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 

Abstract— The paper deals with black-box identification of 

industrial automated discrete manufacturing systems. The 

problem of obtaining Petri net (PN) models from the 

observable behavior, expressed as a sequence of input-output 

vectors, is addressed. First the problem is stated: important 

issues to handle in systems automated by Programmable Logic 

Controllers that cannot be dealt by other methods are detailed. 

Then a novel method is presented; it focuses on building a 

compact and expressive representation of the observable part 

of the model which allows consequently the construction of a 

reduced complete Interpreted PN describing both observable 

and unobservable behavior. 

I. INTRODUCTION 

dentification allows building systematically a 

mathematical model that describes the behavior of an 

unknown or ill-known system based on the observation of its 

evolution. In the case of discrete event systems (DES), 

observations consist of data revealing the system activity: 

sequences of operations, events, messages, etc., and the 

models are abstract machines that reproduce the observed 

behavior.  

A. Related Work 

This problem has been addressed in literature in various 

formulations and from diverse approaches.  

The works in [1], [2] obtain a Petri net system from the 

knowledge of the language it generates, i.e. the set of 

transition sequences that can be fired from the initial 

marking. For automated systems identification, such 

transitions are unknown if a black-box approach is being 

performed; that is, the only available information about the 

system is the evolution of input and output signals. Besides, 

some of the stated hypotheses on these works are not well 

adapted for real complex DES, particularly the consideration 

of the entire system language observation. In practice, only 

part of the language is observed, especially when there are 

many concurrent tasks in the system. 

In [3] several algorithms are introduced to synthesize a 

Petri net with regard to an event propagation set. However, 

distinction between input and output signals is not made and 

obtained models do not express how inputs and outputs of 

the system are interrelated to produce the observed behavior, 

although it is the core of a reactive system. 
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In [4] it is described a method to incrementally construct 

an IPN model from a single output vectors sequence. The 

considered DESs to identify must be event-detectable by the 

outputs. Applying this method to an I/O sequence would 

lead to models in which same output changes caused by 

different input evolutions would not be distinguished, and 

then incorrect behavior could be introduced. 

The method presented in [5] obtains automata models 

representing a set of cyclic I/O sequences. This method also 

considers automated systems. However, in the obtained 

models, structural information such as parallelism cannot be 

explicitly expressed. An extension of this work has been 

presented in [6], where splitting the system on concurrent 

parts is performed. Even if modeled subsystems represent 

parallelism, the method is strongly adapted for fault 

detection purposes.  

In [7], [8] an event sequence is observed, as well as the 

corresponding output symbols of a DES to produce an IPN 

model, in which the sequence and the observed output 

vectors are reproducible. This methodology requires the 

definition of an event list, which is not available in the 

context of black-box identification problem addressed in this 

work. An alternative to this lack of events list could be the 

consideration of all the observed input changes. In this case, 

models with several paths describing input changes would 

be constructed, in which some input-output relations would 

not be explicitly observed. 

In [9] a technique for constructing a Petri net-like model 

that describes the relationship between tasks from a 

sequence of workflow events is presented. This technique 

allows the discovering of events belonging to certain threads 

and synchronization points (forks and joins of tasks) through 

a probabilistic analysis of metrics such as the entropy, 

number and regularity of task occurrences. It is assumed that 

all the workflow operations are observable. 

 

B.  Input-Output approach 

Beyond the theoretical interest of defining model synthesis 

methods from symbol sequences, the challenges of applying 

identification methods to actual industrial automated 

systems are related to the scalability of the algorithms and 

technological issues: the techniques must be efficient to cope 

with large and complex systems that handle actual signals.  

In our approach we deal with Programmable Logic 

Controller (PLC) based automated systems. The aim is to 

discover, from observations of the system behavior 

expressed as a single sequence of PLC input and output 

signals, how components of the system are interrelated and 
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construct a concise model which can explicitly show the 

discovered behavior, in particular, concurrency, 

synchronization, resource sharing, etc. Identification of 

systems in operation involves two important aspects to 

consider: the system operation and the observation process. 

Technological issues of both aspects must be considered in 

the proposed algorithms to construct suitable abstractions. 

In a previous work [10] an I/O sequence is considered to 

compute an IPN including cyclic behavior. Although the 

proposed methodology is scalable due to the algorithms 

efficiency, the obtained models are close to finite automata 

and can be huge, due to the explicit representation of 

observed input changes that could not be relevant to define 

the output evolution. 

In this paper we address these problems by analyzing the 

observed sequence to establish a clearer relation between 

inputs and outputs of the controller. The proposed method 

allows building a reduced representation of the observable 

part of the model which yields consequently, a reduced 

complete IPN. None of the black-box identification 

approaches in related works allows obtaining such well 

structured models. 

C. Contents 

The paper is organized as follows. In section II IPN basic 

notions are overviewed. Section III states the problem of 

industrial automated systems identification. Section IV 

introduces the input-output approach and section V describes 

the method for building a concise representation of the IPN 

model observable part. 

II. INTERPRETED PETRI NETS 

This section contains the basic concepts and notation of PN 

and IPN used in this paper. 

Definition 1: An ordinary Petri Net structure G is a bipartite 

digraph represented by the 4-tuple G = (P, T, I, O) where: 

P = {p1, p2, ..., p|P|} and T = {t1, t2, ..., t|T|} are finite sets of 

vertices named places and transitions respectively; 

I(O) : P × T  {0,1} is a function representing the arcs 

going from places to transitions (from transitions to places). 

The incidence matrix of G is C = C
+
  C


, where 

C

 = [cij


]; cij


 = I(pi, tj); and C

+
 = [cij

+
]; cij

+
 = O(pi, tj) are the 

pre-incidence and post-incidence matrices respectively.   

A marking function M : P Z
+
 represents the number of 

tokens residing inside each place; it is usually expressed as 

an |P|-entry vector. Z
+ 

is the set of nonnegative integers. 

Definition 2: A Petri Net system or Petri Net (PN) is the 

pair N = (G,M0), where G is a PN structure and M0 is an 

initial marking. 

In a PN system, a transition tj is enabled at marking Mk if 

pi  P, Mk(pi) ≥ I(pi, tj); an enabled transition tj can be fired 

reaching a new marking Mk+1 . This behavior is represented 

as Mk  jt Mk+1. The new marking can be computed as 

Mk+1 = Mk + Cuk, where uk(i) = 0, i≠j, uk(j) = 1; this equation 

is called the PN state equation. The reachability set of a PN 

is the set of all possible reachable markings from M0 firing 

only enabled transitions; this set is denoted by R(G,M0).  

Now it is defined IPN [11], an extension to PN that allows 

associating input and output signals to PN models. 

Definition 3 : An IPN (Q, M0) is a net structure Q = (G, V, 

, , , ) with an initial marking M0 where: G is a PN 

structure, V = {v1, v2, ..., vr} is the set of variables,  = {1, 

2, ..., s} is the set of events, and  = {1, 2,..., q} is the 

output alphabet.  : T C  E is a labeling function of 

transitions, where C={C1, C2,…} is the set of variable 

conditions and E={E1, E2,…} is the set of events.  

In an IPN, a transition tj will be fired if a) tj is enabled, 

and b) condition C(Tj) is true, and c) the event in E(Tj) 

occurs. 

 : R(Q,M0)(Z
+
)

q
 is an output function, that associates to 

each marking in R(Q,M0) a q-entry output vector; q=|| is 

the number of outputs.  is represented by a q×|P| matrix, 

such that if the output symbol i is present (turned on) every 

time that M(pj) ≥ 1, then (i, j) = 1, otherwise (i, j) = 0. 

The state equation is completed with the marking 

projection Yk = Mk, where Yk  (Z
+
)

q
 is the k-th output 

vector of the IPN. 

Definition 4:  A place piP is said to be observable if the 

i-th column vector of   is not null, i.e. (,i) ≠ 0. Otherwise 

it is non-observable. P = P
o
  P

u
 where P

o
 is the set of 

observable places and P
u
 is the set of non-observable places. 

III. IDENTIFICATION OF INDUSTRIAL AUTOMATED SYSTEMS 

A. {PLC + Plant} identification 

In this work we consider the systems composed by a 

Controller (a PLC) and a Plant denoted as {PLC + Plant} 

working on a closed loop. The input signals of the PLC 

(outputs of the Plant) are generated by the sensors of the 

Plant. The output signals of the PLC (inputs of the Plant) 

control the actuators of the Plant. 

The identification is made from the point of view of the 

PLC ( Fig. 1). A PLC cyclically performs three main steps: 

a) Input reading, where signals are read from the sensors; b) 

Program execution, to determine the new outputs values for 

the actuators; and c) Output writing, where the control 

signals to the actuators are set. At each end of the Program 

execution phase, the current value of all Inputs and Outputs 

(called I/O vector) is captured and recorded in a data base.  

Regarding the implementation of the data link between 

PLC and identification data base, we use the UDP (User 

Datagram Protocol) connection presented in [12]. Tests 

performed using a Siemens PLC (CPU 315-2 DP) equipped 

with a program leading to a PLC-cycle time of 25 to 30ms 

have shown that this connection is reliable and efficient: no 

data packets got lost during the transmission and the 

execution of the PLC program is not delayed by the capture 

of data. The only available data for the identification 

procedure is therefore a single I/O vector sequence whose 

length depends on the observation duration: 
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I(j) and O(j) are respectively the values of the r inputs and 

q outputs at the j-th PLC cycle. 



  

Our aim is to express the system’s behavior extractible from 

the I/O vector sequence as an IPN. In the next section we 

explain why this formalism is well adapted for representing 

{PLC + Plant} behavior in a suitable form. 

B. Relation between Petri Nets and DES behavior 

Left side of Fig. 2 shows how a DES evolves across the 

time. At each PLC cycle (denoted by K), state (X(K)) and 

output (O(K)) are updated according to functions S and A 

respectively. S considers previous state and current input 

signal values. A considers the new reached state and current 

input signal values. The systems we are dealing with are 

those which can be described without time or conditional 

actions, thus the outputs depend only on the state. 

 

 
 Fig. 1  {PLC + Plant} compound and Identification procedure 

 

 
 

Fig. 2  Relation between DES and IPN 

 

Example 1. In order to explain different type of 

evolutions that could arrive on a DES, let us introduce an 

instance of the well known two wagons example. It consists 

of five input signals l1, l2, r1, r2, and s and four output 

signals R1, R2, L1, and L2 (Fig. 1). 

When both wagons are at their leftmost position (l1 = 1 

and l2 = 1) and signal s appears, they start moving to the 

right (R1 and R2). When one of the wagons arrives to its 

rightmost position (indicated by r1 or r2) it is ordered to stop 

(turn off R1 or R2). Once both wagons are at their rightmost 

position, they go back to the left (L1 and L2) and wagons are 

stopped again at its leftmost position in order to start a new 

cycle. Notice that signal s, which is generated by an 

operator, can appear at any instant of the cycle. 

The sequence of Fig. 3 has been collected from the 

considered system as described in section III.A. 

In order to analyze signals evolution, we compute event 

vectors, i.e., the difference between two consecutive I/O 

vectors: )()1()( kwkwkE  .
 

Each event vector can be 

decomposed into input and output event vectors: 
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Fig. 3  Different observed types of I/O evolution 

 

Regarding input and output event vectors, there exist four 

situations (types) that could be observed, which are 

explained by different occurring phenomena: 

Type 1. IE(k)  0  OE(k)   0 
An input change has provoked directly an output change, and 

consequently, a state evolution. The I/O causality is observed at 

the same PLC cycle.  

Type 2. IE(k) = 0  OE(k)   0 
The controller has arrived at step k-1 to a state in which, given 

the inputs, an output (and state) evolution is allowed at step k. 

Type 3. IE(k)  0  OE(k)  = 0 
a) X(k 1) = X(k) It has occurred an input evolution to which 

the controller is not sensitive. 

b) X(k1)  X(k) It has occurred a non-observable state 

evolution of the controller. 

Type 4. IE(k) = 0  OE(k)  = 0 
a) X(k 1) = X(k) The controller remains in a stable state, i.e., 

no state evolution condition is satisfied. 

b) X(k1)  X(k) It has occurred a non-observable state 

evolution of the controller. 

All of these situations can be easily described by the IPN 

dynamics, as showed at the right side of Fig. 2. The state 

evolution function can be represented by the IPN state 

equation and the output function can be easily translated into 

the marking projection function. However Type 4 situations 

cannot be detected by external observation of inputs/outputs, 

and then they will be not dealt by our algorithm. 

Consequently, the sequence stored in the database will be 

built by adding a new I/O vector only when it is different to 

the last one. Observable state evolutions will be represented 

by arcs entering and leaving observable places. State 

evolutions non-exhibited by output evolutions will be 

represented by transitions between non-observable places. 

This has been done previously in literature [4], [7] [10] [13]. 

However, existing approaches show only direct event-output 

evolutions (Type 1). Some adaptations must be done on IPN 

in order to represent information regarding system evolution 

restricted to input conditions (instead of input changes). In 

our approach this is supported by the IPN transition labeling 

function. The variable set is the input set of the system, and 

the event set is the set of combinations over rising and 
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falling edges of input variables, denoted {i1_1, i1_0, i2_1, …, 

ir_1, ir_0}. Then, E(Tj) can be expressed as a conjunction of 

events, and C(Tj) will be a condition over the input signals of 

the system. In the next sections we will deeply present how 

we translate the observed behavior of a controlled DES into 

an IPN model. 

IV. INPUT-OUTPUT IDENTIFICATION APPROACH 

Based on classification of types of evolution described in 

section III.B, we can divide our identification method in two 

steps: a) computing the observable part of the model and b) 

computing the non-observable part of the model. 

A. Identification of the {PLC + Plant} observable 

behavior 

Here, we determine directly from observed behavior: 

 If certain input changes always produce output changes 

at the same PLC cycle (evolution type 1). 

 If there is an input evolution (evolution type 3.b) in 

which during later PLC cycles satisfies conditions to 

produce output changes (evolution type 2). 

 If certain inputs have no influence on the output changes 

(evolution type 3.a). 

B. Identification of the non-observable behavior 

Some state evolutions (Evolution type 3.b, 4.b) cannot be 

observed only through the outputs, and they could be 

confused with other type of evolutions (type 3.a, 4.a 

respectively). Some of these situations cannot be discerned, 

but some of them can be inferred from the imposed order of 

events apparition. Owing to lack of space, the technique for 

determining such relations is not included in this paper.  

V. IDENTIFICATION OF THE OBSERVABLE BEHAVIOR 

Now, we describe the methodology to identify the {PLC + 

Plant} observable behavior. It consists of the steps 

summarized in Algorithm 1, which will be deeply described 

on the next sub-sections through a simple case study inspired 

from a manufacturing example. 

Algorithm 1.General description of the method 

Input: I/O sequence w 

Output: Observable incidence matrix φC and labeling 

transition function  

Step 1. Analyze sequence w in order to 

 Compute events vector sequence 

 Compute elementary events 

 Compute Direct and Indirect Causality Matrices 

 Construct Output Event Firing Functions  

 Find Input events with differed influence 

Step 2. Use computed data in Step 1 to 

 Compute transitions of the IPN and their labeling  

 Compute observable incidence matrix φC 

 

Example 2. The purpose of this system (Fig. 4) is to sort 

parcels according to their size. It has 9 signal sensors from 

the system: a0, a1, a2, b0, b1, c0, c1, k1, k2, and 4 signals to the 

actuators: A+, A-, B, C. This example has been used in other 

publications [10], [13] and we take it up again to confront 

previous results to the new ones. 
 

 

Fig. 4  Layout of the system case study 

  

For illustrative purposes, we present here only the 

beginning of an I/O vector sequence. However, recall that 

treated sequences are usually very much longer (thousands 

of events vectors). 

A. Events vector sequence 

We have included in the sequence the first step of the 

algorithm, i.e., the computed event vectors (dotted lines) 

between each two consecutive I/O vectors (solid lines). 

 

B. Elementary events 

In order to analyze the system behavior in a deeper way, 

event vectors can be decomposed into a set of elementary 

events (simply called events): 

0)()1( s.t.},...,,{)( 21  kIkIIEIEIEIEkIE iikikjkk   

0)()1( s.t.},...,,{)( 21  kOkOOEOEOEOEkOE iikiklkk 
 If no elementary input (output) event occurs in E(j), we 

denote it as IE(j)={} (OE(j)={}). The rising (resp. falling) 

edge event of variable vi is denoted as vi_1 (resp. vi_0). 

In Table 1 the elementary events computed for the 

example sequence are showed.  

Event 

vector 

Elementary input 

events 

Elementary output 

events 

E(1) IE(1) = {k1_1} OE(1) = {A+_1} 

E(2) IE(2) = {a0_0} OE(2) = { } 

E(3) IE(3) = {k1_0} OE(3) = {} 

E(4) IE(4) = {a1_1} OE(4) = {A+_0,  A_1,  B_1} 

E(5) IE(5) = {b0_0} OE(5) = { } 

Table 1. Elementary events list for Example 2  
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C. Direct and Indirect Causality Matrices 

As stated in section III, the influence of some input signals 

over the outputs setting is observed at the same PLC cycle. 

In order to discover such an input-output direct relationship, 

we analyze the relative frequency of the simultaneous 

emergence of an input event IEi and an output event OEk, 

with respect to the emergence of OEk during the whole 

sequence of events. That relationship can be naturally 

expressed as the conditional probability of the occurrence of 

an output event OEk, given that a certain input event IEi has 

occurred at the same PLC cycle: 

)(

),(
)|(

kObs

ikObs
ik

OEN

IEOEN
IEOEProb   

where NObs(.) denotes the number of observed occurrences. 

Using all values Prob(OEk|IEi), a matrix can be filled. We 

call such a matrix the Direct Causality Matrix (DM), in 

which every DMik = Prob(OEk|IEi). Table 2 presents the 

computed DM matrix for the Example 2, considering a 

longer sequence than the presented one.  

 

 
Table 2.  Direct Causality Matrix for the Example 2 

 

Conditional probabilities have been used in [9] for 

analyzing the relative occurrence between workflow events; 

this analysis is done in the first step of the procedure. 

However the remaining steps and the kind of obtained model 

differ from that of our method. 

With the DM matrix, we can find Evolution type 1 simply 

by looking at each column the values that add up to 1, since 

this represents the total of occurrences of event OEk. For 

example, from Table 2, we can discover that events a1_1 

and a2_1 are the input events which always provoke the 

output event A+_0. The general case where several input 

events can provoke an output event is formalized on the next 

section. Also evolution type 3.a can be found at DM matrix, 

under the form of null rows. For example, the second row 

indicates that the controller is not sensitive to the input event 

k1_0. 

Similarly, to discover input-output non direct relationship, 

we look at the present input values when a certain output 

event occurs.  We compute the occurrence probability of an 

output event OEk, given that certain input has a given value 

ILi at the same PLC cycle: 

)(

),(
)|(

kObs

ikObs
ik

OEN

ILOEN
ILOEProb 

 
 We construct the Indirect Context Matrix (IM) in which 

every IMik = Prob(OEk|ILi). The IM matrix for Example 2 is 

showed in Table 3. 
 

 
Table 3.  Indirect Context matrix for the Example 2. 

 

Using the IM matrix we can discover evolution types 3.b 

and 2 by inspecting in every column the values that add up 

to 1 which are not zero in the DM matrix. In the example 2, 

k1=1 and k2=1 are input values which can provoke A+_1 

output event, even if they were not always observed at the 

same PLC cycle. 

Now we will present how these relations can be 

automatically discovered from the DM and IM matrices. 

D. Computing Output Event Firing Functions 

It can be noticed that the occurrence of every output event 

OEk is caused by one or several input events occurring at the 

same PLC cycle and by a condition on the input values. This 

can be expressed by the Output Event Firing Function: 

)()()( kkk OEFOEGOE   

where G(OEk) is a function of input events and F(OEk) is a 

function of inputs levels which allow the triggering of the 

output event OEk. 

We compute G(OEk) as a conjunction of disjunctions: 

jk DisjEOEG )(
 

where each disjunction )...( zxj IEIEDisjE   involves 

those variables corresponding to non-zero column values of 

the DM matrix, which add up to 1, i.e. those satisfying 

conditions: 

1. 0,...0,0  zjyjxj DMDMDM  

2. 1...  zjyjxj DMDMDM  

F(OEk) is computed in a similar way: 
jk DisjLOEF )(

with )...( zyxj ILILILDisjL  such that
 

1. 0,...0,0  yjyjxj IMIMIM  

2. 1...  zjyjxj IMIMIM  

3. 0,...0,0  yjyjxj DMDMDM  

A+_1 A+_0 A-_1 A-_0 B_1 B_0 C_1 C_0

k1_1 0.111 0.111 0.111 0.111 0.000 0.200 0.000 0.000

k1_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k2_1 0.222 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k2_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

a0_1 0.222 0.000 0.000 1.000 0.000 0.000 0.000 0.000

a0_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

a1_1 0.000 0.444 0.444 0.000 1.000 0.000 0.000 0.000

a1_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

a2_1 0.000 0.556 0.556 0.000 0.000 0.000 1.000 0.000

a2_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b0_1 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b0_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

b1_1 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

b1_0 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.000

c0_1 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000

c0_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

c1_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

c1_0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A+_1 A+_0 A-_1 A-_0 B_1 B_0 C_1 C_0

k1=1 0.444 0.111 0.111 0.333 0.000 0.250 0.200 0.200

k1=0 0.556 0.889 0.889 0.667 1.000 0.750 0.800 0.800

k2=1 0.556 0.000 0.000 0.333 0.000 0.250 0.000 0.200

k2=0 0.444 1.000 1.000 0.667 1.000 0.750 1.000 0.800

a0=1 1.000 0.000 0.000 1.000 0.000 0.500 0.000 0.000

a0=0 0.000 1.000 1.000 0.000 1.000 0.500 1.000 1.000

a1=1 0.000 0.444 0.444 0.000 1.000 0.000 0.000 0.000

a1=0 1.000 0.556 0.556 1.000 0.000 1.000 1.000 1.000

a2=1 0.000 0.556 0.556 0.000 0.000 0.000 1.000 0.000

a2=0 1.000 0.444 0.444 1.000 1.000 1.000 0.000 1.000

b0=1 1.000 1.000 1.000 0.556 0.000 0.000 1.000 1.000

b0=0 0.000 0.000 0.000 0.444 1.000 1.000 0.000 0.000

b1=1 0.000 0.000 0.000 0.111 1.000 1.000 0.000 0.000

b1=0 1.000 1.000 1.000 0.889 0.000 0.000 1.000 1.000

c0=1 1.000 1.000 1.000 0.889 0.000 1.000 1.000 0.000

c0=0 0.000 0.000 0.000 0.111 1.000 0.000 0.000 1.000

c1=1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000

c1=0 1.000 1.000 1.000 1.000 0.000 1.000 1.000 0.000



  

Then, for every output signal Oi, we will have the input 

events and input conditions to produce its rising and falling 

edges Oi_1 and Oi_0 respectively. This can be easily 

translated into IPN fragments, as showed in Fig. 5. 

 

 

Fig. 5  Rising and falling transitions of output Oi 

 

E. Input events with differed influence on the outputs 

As stated below, when an input change is observed, it could 

or not produce a state evolution. Since we cannot always 

distinguish between these two situations through the firing 

functions construction, some input events could be being 

ignored if they are not included in any function, i.e., if they 

have never provoked directly an output change. In order to 

avoid this, we keep the set of inputs D = { Ii } such that DM 

lines corresponding to Ii_0 and Ii_1 are both zero. We call it 

the set of inputs with differed influence over the outputs. For 

the Example 2, D = {}; the computed PN fragments showed 

in Fig. 6. 
 

 

Fig. 6  IPN fragments for Example 2 

 

F. Fusion of IPN fragments  

As stated below, at each PLC cycle, several input and state 

conditions could lead to the simultaneous occurrence of 

several output events. This behavior is reproduced by 

merging such conditions into a unique transition, which is 

labeled by a firing function computed from individual firing 

functions of each output event. This is captured in the model 

as a fusion of IPN fragments as showed in Fig. 7. 

 

 
Fig. 7  IPN representation of several output events at the same cycle 

 

This can be systematically done through the next procedure, 

which can be executed in polynomial time: 

Algorithm 2. 

Input: I/O sequence w, I/O events sequence E, Matrices DM 

and IM, Differed input set D 

Output: Observable incidence matrix φC and labeling 

transition function  

1. P {p1, p2,…, pq} //Create q observable places, one for every 

output of the system 

2. j=1,…,|E| //We will consider all the I/O sequence values w(j) 

and I/O events sequence values E(j): 

2.1. If OE(j) = 0 and  IEs,…,IEu  IE(j)  D //There is not 

an output change, but IE(j) contains elementary input events 

IEs,…,IEu belonging to D 

T T{tj}, (tj) = IEs…IEu ,piP C(tj,pi)  0 //If it 
has not been created before, create a new zero transition tj (a 

zero column in the incidence matrix) representing input 

changes IEs,…,IEu 

2.2. If OE(j)  0 //There is an output change 

2.2.1. OEjk  OE(j) //Consider all the elementary output 

events in OE( j) in order to compute G(OE(j)) and F(OE(j))  

2.2.1.1. DisjEi  G(OEjk), DisjEi'   DisjEi  IEjk // 

Look into IE(j) the input event IEjk which has satisfied DisjEi 

and assign it to auxiliary variable DisjEi' 

2.2.1.2. G’(OEjk)   DisjEi' //Combine into G’(OEjk)  all 

the conditions DisjEi' which have satisfied G(OEjk) 

2.2.1.3. G(OE(j))   G'(OEjk) //Combine into G(OE(j)) all 

the input event conditions G'(OEjk) which have satisfied all 

the events OEjk 

2.2.1.4. DisjLi  F(OEjk), DisjLi'   DisjLi  I(j+1) // 

Looking the I(j+1) vector as a set of Boolean variables, save 

into DisjLi' the input value ILik which has satisfied DisjLi  

2.2.1.5. F’(OEjk)   DisjLi' //Combine into F’(OEjk)  all 

the conditions which have made true F(OEjk) 

2.2.1.6. F(OE(j))  F'(OEjk) //Combine into F(OE(j)) all 

the conditions which have produced all the OEjk 

2.2.2. T T  {tj}, (tj) = F(OE(j))  G(OE(j)) If it has not 

been created before, create a new transition tj and label it with 

the computed F(OE(j)) and G(OE(j)) 

2.2.3. piP, If Oq_1 OE(j) C(tj,pq) 1, else If Oq_0 

OE(j) C(tj,pq) -1, else   C(tj,pjq) 0 //for all elementary 

output events in OE(j) = OEjp OEjq… OEjr, put a 1 into the 

line corresponding to OEjk if it is a rising event, and a -1 if it is 

a falling event; for the rest of the lines, put a 0. 

 

Fig. 8 shows how events E(1) and E(4) are treated by the 

algorithm. For E(1) the elementary output event A+_1 in 

OE(1) is analyzed and function (t1) = (k1a0b0c0)() is 

extracted considering that k1=1, a0=1, b0=1, and c0=1 are 

the input values which have satisfied (A+_1). For E(4) all 

elementary output events A+_0, A-_1 and B_1 in OE(4) are 

considered; then their Firing Functions (A+_0) = 

(=1)(a1_1a2_1), (A-_1) = (=1)(a1_1a2_1), and 

(B_1)=(=1)(a1_1) are combined into (t2) = (=1)(a1_1). 

Notice that interesting labeling functions have been 

computed. For example, the output event A+_1 is provoked 

by the presence of a piece (k1=1 or k2=1) and it occurs only 

F(OEj) G(OEj)

Oi

OEj = Oi _1

Oi

OEj = Oi _0
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when the three components corresponding to outputs A+, B, 

and C are on its initial position (a0=1, b0=1 and c0=1).  

 

 

Fig. 8  Treatment of E(1) and E(4) by the Algorithm 2. 

 

At the end of this procedure, the following observable 

incidence matrix C and labeling functions are obtained.  
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The corresponding partial model, depicted in solid lines is 

showed in Fig. 9. For illustrative purposes the complete 

model including non-observable places (depicted in gray) is 

showed; the inferring procedure which allows discovering 

the non-observable behavior is not described in this paper. 

As it can be noticed, firing transitions allow creating a 

compact abstraction of the observable behavior by exploiting 

IPN semantics potential. 

 

 
 

Fig. 9  Observable IPN model 

VI. CONCLUSIONS 

A method to discover the actual input-output relation of 

PLC controlled discrete event systems has been presented. 

The method allows building a concise representation of the 

observable part of an IPN model in which the transitions are 

labeled with sufficient conditions on the inputs which 

represent both the input changed and the inputs execution 

context.  

The obtained structure is remarkably more clear and 

expressive than that synthesized with the previous method, 

because it is directly expressed in the structure of the IPN. 

Neither our previous methodology nor the approaches 

considered in the related work allow discovering such kind 

of input conditions. Additionally, those methods yield more 

complex and less expressive models. 

 Current research deals with the building of the non-

observable part of the model and further simplifications 

regarding the representation of concurrent behavior.  
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