closed under any computation step of the T P protocol.

Proof. Let c1 be a configuration of A2, and cs be a computation step of T P
protocol c1

cs−→ c2. Let v be a node. During cs, there are two possibilities.
• v did not change its head during cs. Let u be the head of v in c1, i.e.,
u = Head(v)[c1] = Head(v)[c2], and Head(u)[c1] = u. TElection(u) and TAffilia-
tion(u) rules are disabled in c1. So, TResignation(u) is the only rule that mod-
ifies the value of Head(u). However, TResignation(u) is disabled in c1 because
ClusterEmpty(u)[c1] is not satisfied. Thus, SPv stays satisfied in c2.
• v changes its head during cs. Note that the Pre-Election, Rollback-Election,
Pre-Resignation, Rollback-Resignation, TComplementary rules do not change
the v’s head identity. During cs, if v performs another rule, SPv is verified in c2

(according to Lemma 3).
We conclude that A2 is closed under any computation step of T P protocol. �

Theorem 1. A2 is an attractor for T P protocol from A1 in at most two rounds.

Proof. Let c be a configuration of A1 but not of A2. There exists a node v where
Head(Head(v))[c] 6= Head(v)[c], i.e., StatusHead(v)[c] /∈ {CH, NO}. In c, we have
Head(v) 6= v, i.e., Statusv[c] ∈ {NCH, O}. Let us study a computation e of T P
starting from c where SPv is never satisfied. Along e, three cases are possible:
• MustBecomeHead(v) ∧ Statusv = O is satisfied. The Pre-Election rule is

enabled in c for the node v.
• MustBecomeHead(v) ∧ Statusv = NCH is satisfied. The TElection rule is

enabled for v in a finite time (after update of Readyv, see Assumption 1).
• ¬MustBecomeHead(v) is satisfied. This implies that ¬GE(v)∧MustAffiliate(v)

is satisfied (because StatusHead(v)[c] 6= CH). Thus, the TAffiliation rule is
enabled for the node v.

We conclude that v is always enabled along e. By fairness, v performs infinitely
the Pre-Election, TElection or TAffiliation rules. Since, v cannot execute two
consecutive Pre-Election rules, then v performs inevitably TElection or TAffili-
ation rule, and thereafter SPv becomes satisfied (Lemma 3). Therefore, e does
not exist, and A2 is reached from A1 in at most 2 rounds. �
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Corollary 1. A safe configuration is reached in at most 3 rounds.

Proof. Each configuration of A2 is safe. The remaining of the proof follows di-
rectly from Lemma 2 and Theorem 1. �

Definition 5 (Highly Tolerated Disruptions). The set of highly tolerated
disruptions HTD handled by the protocol T P is:
• the change of node’s weight, • the crash of standard nodes,
• the failure of a link between (1) two leaders, or (2) two standard nodes,
• the joining of sub-networks verifying the predicate SP.

Theorem 2. SP is closed under any disruption of HT D.

Proof. Let v be a standard node (v is ordinary or nearly cluster-head), and u
its head (u is cluster-head or nearly ordinary). Let c ∈ A2. Starting from c, SPv

will be not verified only if one of the following events occurs: u’s removal from
the network or crash, or failure of the communication link between u and v.
Therefore, SP is preserved under any disruption of HT D. �

5 Correctness of the transformed protocol T P

In this section, we prove that a terminal configuration of T P protocol is not due
to a deadlock situation, but it corresponds to a terminal configuration of P.

Theorem 3. In a terminal configuration c of T P protocol, no action of P pro-
tocol is enabled.

Proof. Let u, v, w be nodes, and let ct be a terminal configuration of T P proto-
col. According to Theorem 1, ct belongs to A2. In the configuration ct, all rules
of T P protocol are disabled.

Assume that in ct, v satisfies ¬Is_Leader(v). In the configuration ct we have:
• Statusv = NCH ∨ Statusv = O, since ct ∈ A1.
• ¬MustBecomeHead(v) is satisfied, otherwise the Pre-Election or TElection rule
is eventually enabled according to Observation 1.
• Statusv = O, because otherwise the rule Rollback-Election is enabled.
• ¬MustAffiliate(v) is satisfied, otherwise the rule TAffiliation is enabled.
• ¬GE(v) ∧ StatusHead(v) = CH, since ¬MustBecomeHead(v) is satisfied.
We conclude that in ct, ¬Is_Leader(v)⇒

Statusv = O ∧ ¬GE(v) ∧ ¬MustAffiliate(v) ∧ StatusHead(v) = CH (3)

In addition, according to 2nd and 3rd Preconditions, we have

Is_Leader(v)⇒ ¬GA(v) ∧ ¬GE(v) ⇒ ¬MustAffiliate(v) ∧ ¬GE(v)

Therefore, in ct, we have :
∀v ∈ V : ¬MustAffiliate(v) ∧ ¬GE(v) (4)
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Assume that in ct the node w satisfies Is_Leader(w), and it is nearly ordi-
nary (Statusw = NO). According to our assumptions, in ct we have:
• MustResign(w) is satisfied, otherwise the rule Rollback-Resignation is enabled.
• ¬ClusterEmpty(w) is satisfied, otherwise TResignation(w) is eventually en-
abled (Observation 1). Thus, ∃u ∈ Nw : Head(u) = w (i.e., ¬Is_Leader(u)). We
have, StatusHead(u) = NO. According to Equation 3, node u does not exist.
• There is a contradiction, in ct Is_Leader(w) implies Statusw 6= NO.

Assume now that in ct w is cluster-head, thus in ct we have:
• ¬MustResign(w) is satisfied, otherwise Pre-Resignation(w) is enabled.
We establish that in ct,

Is_Leader(w)⇒ Statusw = CH ∧ ¬MustResign(w) (5)

According to 1st Precondition, ¬Is_Leader(w)⇒ ¬GR(w)⇒ ¬MustResign(w).
Therefore, in ct, we have:

∀v ∈ V : ¬MustResign(v) (6)

According to Equation 1, in ct we have: GA(v) ⇒ Is_Leader(NextHead(v)).
Thus, StatusNextHead(v) = CH (Equation 5). We conclude that in ct,

¬MustAffiliate(v)⇒ ¬GA(v) (7)

Similarly, according to Equation 1, in ct we have: GR(w)⇒ Is_Leader(NextHead(w)).
Thus, StatusNextHead(w) = CH (Equation 5). We conclude that in ct,

¬MustResign(w)⇒ ¬GR(w) (8)

In ct, GC(v) guards are disabled because TComplementary(v) rules are disabled.
In terminal configuration ct, the guards GE(v) (Equation 4), GA(v) (Equations

4 and 7), GR(v) (Equations 5 and 8) and GC(v) are disabled for any node v. This
is a terminal configuration for P. �

6 Termination of the transformed protocol T P

The proof of termination of T P protocol poses a technical challenge. Indeed,
some times the rule TElection in T P protocol may be enabled whereas the
Election rule in P protocol is disabled, i.e., GE is not verified but MustBecomeHead
is verified. The execution of TElection rule when MustBecomeHead ∧ ¬GE allows
to empty a cluster headed by a Nearly-ordinary node, and so it ensures the
convergence of T P protocol.

Notation 2 Let us note by P1(v) and P2(v) the following predicates.
P1(v) ≡ (GA(v) ∨ GE(v)) ∧ (Head(Head(v)) = Head(v))

⇒ wNextHead(v) > wHead(v)

P2(v) ≡ (∀u ∈ V,wu < wv or u will never perform a clustering action)⇒
The value of GR(v) does not change while v does not perform an action.

Requirement 1 For the following, we assume that the set of configurations
Ap = A2∩{c ∈ C | ∀v ∈ V, P1(v)∧P2(v)} is an attractor for T P protocol from
A2.
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The predicate P1 is related to the fact that P is weight-based: a standard node
of a well-formed cluster (its head is a leader) changes of cluster only to affiliate to
a better leader. The predicate P2 is related to silent and weigh-based properties
of P: a leader v is neutralized only by an action of a stronger node (its weight
is larger than v’s weight).

Termination scheme : Let e be a computation of T P protocol starting
from a configuration of Ap. Along e, the stabilization of nodes of V is done in
steps. At the end of the ith step, a suffix ei of e is reached where all nodes of
Si executes only Pre-Election and Rollback-Election rules. We define the set Si,
and the suffix ei as follows:

• S0 = ∅; e0 = e; i > 1;
• Vi = V − Si−1;
• Let vi be the node of Vi having the highest weight.
• Let ei be a suffix of ei−1, such that along ei the following stabilization prop-

erties are always satisfied for the node vi:
1. Statusvi ∈ {CH, NCH, O}, and vi will never change its head identity.
2. If vi is cluster-head, then vi is disabled forever, and the vi’s cluster is

stable (i.e., no node joins or leaves the cluster headed by vi).
3. If vi is ordinary or nearly cluster-head, then vi only executes Pre-Election

and Rollback-Election rules.
• Si = Si−1 ∪ {vi}.

Lemma 5. For all i > 1, the suffix ei of ei−1 exists assuming that the suffix
ei−1 of e0 exists.

Proof. Assume that a suffix ei−1 of e0 exists for any arbitrary i > 1. This means
that P1(v) and P2(v) are satisfied along ei−1 for any node v. Let vi be the node
of Vi having the highest weight.

According to our assumptions and Equation 2, along ei−1 we have:
• If Head(vi) ∈ {v1, v2, ...vi-1}, then: vi is either ordinary or nearly cluster-head
(Head(vi) 6= vi), and it only executes Pre-Election and Rollback-Election rules
because it never leaves its cluster along ei−1 (cluster of Head(vi) is stable).
• Assume now that Head(vi) /∈ {v1, v2, ...vi-1}. According to Equation 2, we have
NextHead(vi) = vi∨NextHead(vi) = Head(vi)∨NextHead(vi) ∈ {v1, v2, ...vi-1}.
• Let along ei−1, NextHead(vi) ∈ {v1, v2, ...vi-1}. Along ei−1, vi can never

perform TAffiliation(vi) because all clusters headed by leaders from {v1, v2, ...vi-1}
are stable, and vi cannot join such clusters. If GR(vi) is satisfied in a configuration
of ei−1 then MustResign(vi) is satisfied (∀v ∈ {v1, v2, ...vi-1}, Is_Leader(v) ⇒
Statusv = CH), and GR(vi) stays satisfied until vi executes a clustering action
(P2(vi) is verified). By fairness, vi executes Pre-Resignation, and thereafter
TResignation rule, and it joins a cluster headed by a node from {v1, v2, ...vi-1}.
There is a contradiction because such clusters are stable. We conclude that GR(vi)
(so, MustResign(vi)) is never satisfied along ei−1.
• Let NextHead(vi) = vi or NextHead(vi) = Head(vi). According to 2nd, 3rd

and 4th Preconditions on protocol P, we establish that along ei−1 the node vi
verifies ¬GA(vi) ∧ ¬GR(vi), i.e., ¬MustAffiliate(vi) ∧ ¬MustResign(vi).
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From previous cases, we conclude that along ei−1:
• TAffiliation, Pre-Resignation and TResignation rules are never enabled for vi.
• If Statusvi = CH, then vi can only execute TComplementary rules, and the
value of Statusvi is stable.
• If Statusvi = NO, then by fairness vi will execute once a time Rollback-
Resignation rule because ¬MustResign(vi) is satisfied forever.
• If Statusvi ∈ {O,NCH}, then two cases are possible. vi will eventually execute
the TElection rule and after that action, Statusvi becomes stable. Second, vi
executes only Pre-Election, Rollback-Election and TComplementary rules. So,
vi never leaves its cluster. Thus, according to Precondition 6th, there exists a
suffix of ei−1 where vi never executes TComplementary rule.
As consequence, there exists a suffix e1i−1 of ei−1, such that along e1i−1:

(1) Statusvi ∈ {CH, NCH, O} and vi never changes its head identity.
(2) If vi is cluster-head, then it only performs TComplementary rules.
(3) If vi is ordinary or nearly cluster-head, then it only performs Pre-Election

and Rollback-Election rules.

Stabilization of vi’s cluster. Assume now that vi is a cluster-head along
e1i−1. We will prove that the vi’s cluster is eventually stable.
Closure: Let v be a node of the vi’s cluster (Head(v) = vi). If v ∈ {v1, v2, ..., vi-1},
then the node v never leaves its cluster along e1i−1 (By assumption).
Assume that v /∈ {v1, v2, ..., vi-1} (i.e., wv < wHead(v)). Along e1i−1, the node v
never executes TElection rule (GE(v) is never satisfied, because P1(v) is satisfied
along e1i−1). Moreover, if v should affiliate to another cluster then NextHead(v) ∈
{v1, v2, ..., vi-1}. Since the clusters headed by leaders of {v1, v2, ...vi-1} are sta-
ble, the node v never executes TAffiliation rule along e1i−1. Therefore, v will
never leave the cluster of vi. After that, the node v will eventually stop to exe-
cute TComplementary rule (see 6th Precondition).
Convergence: The set of nodes can join vi’s cluster is a bounded subset of
Nvi. So, there exists a suffix e2i−1 of e1i−1 where no node joins the vi’s cluster.

We conclude that, there exists a suffix ei of e2i−1 where:
(1) no node leaves or joins the cluster of vi: the vi’s cluster is stable,
(2) the node vi is disabled forever (vi will never execute TComplementary

rule, see 7th Precondition). �

Theorem 4. All computations of T P protocol, starting from a configuration of
Ap, reach a terminal configuration.

Proof. Let j = |V | be an integer. The suffix ej exists (where stabilization prop-
erties are satisfied for all nodes of V ), and it is reached by any computation of
T P protocol (Lemma 5). Along ej , nodes may only execute Pre-Election and
Rollback-Election rules. So, no node executes a clustering action (i.e., AA, AE,
AR, and AC actions), and the value of guards GA(v), GE(v), GR(v), and GC(v) does
not change for any node v. Furthermore, along ej , ∀v ∈ V, Statusv 6= NO.
Assume that ej is infinite. So, there exists a set of nodes, denoted Inf 6= ∅, that
perform infinitely often Pre-Election and Rollback-Election rules. Let v be the
node of Inf having the highest weight.
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Along ej , each time v satisfies MustBecomeHead(v) (to perform Pre-Election
rule) then the guard GE(v) is satisfied, because StatusHead(v) = CH. Since no
node performs a clustering action, the node v satisfying GE(v) stays enabled
along ej unless it performs a clustering action. By fairness, v executes TElection
rule after Pre-Election rule and it leaves its cluster. This is impossible along
ej . We conclude that GE(v) is not verified along ej . Moreover, along ej we have
StatusHead(v) = CH. Thus, MustBecomeHead(v) is never satisfied along ej .
Therefore, along ej , Pre-Election(v) is disabled forever, and after the execution
of Rollback-Election(v) rule, v is disabled forever.

We conclude that v does not perform infinitely often the Pre-Election and
Rollback-Election rules: Inf = ∅. So, ej reaches a terminal configuration. �

7 Complexity measures and concluding remarks

Time complexity. A comparison between the time complexity of P and T P
protocols is illustrated in Table 1, where UHP rules are rules of UHP protocol
updating the variable Ready, and U is the time required by UHP rules to achieve
such update. We conclude that an upper bound of the stabilization time of T P
protocol is (4 + 2U) ∗ SP , where SP is the stabilization time of P protocol.

Memory space complexity. Let MP be the memory requirement of protocol
P at each node. The protocol T P differs from P by the variable Status added
at each node. This variable has 4 values, so it can be coded by 2 bits. Thus, the
memory space complexity of T P protocol is MP + 2 bits per node.

Protocol P Protocol T P
Rule Number of rounds Rule Number of rounds

Complementary 1 round TComplementary 1 round

Affiliation 1 round TAffiliation 1 round

Election 1 round Pre-Election + UHP
rules + TElection

2 + U rounds

Resignation 1 round Pre-Resignation + (Pre-
Election + UHP rules +
TElection or TAffiliation)
+ UHP rules + TResig-
nation

4 + 2U rounds

Table 1. Comparison between time complexity of P and T P protocols

The proposed scheme constructs a silent self-stabilizing with service guaran-
tee 1-hop clustering protocol T P starting from a silent self-stabilizing one P.
In at most 3 rounds (Corollary 1), T P provides the following useful minimal
service: ”each node belongs to a cluster having an effectual leader”. The service
guarantee property of T P protocol ensures that this minimal service stays pro-
vided during the stabilization phase, even despite the occurrences of disruptions
HT D (see Definition 5). Thus, the hierarchical organization of the network is
quickly available and it is maintained over the time, which allows the continuity
of operation of upper-layer hierarchical protocols.
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Futur works. The presented transformer is adapted only to self-stabilizing
1-hop weight-based protocols. A first generalization of this work is the design of
a transformer dealing with k-hops weight-based protocols (i.e. the cluster-head
being at distance at most k of its cluster’s members). A second generalization
is the design of a transformer adapted to any k-hops protocol; for instance [14]
where the selection of cluster-heads is randomized and not weight-based.
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