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Abstract. Exact results on particle-densities as well as correlators in two models
of immobile particles, containing either a single species or else two distinct species,
are derived. The models evolve following a descent dynamics through pair-
annihilation where each particle interacts at most once throughout its entire
history. The resulting large number of stationary states leads to a non-vanishing
configurational entropy. Our results are established for arbitrary initial conditions
and are derived via a generating-function method. The single-species model is the
dual of the 1D zero-temperature kinetic Ising model with Kimball-Deker-Haake
dynamics. In this way, both infinite and semi-infinite chains and also the Bethe
lattice can be analysed. The relationship with the random sequential adsorption
of dimers and weakly tapped granular materials is discussed.

PACS numbers: 05.20-y, 64.60.Ht, 64.70.qj, 82.53.Mj

1. Introduction

Exactly solvable models have been playing an important rôle in understanding the
complex behaviour of strongly interacting many-body systems, see [41, 35, 6, 45, 48, 27]
and refs. therein. With very few exceptions, exactly solvable models have only been
found in one spatial dimension. Such restricted dimensionalities not only present
particular challenges, since standard mean-field schemes are inadequate for their
description but the importance of strong fluctuation effects for the correct prediction
of their long-time behaviour has been confirmed experimentally. Classic examples are
the kinetics of excitons on long chains of the polymer TMMC = (CH3)4N(MnCl3)
[33], but also in other polymers confined to quasi-one-dimensional geometries [40, 32].
Alternatively, one may study analogous phenomena on carbon nanotubes, for example
the relaxation of photo-excitations [43] or the photoluminescence saturation [46]. All
these systems have in common that particles move diffusively on an effectively one-
dimensional lattice and upon encounter of two of them, at least one of the particles
disappears with probability one. These models are solvable, for example through the
by now classical method of empty intervals [6, 7, 3], and one finds for the average
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Figure 1. Parameter space of kinetic Ising chains as parametrised by γ and δ in
(2). The usual Glauber dynamics corresponds to δ = 0 and the kdh dynamics is
given by γ = 2δ (dashed line). The zero-temperature line corresponds to γ = 1+δ
(thick line) and the infinite-temperature line to γ = 0. The full circle at δ = 1
and γ = 2 corresponds to the dynamics analysed here.

particle concentration c(t) ∼ t−1/2 [49], in agreement with the experimental results
and distinct from the mean-field prediction cMF(t) ∼ t−1.

Similarly, one may consider the kinetics of magnetic systems. For theoretical
analysis, it is often thought to be more simple to study phenomenological systems
such as simple Ising models, with a probabilistic dynamics described in terms of a
master equation, as is the case in the celebrate Glauber-Ising model [23]. We point
out that such models are relevant for the description of the slow relaxation dynamics
of real systems such as the single-chain magnet Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2
[11]. The configurations of the Ising chain are {σ} = (σ1, σ2, . . . σL), with the Ising
spins σi = ±1 attached to each site i of the chain. The master equation describes the
sequential time-evolution of the probability P({σ}; t)

∂

∂t
P({σ}; t) =

∑

i

[
ωi(−σi)P(. . .− σi . . . ; t)− ωi(σi)P(. . . σi . . . ; t)

]
(1)

where the . . .means that all other spins are not affected and the choice of the rates
ωi(σi) selects a specific model. The most general form of the transition rates for
the Ising chain which do not impose explicit conservation laws, keep the global Z2-
symmetry σi 7→ −σi and which only take into account the spin σi and its two nearest
neighbours σi±1, is given by

ωi(σi) =
1

2

[

1− γ

2
σi(σi−1 + σi+1) + δσi−1σi+1

]

(2)

where the parameters γ and δ are restricted to the intervals 0 ≤ γ ≤ 1+ δ and |δ| ≤ 1.
This parameter space is illustrated in figure 1. One requires these transition rates to
obey the detailed balance condition

ωi(σi)Peq(. . . σi . . .) = ωi(−σi)Peq(. . .− σi . . .) (3)

where Peq(. . . σi . . .) = Z−1 exp[−H[σ]/T ] is the equilibrium probability distribution
where T denotes the temperature of the heat bath and H = −J

∑

i σiσi+1 is the Ising
chain Hamiltonian with an exchange coupling J . Then detailed balance implies

γ = (1 + δ) tanh(2J/T ) (4)
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The Glauber-Ising model is specified by the choice [23]

δ = 0 , γ = tanh(2J/T ) (5)

Here, we shall rather consider an alternative form, proposed by Kimball [31] and Deker
and Haake [14] (kdh), namely

δ =
γ

2
=

tanh(2J/T )

2− tanh(2J/T )
(6)

We remark that along the zero-temperature line γ = 1 + δ the detailed balance
condition (3) is trivially obeyed, since both sides of equation (3) vanish (for T = 0 all
stationary states are absorbing states).

Physically, the Glauber-Ising and kdh models are very different. This may be
understood first from the exact relationship between the relaxation time τ and the
spatial equilibrium correlation length ξ, viz.

τ ∼ ξz , z =

{
2 ; Glauber [23]
4 ; kdh [14, 25, 18]

(7)

which in both models can be established from the exactly calculable time-dependent
average spin. Second, and more crucially, at T = 0, the Glauber-Ising model has
only two absorbing states (a feature typical of a relaxing simple magnet), whereas

the kdh-model has ∼
(
(1 +

√
5 )/2

)L
[10, 13] absorbing states on a chain of L sites

(a feature more typical of a relaxing glassy system, such as the Frederikson-Andersen
model [22]). While almost any quantity of interest can be computed explicitly in the
1D Glauber-Ising model, see e.g. [41], for the kdh-model only global averages [31, 14]
or certain global correlators and responses have been found [18]. In the kdh-model,
often the corresponding equations of motion only close for certain classes of initial
conditions and in the L → ∞ limit [18].

Our work started from an attempt to find more exactly computable averages for
the kdh-model. For the remainder of this paper, we shall restrict to zero temperature
T = 0, hence δ = 1 and γ = 2 for the kdh-model. Then one can define the dual kink
variable ηi ∈ {0, 1} and the rates (6) become

ηi :=
1− σiσi+1

2
, ωi(σi) =

1

2

(
1− σiσi−1

)(
1− σiσi+1

)
= 2ηi−1ηi (8)

Single-spin flips σi → −σi are associated to the annihilation or creation of a pair of
kinks

ηi−1 −→ 1− ηi−1 , ηi −→ 1− ηi (9)

The only allowed transition is thus the annihilation of a pair of kinks. Neither creation
nor diffusion of kinks are allowed. Therefore, the 1D kdh-model at T = 0 is dual to a

model where the sites are either empty or else occupied by a single immobile particle

of a single species A, which can undergo pair-annihilation A + A → ∅ + ∅ with their

nearest neighbours and with rate 2.
Besides being of interest in its own right as an abstract problem in many-body

physics, there exist several physical motivations for the study of this model:

(i) Random sequential adsorption (rsa): In the usual rsa defined on a regular
lattice, an atom adsorbed in a site excludes the adsorption of atoms in the
neighbouring sites. Instead of single atoms one may define rsa of dimers on
a regular lattice in which the two atoms of a dimer occupy two nearest-neighbour
sites of the lattice. In one dimension the two versions are equivalent. One
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then investigates quantities such as the density of particles in the stationary
state [21]. If we define the variable ηi that takes the value 0 or 1 according
to whether the site i is empty or occupied by on atom of the dimer, then the
relation between this variable and the kink variable ηi is simply ηi = 1 − ηi
and the transition rate of the rsa-model is that given by equation (8). A kink
(ηi = 1) corresponds therefore to an empty site (ηi = 0) in the rsa-formulation.
Notice that not any state {ηi} is a possible configuration of dimers. However,
if the initial state is a dimer configuration then any future state will also be a
dimer configuration. Random sequential adsorption is a commonly encountered
mechanism when macromolecules or collöıdal particles deposit on solid surfaces
and when gravity effects can be neglected. It goes much beyond the often
inadequate mean-field-like descriptions based on the Langmuir equation. See
[44, 42] for recent reviews, including experimental tests and applications.

(ii) Granular matter: the particles making up granular materials rapidly relax into
one of the very many blocked configurations of these systems. Under the effect of
a gentle tapping, they may jump from one of these blocked states to another.
These question has been raised how to formulate a statistical description of
granular matter in terms of an ensemble of these blocked states. The Edwards

hypothesis states that all blocked configurations (‘valleys’) with the same energy
should be equivalent and that their number can be counted simply in terms of the
configurational entropy (or ‘complexity’) [19]. While this proposal seems to work
very well for mean-field-like models, one of the interest of exactly solvable models
such as the one considered here is that because of their large number of stationary
states, they have a non-vanishing complexity and hence permit a precise test of
these concepts without appealing to mean-field schemes. Indeed, it has been
shown that although the Edwards proposal is numerically quite accurate, it leads
to predictions different from what is found in exactly solved one-dimensional
systems [38, 39, 13, 8, 47, 9]. For reviews, see e.g. [24, 12].

Therefore, we shall present here exact derivations for particle-densities and some
correlators, for two models undergoing a ‘descent dynamics’ where each individual
particle only reacts once through the entire history. The first one simply is the pair-
annihilation model A + A → ∅ + ∅ of diffusion-less particles, with the rate (8), and
dual to the Ising model with kdh-dynamics, see sections 2 and 3. The second model
describes the pair annihilation A+B → ∅+ ∅ of two distinct species of diffusion-less
particles, see section 4. A possible application of the two-species model is related to
the fact that it could be used to distinguish the two types of kinks in the Ising model,
namely ↑↓ .

= A and ↓↑ .
= B, such that one would have the duality correspondences

(↑↓↑−→↑↑↑) .
= (AB −→ ∅∅) , (↓↑↓−→↓↓↓) .

= (BA −→ ∅∅)
While the reaction-diffusion processes mentioned above can be treated via the

empty-interval method, the diffusion-free models we shall be considering here can be
treated by its converse [21], which is sometimes called the full-interval method [30]. A
central quantity will be Fn := P

(
• • . . . •
︸ ︷︷ ︸

n particles

)
, the probability of having n consecutive

sites occupied by a particle. It turns out that the Fn satisfy closed linear systems of
equations of motion, to be derived from (8).‡ Here, we shall go beyond the calculation

‡ In contrast with the full-interval method as used in [30, 3], we do not require the condition F0(t) = 1,
but shall rather analytically continue the equations of motion to the case n = 0 which will then be
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of mere densities. Since in the context of the empty-interval method, an efficient way
to generate correlators and responses is to consider probabilities of pairs of empty sites
[15, 5, 6, 13, 16, 17], we shall derive correlators by solving the equations of motion
of the probabilities of pairs of groups of occupied sites, separated by a gap. Rather
than restricting to rather special initial conditions such that the solutions of motion
can be guessed my making an appropriate ansatz, we shall present a very general
and easy-to-use generating function method which allows to derive systematically all
quantities of interest for arbitrary initial conditions. The usually considered situation
of initially uncorrelated particles is recovered as a special case.

This paper is organised as follows. In section 2, we consider the diffusion-free pair
annihilation model with the simplifying technical assumption of spatial translation-
invariance. Particle densities and pair correlators are derived exactly, for arbitrary
initial conditions, via a generating function method. We shall study both the cases of
an one-dimensional chain [29, 37, 38, 13] and as well the Bethe lattice [20, 34, 2] as
an example of an effectively infinite-dimensional lattice. In section 3, we generalise to
the case where spatial translation-invariance is no longer required. In particular, our
treatment includes the case of an one-dimensional, semi-infinite system so that one can
study the cross-over from the boundary towards the bulk. In section 4, we illustrate
further the versatility of our generating function technique by deriving densities [34]
and correlators of a two-species pair-annihilation model of immobile species A,B of
particles undergoing the reaction A+B → ∅+ ∅. Section 5 gives our conclusions. An
appendix outlines the enumeration of stationary states in the two-species model.

used to define F0(t) by this differential equation. In this respect the full-interval and empty-interval
methods are quite distinct, although the respective equations of motion look very similar.
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2. The pair-annihilation model without diffusion

Consider the diffusion-free pair-annihilation model, consisting of particles of a single
species A, which sit motionless on the sites i of an infinite linear chain and which may
undergo the only admissible reaction A + A → ∅ + ∅ with rate 2 between nearest-
neighbour sites. From the master equation (1), with the rates (8), one can derive
the equations of motion for the averages of interest. In general, any average 〈f({η})〉
satisfies the evolution equation

d

dt
〈f({η})〉 =

∑

{η}
f({η}) ∂

∂t
P({η}; t)

= 2
∑

i

∑

{η}
f({η})

[

(1− ηi−1)(1− ηi)P(. . . (1− ηi−1), (1− ηi) . . . ; t)

− ηi−1ηiP(. . . ηi−1, ηi . . . ; t)
]

= 2
∑

i

∑

{η}

[
f(. . . (1 − ηi−1), (1 − ηi) . . .)− f({η})

]
ηi−1ηiP(. . . ηi−1, ηi . . . ; t)

= 2
∑

i

〈
[
f(. . . (1− ηi−1(t)), (1 − ηi(t)) . . .)− f({η})

]
ηi−1(t)ηi(t)〉 (10)

2.1. Density of n-strings

We shall concentrate on n-strings of n consecutive particles • • . . . •
︸ ︷︷ ︸

n particles

(or kinks in the

spin formulation of the kdh-model at T = 0). Their time-dependent density is

Cn(t) := 〈η1(t)η2(t) . . . ηn(t)〉 (11)

According to (10), the Cn(t) satisfy the equations of motion

d

dt
Cn(t) = − 2〈η0(t)η1(t)η2(t) . . . ηn(t)〉

− 2(n− 1)〈η1(t)η2(t) . . . ηn(t)〉
− 2〈η1(t)η2(t) . . . ηn(t)ηn+1(t)〉 (12)

where we used the relations η2i = ηi and (1− ηi)ηi = 0 which follow since ηi ∈ {0, 1}.

2.1.1. General solution Throughout this section, we shall assume that the initial
conditions display translation-invariance. Since we shall later follow essentially the
same approach towards finding the solution, we explain it here, for the most simple
case, in a little more detail, although the end result for the n-string density Cn(t) is
well-known, at least for uncorrelated initial conditions [29, 20, 21, 36, 37, 38, 48, 13].
The evolution equation (12) now becomes, for n ≥ 1

d

dt
Cn(t) = −4Cn+1(t)− 2(n− 1)Cn(t) (13)

To eliminate the last term in (13), let

Cn(t) = Un(t)e
−2(n−1)t (14)

so that we are left with
d

dt
Un(t) = −4Un+1(t)e

−2t (15)
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The exponential factor can be removed by setting Un(t) = un(s), where

s =
e−2t − 1

2
⇔ t = −1

2
ln(2s+ 1) (16)

so that, for all n ≥ 1

d

ds
un(s) = 4un+1(s) (17)

In order to simplify the following computation, and all those shall follow later, we now
define an auxiliary quantity u0(s) such that (17) is valid for all n ≥ 0. We shall show
below that u0(s) does not enter explicitly into any physical observable of interest.
Equation (17) is now solved by introducing the generating function

F (x, s) :=

∞∑

n=0

un(s)

n!
xn (18)

which in turn satisfies the equation

∂

∂s
F (x, s) =

∞∑

n=0

4un+1(s)

n!
xn = 4

∞∑

n=1

un(s)

(n− 1)!
xn−1 = 4

∂

∂x
F (x, s) (19)

which has the general solution F (x, s) = f(x+4s). Herein, the last unknown function
f is fixed from the initial condition f(x) = F (x, 0). We finally have

F (x, s) = f(4s+ x) = F (x+ 4s, 0) (20)

Since the generating function F is analytic at x = 0 by construction, we can expand
it according to (18) and find

F (x, s) =

∞∑

k=0

uk(0)

k!
(4s+ x)k

=
∞∑

k=0

uk(0)

k!

k∑

n=0

k!

n!(k − n)!
(4s)k−nxn

=

∞∑

n=0

∞∑

k=n

uk(0)
(4s)k−n

n!(k − n)!
xn

=

∞∑

n=0

1

n!

( ∞∑

m=0

um+n(0)

m!
(4s)m

)

xn (21)

where we also exchanged the order of summation and performed a change of variable
in the index k. Comparing coefficients of x, it follows that for all n ≥ 0

un(s) =

∞∑

m=0

um+n(0)

m!
(4s)m (22)

Reconverting this to the function Un(t) = un(s), the n-string density Cn(t) is finally

Cn(t) =

∞∑

m=0

2m

m!
Cm+n(0)

(
e−2t − 1

)m
e−2(n−1)t (23)

since consideration of the t → 0 limit shows that un(0) = Cn(0) for all n ≥ 0.
Clearly, the physically relevant n-string densities Cn(t) with n ≥ 1 are independent
of the initial value C0(0), as it should be. Eq. (23) will become an important initial
condition when we shall compute correlators below.
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Figure 2. (a) Time-dependence of the probability Cn(t) of n consecutive
occupied sites, for n = [1, 2, 3] from top to bottom and for an initially fully
occupied lattice with ρ = 1. (b) Stationary particle-density C1,st(ρ) =
limt→∞ Cn(t) as a function of the initial density ρ (full line). The dashed/dotted
lines gives the stationary particle-density on the Bethe lattice for several
coordination numbers z.

2.1.2. Specific initial conditions Eq. (23) is our first result, and gives Cn(t) in terms
of the all initial n-string densities Cn(0). In order to illustrate the physical content,
we consider the case of initially totally uncorrelated particles, with average density ρ,
such that, for n ≥ 0

Cn(0) = ρn (24)

Carrying out the sum in (23) is straightforward, hence

Cn(t) = ρne2ρ
(
e−2t−1

)
−2(n−1)t (25)

and shows the characteristic double exponential in the time-dependence [29, 21, 38,
48, 13].§

Two values of ρ have a particular interpretation for the kdh-model at T = 0.

ρ = 1
2 : this corresponds to random initial conditions for the Ising spins so that the

probability of a kink is 1
2 .

ρ = 1: this corresponds to an ordered anti-ferromagnetic state σi = (−1)i, and all bonds
are occupied by a kink.

In figure 2a, we show the time-evolution of the n=string density. While for n = 1,
the density rapidly converges towards a finite value in the limit of large times t → ∞,
larger n-strings (with n ≥ 2) do not survive. In figure 2b, we show the dependence
of the stationary density C1,st.(ρ) = C1(∞) = ρe−2ρ on the density ρ. The decrease
of that density when ρ → 1 is intuitively accounted for by observing that for ρ large,

§ We point out an important difference with the fairly similar empty-interval method, which considers
the probability En(t) of finding n consecutive empty sites, see [6]. If in addition one assumes that
E0(t) = 1, the En(t) obey equations of motion quite similar to (13) and which are consistent with
E0(t) = 1 remaining valid for all times [16]. However, for the diffusion-less case under study in this
paper, even if one starts from a fully occupied lattice initially, viz. ρ = 1 and admits Cn(0) = 1

∀n ≥ 0, one has C0(t) = e2t−2(1−e−2t) 6= 1.
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Figure 3. Stationary particle-density C1,st(a) (full line) which corresponds to the

initial conditions Cn(0) = (n+a)−1 (dashed line), as a function of the parameter
a.

many more particles will find a partner for reaction whereas for smaller values of ρ,
more isolated particles will remain. The maximal stationary density is achieved for
ρm = 1

2 , where C1,st.(
1
2 ) = 1/(2e) ≃ 0.1839 . . ..

Usually the initial condition for the rsa of dimers is taken as an empty lattice
which corresponds to all bonds occupied by a kink. In this case Cn(0) = 1 and the
well-known results for rsa in one dimensions can be off from (25) with ρ = 1, including
the stationary density C1(∞) = e−2. It is worth to consider distinct initial conditions
for the rsa of dimers. For instance, consider a configuration of dimers constructed
by placing dimers at a chain as follows. Let us denote by AB a dimer so that a
configuration of dimer will be ABAB∅AB∅∅AB . . . where ∅ denotes an empty site.
Walking along the sites of the chain, starting from the origin, if site i− 1 is empty or
occupied by a B atom the probability of site being occupied by an A atom is p and
to remain empty is q = 1 − p. If site i − 1 is A, then site i will be B. This defines
a Markov chain whose stationary solution is such that the density of vacant sites is
ρ = q/(2− q) and the probability of a sequence of n empty sites is Cn(0) = qn/(2− q)
which we consider to be the initial condition. From equation (23), it follows

Cn(t) =
qn

2− q
exp

[
2q(e−2t − 1)− 2(n− 1)t

]
where q =

2ρ

1 + ρ
(26)

so that C1(∞) = qe−2q/(2 − q) = ρe−4ρ/(1+ρ) which is a monotonically increasing
function of ρ. The usual initial condition for dimers is recovered for q = 1.

In order to illustrate what might happen for correlated initial conditions, we
consider the example Cn(0) = (n + a)−1 which allows for far more correlated initial

clusters. Then Cn(t) =
[
Γ(a+ n)− Γ(a+ n; 2(1− e−2t)

]
e2t(a+1)(2(e2t−1))−a−n t→∞−→

1F1(a+ 1, a+ 2;−2)/(a+ 1) and where Γ(a, z) is an incomplete Gamma function [1].
The stationary density is shown in figure 3. This example illustrates that because
of the large number of stationary states, of the order ∼ 1.62L on a lattice of L sites
[10, 13, 18], macroscopic quantities such as mean particle-densities depend on the
precise form of the initial condition.
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A physically motivated example for a correlated initial condition is the two-species
irreversible pair annihilation A+B → ∅+ ∅ of immobile particles A and B. If C1,A(t)
and C1,B(t) denote the average densities of the particles A and B, it can be shown [34]
that C1(t) =

1
2 (C1,A(t) + C1,B(t)) is part of a set of quantities Cn(2t) which satisfy

Eq. (13), but with the initial conditions

Cn(0) =

{
ρn ; n pair
1
2 (ρA + ρB)ρ

n−1 ; n impair
, ρ =

√
ρAρB (27)

and where ρA,B are the initial average densities of the A,B-particles, respectively. We
shall return to this model in much detail in section 4.

2.2. Correlation of two n-strings

We search for exact correlators of a n-string with a m-string, separated by a
certain distance r, which leads us to compute the averages for observables such as
• • . . . •
︸ ︷︷ ︸

n

r • • . . . •
︸ ︷︷ ︸

m

, where the state of the r central sites is unknown. We shall also

refer to this as a ‘string with a hole of r sites’.

2.2.1. String with an one-site hole In order to extend the methods of the previous

subsection, we begin with the case of a single-site hole of the form • • . . . •
︸ ︷︷ ︸

n

1 • • . . . •
︸ ︷︷ ︸

m

and the average

C1
n,m(t) := 〈η1(t) . . . ηn(t)ηn+2(t) . . . ηn+m+1(t)〉 (28)

For spatially translation-invariant initial conditions, the equation of motion is

d

dt
C1

n,m(t) = −2
[
C1

n+1,m(t) + C1
n,m+1(t) + (n+m− 2)C1

n,m(t) + 2Cn+m+1(t)
]

(29)

In the same way as in Eq. (14), we set

Cn(t) = un(s)e
−2(n−1)t , C1

n,m(t) = u1
n,m(s)e−2(n+m−2)t (30)

and use again the change of variables (16). The equations of motion (29) become

d

ds
u1
n,m(s) = 2

[
u1
n+1,m(s) + u1

n,m+1(s) + 2(2s+ 1)un+m+1(s)
]

(31)

and the definition of the un,m(s) are extended such that they hold true for all
n,m ≥ 0. We stress that un,0(s) 6= un(s) 6= u0,n(s) are unrelated to the density
of an unbroken n-string, they are rather a computational device without an obvious
physical interpretation. We now introduce the generating function

F 1(x, y, s) :=
∞∑

n,m=0

u1
n,m(s)

n!m!
xnym (32)

and in order to derive its equation of motion, we compute
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∂

∂s
F 1(x, y, s) = 2

∞∑

n,m=0

[
u1
n+1,m(s) + u1

n,m+1(s) + 2(2s+ 1)un+m+1(s)
]xnym

n!m!

= 2

∞∑

n=1,
m=0

u1
n,m(s)

xn−1ym

(n− 1)!m!
+ 2

∞∑

n=0,
m=1

u1
n,m(s)

xnym−1

n!(m− 1)!

+ 4(2s+ 1)
∞∑

n,m=0

un+m+1(s)

(n+m)!

(n+m)!

n!m!
xnym

= 2

(
∂

∂x
+

∂

∂y

)

F 1(x, y, s) + 4(2s+ 1)

∞∑

k=0

uk+1(s)

k!
(x+ y)k

= 2

(
∂

∂x
+

∂

∂y

)

F 1(x, y, s) + 4(2s+ 1)

∞∑

k=1

uk(s)

(k − 1)!
(x+ y)k−1 (33)

The last term involves the derivative of the generating function F ′(x, s) = ∂xF (x, s),
see eq. (18), of the n-string density without a hole. We are left with

∂

∂s
F 1(x, y, s) = 2

(
∂

∂x
+

∂

∂y

)

F 1(x, y, s) + 4(2s+ 1)F ′(x+ y, s) . (34)

Equations of this kind are conveniently solved by an appropriate change of variables.
We choose F 1(s, x, y) = g1(α, β, s) where α = 2s + x and β = 2s + y.‖ With our
choice, eq. (34) becomes an ordinary differential equation
(

∂

∂s
− 2

∂

∂x
− 2

∂

∂y

)

F 1(x, y, s) =
∂g1

∂s
(α, β, s) = 4(2s+ 1)F ′(α+ β − 4s, s) (35)

where α, β only enter as parameters. Using eq. (21) for F , we obtain

∂g1

∂s
(α, β, s) = 4(2s+ 1)

∞∑

k=1

∞∑

l=0

uk+l(0)

(k − 1)!l!
(α + β − 4s)k−1(4s)l

= 4(2s+ 1)

∞∑

k=0

∞∑

l=0

uk+l+1(0)

l! k!
(4s)l(α+ β − 4s)k

= 4(2s+ 1)

∞∑

n=0

n∑

l=0

un+1(0)

n!

n!

l!(n− l)!
(4s)l(α+ β − 4s)n−l

= 4(2s+ 1)

∞∑

n=0

un+1(0)

n!
(α+ β)n (36)

Remarkably, the dependence on s is merely the rather simple explicit one, such that
the integration readily gives

g1(α, β, s) = 4(s2 + s)

∞∑

n=0

un+1(0)

n!
(α+ β)n + g1(α, β, 0)

= 4(s2 + s)
∞∑

n=0

un+1(0)

n!
(α+ β)n +

∞∑

n,m=0

u1
n,m(0)

n!m!
αnβm (37)

‖ To find these, recall that the homogeneous equation (∂s − 2∂x − 2∂y)F = 0 admits any function
F = f(2s+ x, 2s+ y) as solution, see e.g. [28].
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where the integration constant appears as the additional term g1(α, β, 0). We next
express this generating function in terms of the original variables x, y and s:

F 1(x, y, s) = 4(s2 + s)

∞∑

n=0

un+1(0)

n!
(4s+ x+ y)n +

∞∑

n,m=0

u1
n,m(0)

n!m!
(2s+ x)n(2s+ y)m

= 4(s2 + s)

∞∑

k,l,m=0

uk+l+m+1(0)

k! l!m!
(4s)kxlym

+

∞∑

k,l=0

∞∑

n=k

∞∑

m=l

u1
n,m(0)

k! (n− k)! l! (m− l)!
(2s)n−kxk(2s)m−lyl (38)

The identification with the definition of the generating function (32) leads to

u1
n,m(s) = 4(s2 + s)

∞∑

k=0

uk+n+m+1(0)

k!
(4s)k +

∞∑

k,l=0

u1
n+k,m+l(0)

k! l!
(2s)k+l (39)

the unique solution of eq. (31). We also see that neither u1
n,0(0), nor u

1
0,m(0) nor u0(0)

enter into the observables u1
n,m(s) with n,m ≥ 1, as it should be. After performing

the changes (16) and (14), the desired correlator becomes

C1
n,m(t) =

(
e−4t − 1

)
∞∑

k=0

uk+n+m+1(0)

k!
2k
(
e−2t − 1

)k
e−2(n+m−2)t

+

∞∑

k,l=0

u1
n+k,m+l(0)

k! l!

(
e−2t − 1

)k+l
e−2(n+m−2)t (40)

Finally, since the first line can be expressed in terms of Cn(t), using (23), and since
C1

n,m(0) = u1
n,m(0), the final solution is

C1
n,m(t) =

(
1− e4t

)
Cn+m+1(t)

+

∞∑

k,l=0

C1
n+k,m+l(0)

k! l!

(
e−2t − 1

)k+l
e−2(n+m−2)t (41)

In the special case of a set of initially uncorrelated particles, with average density
ρ (or uncorrelated kinks in the kdh-model), we have C1

n,m(0) = ρn+m, Cn(0) = ρn

and the (n,m)-correlator for a hole of size r = 1 reads

C1
n,m(t) = ρn+m

[
ρ
(
e−4t − 1

)
+ 1
]
e2ρ(e

−2t−1)−2(n+m−2)t (42)

As expected, a finite value in the stationary limit t → ∞ is only found for n = m = 1.

2.2.2. String with a hole of r sites We now consider the (n,m)-correlator of two
strings of particles (kinks) separated by a hole consisting of r > 1 sites and define
the average

Cr
n,m(t) := 〈η1(t) . . . ηn(t)ηn+r+1(t) . . . ηn+m+r(t)〉 (43)

Assuming translation-invariant initial conditions, the equation of motion is, see also
[13]

d

dt
Cr

n,m(t) = −2
[
Cr

n+1,m(t)+Cr
n,m+1(t)+(n+m−2)Cr

n,m(t)+Cr−1
n+1,m(t)+Cr−1

n,m+1(t)
]
(44)
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As before, we split off an exponential factor. The same changes as before are applied:

Cr
n,m(t) = ur

n,m(s)e−2(n+m−2)t, (r > 1) (45)

and change the time according to (16) such that the equations of motion become

d

ds
ur
n,m(s) = 2

[
ur
n+1,m(s) + ur

n,m+1(s) + ur−1
n+1,m(s) + ur−1

n,m+1(s)
]
(46)

We also introduce the generating function

F r(x, y, s) :=

∞∑

n,m=0

ur
n,m(s)

n!m!
xnym (47)

whose evolution equation is, for r ≥ 2

∂

∂s
F r(x, y, s) = 2

∞∑

n,m=0

[
ur
n+1,m(s) + ur

n,m+1(s) + ur−1
n+1,m(s) + ur−1

n,m+1(s)
]xnym

n!m!

= 2

∞∑

n=1,
m=0

ur
n,m(s)

xn−1ym

(n− 1)!m!
+ 2

∞∑

n=0,
m=1

ur
n,m(s)

xnym−1

n! (m− 1)!

+ 2

∞∑

n=1,
m=0

ur−1
n,m(s)

xn−1ym

(n− 1)!m!
+ 2

∞∑

n=0,
m=1

ur−1
n,m(s)

xnym−1

n! (m− 1)!

= 2

(
∂

∂x
+

∂

∂y

)
(
F r(x, y, s) + F r−1(x, y, s)

)
(48)

As before for the case r = 1, this is solved by changing variables according to α = 2s+x
and β = 2s + y such that the function F r(x, y, s) = gr(α, β, s) obeys the recursion
relation
(

∂

∂s
− 2

∂

∂x
− 2

∂

∂y

)

F r(x, y, s) =
∂gr

∂s
(α, β, s) = 2

(
∂

∂α
+

∂

∂β

)

gr−1(α, β, s) (49)

We express this recursion in integral form for gr(α, β, s)

gr(α, β, s) = 2

∫

ds

(
∂

∂α
+

∂

∂β

)

gr−1(α, β, s) (50)

In order to evaluate this, we consider first a few special cases. In the special case
r = 2, the expression (37) of g1(α, β, s) leads to

g2(α, β, s) = 16

(
s3

3
+

s2

2

) ∞∑

n=0

un+2(0)

n!
(α+ β)n

+ 2s

∞∑

n,m=0

[
u1
n+1,m(0) + u1

n,m+1(0)
] αnβm

n!m!

+ g2(α, β, 0) (51)

since

∂

∂α

[ ∞∑

n=0

un+1(0)

n!
(α+ β)n

]

=

∞∑

n=1

un+1(0)

(n− 1)!
(α+ β)n−1 =

∞∑

n=1

un+2(0)

n!
(α+ β)n (52)

Expanding g2(α, β, 0) as

g2(α, β, 0) =

∞∑

n,m=0

u2
n,m(0)

αnβm

n!m!
(53)
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and applying (50) once more, we find

g3(α, β, s) = 64

(

2
s4

4!
+

s3

3!

) ∞∑

n=0

un+3(0)

n!
(α+ β)n

+ 2s2
∞∑

n,m=0

[
u1
n+2,m(0) + 2u1

n+1,m+1(0) + u1
n,m+2(0)

] αnβm

n!m!

+ 2s
∞∑

n,m=0

[
u2
n+1,m(0) + u2

n,m+1(0)
] αnβm

n!m!

+ g3(α, β, 0) (54)

By further iterating the procedure, we conclude that the general result is

gr(α, β, s) = 4r
(

2
sr+1

(r + 1)!
+

sr

r!

) ∞∑

n=0

un+r(0)

n!
(α+ β)n

+

r∑

l=1

(2s)r−l

(r − l)!

∞∑

n,m=0

[
r−l∑

i=0

(r − l)!

i!(r − l − i)!
ul
n+i,m+r−l−i(0)

]

αnβm

n!m!
(55)

and one can indeed check that this solves the recursion (50). Next, we express this
result in terms of x, y and s:

F r(x, y, s) = 4r
(

2
sr+1

(r + 1)!
+

sr

r!

) ∞∑

n=0

un+r(0)

n!
(4s+ x+ y)n

+

r∑

l=1

(2s)r−l
∞∑

n,m=0

[
r−l∑

i=0

ul
n+i,m+r−l−i(0)

i! (r − l − i)!

]

(2s+ x)n(2s+ y)m

n!m!

=

∞∑

a,b=0

(

4r
(

2
sr+1

(r + 1)!
+

sr

r!

) ∞∑

c=0

ua+b+c+r(0)

c!
(4s)c

)

xayb

a! b!

+

∞∑

a,b=0





r∑

l=1

(2s)r−l
∞∑

n=a,

m=b

[
r−l∑

i=0

ul
n+i,m+r−l−i(0)

i! (r − l − i)!

]

(2s)n−a(2s)m−b

(n− a)! (m− b)!




xayb

a! b!
(56)

in order to identify the coefficients, after an additional rearrangement of the sums

ur
n,m(s) = 4r

(
sr

p!
+ 2

sr+1

(p+ 1)!

)

un+m+r(s)

+

∞∑

k,l=0

(2s)k+l

k! l!

r−1∑

q=0

q
∑

q′=0

ur−q
n+k+q−q′,m+l+q′(0)

(
q
q′

)
(2s)q

q!
(57)

For any fixed initial condition, this gives the unique solution of eq. (46). The final
correlator is obtained after performing the transformations (16) and then (45) and
relating the initial coefficients Cr

n,m(0) = ur
n,m(0)

Cr
n,m(t) = e−2(n+m−2)t

∞∑

k,l=0

r−1∑

q=0

q
∑

q′=0

(
q
q′

)

Cr−q
n+k+q−q′,m+l+q′(0)

(e−2t − 1)k+l+q

k! l! q!

+ 2r
(
(e−2t − 1)r

r!
+

(e−2t − 1)r+1

(r + 1)!

)

e2(r+1)tCn+m+r(t) (58)
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Figure 4. Stationary connected particle-particle correlator Cr
1,1;conn., st. (a)

Dependence on the initial density ρ, for several values of the particle distance
r. (b) Continuous interpolation of the dependence on the particle distance r, for
several values of the density ρ. The full dots give the values for r integer.

where we also used the explicit expression (23) for the n-string density Cn(t). This

exact expression of the (n,m)-correlator Cr
n,m(t) of two strings, separated by a distance

r, for any initial condition, is the main result of this section.

In the special case of initially uncorrelated particles with average density ρ, one
has Cr

n,m(0) = ρn+m so that evaluation of the sums in (58) leads to

Cr
n,m(t)− Cn(t)Cm(t) =

ρn+m

r!
e−2(n+m−2)t

(
2ρ
(
e−2t − 1

))r

×
[
r + e−2t

r + 1
exp

(
2ρ
(
e−2t − 1

))
− 1F1

(
r, r + 1; 2ρ

(
1− e−2t

))
]

(59)

where 1F1 is the confluent hyper-geometric function [1], in agreement with earlier
results [13]. For a fixed time t, we observe a factorial decrease with r of the connected
correlator, which is one of the main differences with what would have been predicted
for weakly tapped granular matter using Edwards’ hypothesis which gives a more
slow exponential decay [19, 13, 24]. For r ≫ 1 large, we find once more the double
exponential time-dependence. For the first few values of r, we illustrate in figure 4
some aspects of the connected correlator Cr

n,m(t)−Cn(t)Cm(t) in the stationary limit
t → ∞. In figure 4a the dependence on ρ is indicated for some small values of r,
whereas in figure 4b, the dependence on the distance r is continuously interpolated
from (59). Clearly, the non-trivial correlations decay very rapidly with increasing r
such that in the stationary state, only very short-ranged correlations persist.

2.3. Densities of n-strings on Bethe lattices

We now consider a Bethe lattice¶ with z links per node, see figure 5, and we are
interested in n-string averages Cn(t) := 〈ηi(t)ηj(t)ηk(t) . . .〉 composed of a string of
n contiguous kinks. The evolution equation for Cn(t) involves three kinds of terms

¶ Following [4], the term ‘Bethe lattice’ denotes the deep interior of the Cayley tree such that the
strong surface effects of the latter do not arise for the Bethe lattice.
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Figure 5. A small portion of the Bethe lattice with z = 3 neighbours.

[34, 48]: two terms (z − 1)Cn+1(t) due to the action of the transition rates on the
tail or the head of the string, (n− 1) terms Cn(t) corresponding to the action of the
transition rates on two neighbouring kinks of the string and (n− 2) terms associated
to branching of the string. In the following, we shall make the important assumption

that these last terms can be approximated by Cn+1(t), i.e. that the correlation depends
only on the number of kinks and not on their relative arrangement. This holds true
if this condition is realised by the initial conditions. The equation of motion then
reduces to

d

dt
Cn(t) = −2(n− 1)Cn − 2 (n(z − 2) + 2)Cn+1 (60)

We see that the special case z = 2 reduces to the case of the linear chain studied
above. To eliminate the first term in (60), let

Cn(t) = un(s)e
−2(n−1)t (61)

and with the change of variables (16) we have the equations of motion, for all n ≥ 0

d

ds
un(s) = 2 (n(z − 2) + 2)un+1(s) (62)

As in previous subsections, we introduce the generating function

F (x, s) :=

∞∑

n=0

un(s)

n!
xn (63)

Applying the equation of motion (62) we find analogously to the chain the equation

∂

∂s
F (x, s) = 2

∞∑

n=0

[n(z − 2) + 2]
un+1(s)

n!
xn

= 2

∞∑

n=1

[(n− 1)(z − 2) + 2]
un(s)

(n− 1)!
xn−1

= 2

[

(z − 2)
∞∑

n=1

un(s)
xn−1

(n− 2)!
+ 2

∞∑

n=1

un(s)
xn−1

(n− 1)!

]

= 2

[

(z − 2)x
∂2

∂x2
+ 2

∂

∂x

]

F (x, s) (64)
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This PDE is solved by separation ansatz F (x, s) = f(x)g(s) so that Eq. (64) becomes

g′(s)

g(s)
= 2

[

(z − 2)x
f ′′(x)

f(x)
+ 2

f ′(x)

f(x)

]

= −λ (65)

leading to g(s) = e−λs and an equation for f(x)

2(z − 2)xf ′′(x) + 4f ′(x) + λf(x) = 0 (66)

that can be recast as a Bessel equation whose solution is

f(x) = Bλx
1
2 (

z−4
z−2)J− z−4

z−2

(√

2λx

z − 2

)

+ Cλx
1
2 (

z−4
z−2)Y− z−4

z−2

(√

2λx

z − 2

)

(67)

where J and Y are the Bessel functions of the first and second kinds. The Bessel
function z−νYν(z) is always non-analytic at the origin z = 0. Such a behaviour
is incompatible with the analyticity built into the generating function F (x, s) by
construction. Hence we must have Cλ = 0 for any λ. Moreover, negative values of λ
are not allowed since they would induce a complex generating function. It remains

F (x, s) =

∫ ∞

0

dλ Bλx
1
2 (1− 2

z−2)J 2
z−2−1

(√

2λx

z − 2

)

e−λs (68)

Introducing the series expansion of the Bessel function

F (x, s) =

∫ ∞

0

dλ Bλx
z−4

2(z−2)

[
λx

2(z − 2)

] 4−z
2(z−2)





∞∑

n=0

(−1)n

n!Γ
(

n+ 2
z−2

)

(
λx

2(z − 2)

)n


 e−λs

=

∞∑

n=0

xn

n!

∫ ∞

0

dλ Bλ
(−1)n

Γ
(

n+ 2
z−2

)

(
λ

2(z − 2)

)n+ 1
z−2− 1

2

e−λs (69)

we can identify the coefficients un of the generating function

un(s) =
(−1)n

Γ
(

n+ 2
z−2

)

[2(z − 2)]n+
1

z−2− 1
2

∫ ∞

0

dλ Bλλ
n+ 1

z−2− 1
2 e−λs (70)

We note that, since s ∈ [−1; 0], the convergence of the integral requires that Bλ decays
sufficiently fast (at least exponentially). In the following, we shall relate the Bλ to the
initial conditions un(0). First, note that the initial time coefficient un(0) is given by

un(0) =
(−1)n

Γ
(

n+ 2
z−2

)

[2(z − 2)]n+
1

z−2− 1
2

∫ ∞

0

dλ Bλ λn+ 1
z−2− 1

2 (71)

Expanding now the exponential in the time-dependent coefficients (70) and identify
un(0), we obtain

un(s) =
(−1)n

Γ
(

n+ 2
z−2

)

[2(z − 2)]n+
1

z−2− 1
2

∫ ∞

0

dλ Bλ λn+ 1
z−2− 1

2

[ ∞∑

k=0

(−λs)k

k!

]

=

∞∑

k=0

(−1)n+ksk

k!Γ
(

n+ 2
z−2

)

[2(z − 2)]n+
1

z−2− 1
2

∫ ∞

0

dλ Bλ λn+k+ 1
z−2− 1

2

=

∞∑

k=0

[2(z − 2)]k

k!

Γ
(

n+ k + 2
z−2

)

Γ
(

n+ 2
z−2

) un+k(0)s
k (72)
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Because of the asymptotic relation xb−aΓ(x+a)/Γ(x+b) = 1+O(1/x) [1, Eq. (6.1.47)],
in the limit z → 2 one recovers the result (22) or the linear chain. The final density
of the n-string is obtained after performing the transformations (16) and (61):

Cn(t) =

∞∑

k=0

(z − 2)k

k!

Γ
(

n+ k + 2
z−2

)

Γ
(

n+ 2
z−2

) Cn+k(0)
(
e−2t − 1

)k
e−2(n−1)t (73)

since un(0) = Cn(0). This is the main result of this subsection.
For the special case of initially uncorrelated particles such that Cn(0) = ρn, we

reproduce the well-known form [20, 34, 2]

Cn(t) = ρne−2(n−1)t
[
1 + (z − 2)ρ

(
1− e−2t

)]−(2+(z−2)n)/(z−2)
(74)

which in the limit z → 2 indeed reproduces (25). We also see that for z ≥ 3,
the characteristic double-exponential time-dependence becomes a simple exponential
behaviour. This means that the double-exponential forms we have found are a
peculiar feature of one-dimensional diffusion-free systems. In figure 2b we illustrate
the dependence of the stationary particle-density C1,st(ρ) on the initial density ρ, for
several values of z. Upon increasing z, this becomes increasingly like the mean-field
result.

3. Pair-annihilation model: the semi-infinite case

We now extend the considerations of section 2 to the case when the initial conditions
are no longer required to be translation-invariant. At the end, we shall use this to
derive densities and correlators of n-strings for a semi-infinite system.

3.1. Densities of n-strings with inhomogeneous initial conditions

When initial conditions are no longer invariant under translation, one has to keep
track of the first site of the string

Ca;n(t) := 〈ηa(t)ηa+1(t) . . . ηa+n−1(t)〉 (75)

where n ∈ N as before and a ∈ Z runs over all sites of the infinite chain. The evolution
equation (12) reads

d

dt
Ca;n(t) = −2(n− 1)Ca;n(t)− 2Ca−1;n+1(t)− 2Ca;n+1(t) (76)

Following the same steps as in the previous section, we set

Ca;n(t) = ua;n(s) e
−2(n−1)t (77)

and change time according to (16) such that the equations of motion read, for all
n ≥ 0

d

ds
ua;n(s) = 2ua−1;n+1(s) + 2ua;n+1(s) (78)

Assuming for the time being a spatially infinite system, we introduce the generating
function

F (p, x, s) :=

∞∑

n=0

∞∑

a=−∞

ua;n(s)

n!
paxn (79)
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The evolution equation becomes

∂

∂s
F (p, x, s) = 2

∞∑

a=−∞

∞∑

n=0

ua−1;n+1(s)

n!
paxn + 2

∞∑

a=−∞

∞∑

n=0

ua;,n+1(s)

n!
paxn

= 2
∞∑

n=0

∞∑

a=−∞

ua;n(s)

n!
pa+1xn−1 + 2

∞∑

n=1

∞∑

a=−∞

ua;n(s)

n!
paxn−1

= 2(1 + p)
∂

∂x
F (p, x, s) (80)

where the variable p appears only as a parameter. Consequently, and taking the initial
condition into account, the generating function has the form

F (p, x, s) = F
(
p, 2(1 + p)s+ x, 0

)
(81)

Expanding according to (79) and using Newton’s multinomial formula

F (p, x, s) =

∞∑

a=−∞

∞∑

n=0

ua;n(0)

n!
pa
(
2(1 + p)s+ x

)n

=

∞∑

a=−∞

∞∑

n=0

ua;n(0)

n!
pa
[ ∞∑

m,k,l=0

δn,m+k+l
n!

m! k! l!
(2s)m(2ps)kxl

]

=

∞∑

a=−∞

∞∑

m,k,l=0

ua;m+k+l(0)

m! k! l!
pa(2s)m+kpkxl

=

∞∑

a=−∞

∞∑

l=0

paxl

l!

∞∑

m,k=0

ua−k;m+k+l(0)

m! k!
(2s)m+k (82)

By comparison with eq. (79), we find

ua;n(s) =

∞∑

m,k=0

ua−k;m+k+n(0)

m! k!
(2s)m+k (83)

and we finally obtain the desired n-string density

Ca;n(t) =

∞∑

m,k=0

Ca−k;m+k+n(0)

m! k!

(
e−2t − 1

)m+k
e−2(n−1)t (84)

As seen above in section 2, only for n = 1 a non-vanishing particle-density persists.
The particular case of homogeneous initial conditions (23) is recovered when setting
Ca−k;m+k+n(0) = Cm+k+n(0) and rearranging indices.

We illustrate the physical content by considering the initial condition

Ca;n(0) = Θ(a)ρn , Θ(a) =

{
1 ; if a ≥ 0
0 ; if a < 0

(85)

which describes a semi-infinite system confined to the positive half-axis a ≥ 0 and with
uncorrelated particles of average density ρ. First, our result gives an interpolation

between the particle density C0;1(t) = ρ exp
(
ρ
(
e−2t − 1

)) t→∞−→ ρe−ρ right at the

surface and the form (25) C∞;1(t) = ρ exp
(
2ρ
(
e−2t − 1

)) t→∞−→ ρe−2ρ deep in the
bulk. Right at the surface, the stationary particle density varies monotonously with ρ
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Figure 6. (a) Stationary particle-density C1,st(ρ, a) on a semi-infinite chain,
as a function of the initial density ρ for the distances a = [0, 2, 4, 3, 1] from the
boundary at a = 0, from top to bottom (dash-dotted lines for a ≥ 1). (b)
Continuous interpolation of the dependencies of C1,st(ρ, a) on a, for several values
of ρ. The full dots give the values of C1,st(ρ, a) for a integer.

which is no longer the case if one penetrates into the lattice, see figure 6a. From (84),
we find for the stationary particle density

C1,st(ρ; a) := lim
t→∞

C1(t) = ρe−ρ
a∑

k=0

(−ρ)k

k!

= ρe−2ρ
[
1 + (−1)aρ1+a

1F1 (a+ 1, a+ 2; ρ) /Γ(a+ 2)
]

(86)

In figure 6, several aspects of this stationary density are displayed. Figure 6a
shows the dependence on ρ for several distances a from the boundary. The asymptotic
bulk form is rapidly reached, a few lattice sites away from the surface are sufficient.
However, the approach towards to bulk is not monotonous. The approach towards the
bulk becomes considerably slower with increasing initial particle-density. Figure 6b
shows the dependence of the stationary density on the penetration depth a, for a fixed
value of ρ. We clearly observe an oscillatory behaviour as a function of a. This is
natural, since in the stationary state both nearest neighbours of an occupied site must
be empty, which leads to an effective anti-correlation of the particles.

3.2. Correlation of two n-strings with inhomogeneous initial conditions

3.2.1. String with an one-site hole Analogously to section 2, it is useful to consider
first a (n,m)-correlator of two strings which are separated by a hole of a single site.
Consider the averages

C1
a;n,m(t) := 〈ηaηa+1 . . . ηa+nηa+n+2 . . . ηa+n+m〉 (87)

which satisfies the equation of motion

d

dt
C1

a;n,m(t) = − 2(n+m− 2)C1
a;n,m(t)

− 2C1
a−1;n+1,m(t)− 2C1

a;n,m+1(t)− 4Ca;n+m+1(t) (88)
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which naturally generalises (29). As usual, we define C1
a;n,m(t) = u1

a;n,m(s)e−2(n+m−2)t

and also use (16) to obtain

d

ds
u1
a;n,m(s) = u1

a−1;n+1,m(s) + u1
a;n,m+1(s) + 2(2s+ 1)ua;n+m+1(s) (89)

The next step is the definition of the appropriate generating function

F 1(p, x, y, s) :=

∞∑

a=−∞

∞∑

n,m=0

u1
a;n,m(s)

n! m!
paxnym (90)

which can be shown, after a calculation analogous to the ones in section 2, to satisfy
the equation

1

2

∂F 1(p, x, y, s)

∂s
= p

∂F 1(p, x, y, s)

∂x
+

∂F 1(p, x, y, s)

∂y
+ 2(2s+ 1)F ′(p, x+ y, s)(91)

where F = F (p, x, s) is defined in (79) and F ′ = ∂xF . To solve this, we perform the
change of variables

G1(p, α, β, s) := F 1(p, x, y, s) , α := 2(1 + p)s+ x+ y , β := x− py (92)

and find the simplified equation

1

2

∂G1(p, α, β, s)

∂s
= 2(2s+ 1)F ′(p, α− 2(1 + p)s, s) = 2(2s+ 1)F ′(p, α, 0) (93)

where in the last step eq. (81) was used. Integration gives

G1(p, α, β, s) = 4s(s+ 1)F ′(p, α, 0) +G1(p, α, β, 0) (94)

and from the initial condition and the definition of G1, we also have

G1(p, α, β, 0) = F 1

(

p,
pα+ β

1 + p
,
α− β

1 + p
, 0

)

(95)

Inserting and converting back to the original variables, a straightforward but just a
little tedious computation leads to

F 1(p, x, y, s) = 2s(s+ 1)

∞∑

a=−∞

∞∑

m=0

ua;m+1(0)

m!
[2(1 + p)s+ x+ y]

m
pa

+

∞∑

a=−∞

∞∑

n,m=0

u1
a;n,m(0)

n! m!
[2ps+ x]

n
[2s+ y]

m
pa

=

∞∑

a=−∞

∞∑

n,m=0

paxnym

n! m!

[ ∞∑

ℓ=0

(2s)ℓ

ℓ!

ℓ∑

k=0

(
ℓ
k

)

u1
a−k;n+k,m−ℓ+k(0)

]

(96)

+ 2s(s+ 1)

∞∑

a=−∞

∞∑

n,m=0

paxnym

n! m!

[ ∞∑

k=0

(2s)k

k!

k∑

kℓ=0

(
k
ℓ

)

ua−ℓ;n+k+m+1(0)

]

and from which we can read off the coefficients

u1
a;n,m(s) =

∞∑

ℓ,k=0

(2s)ℓ+k

ℓ! k!
u1
a−ℓ;n+ℓ,m+k(0)

+ 2s(s+ 1)

∞∑

k=0

(2s)k

k!

k∑

ℓ=0

(
k
ℓ

)

ua−ℓ;n+k+m+1(0)

=

∞∑

ℓ,k=0

(2s)ℓ+k

ℓ! k!
u1
a−ℓ;n+ℓ,m+k(0) + 2s(s+ 1)ua;n+m+1(s) (97)
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At this point, it is an useful exercise to check that this is indeed the unique solution
of the equation of motion (89).

3.2.2. String with a hole of r sites We are looking for the general (n,m)-correlator
of two strings, separated by a hole of r sites, defined by

Cr
a;n,m(t) := 〈ηaηa+1 . . . ηa+nηa+n+r+1 . . . ηa+n+m+r〉 (98)

and which satisfies the equation of motion, with r ≥ 2

d

dt
Cr

a;n,m(t) = −2(n+m− 2)Cr
a;n,m(t)

− 2Cr
a−1;n+1,m(t)− 2Cr

a;n,m+1(t)− 2Cr−1
a;n+1,m(t)− 2Cr−1

a;n,m+1(t) (99)

This may be simplified as usual by defining Cr
a;n,m(t) = ur

a;n,m(s) e−2(n+m−2)t and
using (16), we obtain, for r ≥ 2

d

ds
ur
a;n,m(s) = ur

a−1;n+1,m(s) + ur
a;n,m+1(s) + ur−1

a;n+1,m(s) + ur−1
a;n,m+1(s) (100)

In principle, we could again define a generating function and solve the corresponding
differential equation. However, the great similarity between the results of sections 2
and 3 allows us to write down immediately the expected solution

ur
a;n,m(s) =

∞∑

ℓ,k=0

(2s)ℓ+k

ℓ! k!

r−1∑

q=0

q
∑

q′=0

ur−q
a−ℓ;n+ℓ+q−q′,m+k+q′ (0)

(
q
q′

)
(2s)q

q!

+ 4r
(
sr

r!
+ 2

sr+1

(r + 1)!

)

ua;n+m+r(s) (101)

valid for n,m ∈ N, a ∈ Z and all integers r ≥ 1. Here, we have also used the solution
(83) for string-densities without a hole. Indeed, it is a straightforward matter to verify
that this expression indeed solves eq. (100) and it obviously satisfies the required initial
condition for s = 0. Hence we have found, for any fixed initial condition, the unique
solution of (100). For a rapid check, note that in the case of spatially translation-
invariant initial conditions, we recover our previous result (57). Finally, we find the
desired (n,m)-correlator, valid for all n,m ∈ N, a ∈ Z and r ≥ 1

Cr
a;n,m(t) = 2r

((
e−2t − 1

)r

r!
+

(
e−2t − 1

)r+1

(r + 1)!

)

e2(r+1)tCa;n+m+r(t)

+ e−2(n+m−2)t
∞∑

ℓ,k=0

r−1∑

q=0

q
∑

q′=0

Cr−q
a−ℓ;n+ℓ+q−q′,m+k+q′(0)

(
q
q′

) (
e−2t − 1

)k+ℓ+q

k! ℓ! q!
(102)

which is the second central result of this work.
We illustrate the physical content of this result for initially uncorrelated particles

of average density ρ, confined to the right half-plane. Then the initial correlator is
Cr

a;n,m(0) = ρn+mΘ(a) and the initial density was given in (85). The stationary
connected particle-particle correlator is read off from (102), where Γ(a, z) is an
incomplete Gamma function [1],

Cr
a;1,1 − Ca;1(∞)Ca+r+1;1(∞) (103)

= ρ2e−2ρΓ(1 + a,−ρ)

Γ(1 + a)

[
e−ρΓ(1 + r,−2ρ)

Γ(1 + r)
− e−2ρΓ(1 + r + a,−ρ)

Γ(1 + r + a)
− 2r(−ρ)r

Γ(r + 2)

]



Exact correlation functions in particle-reaction models with immobile particles 23

2 4 6
r

-0.005

0.000

0.005

0.010

0.015

0.020
C

 r

1,
1;

 c
on

n,
 s

t.

a=0
a=1
a=2
a=3

(a)

2 4 6 8 10
r

-0.05

0.00

0.05

C
 r

1,
1;

co
nn

.,s
t.

a=0
a=1
a=2
a=3
a=4

(b)

Figure 7. Stationary connected particle-particle correlator Cr
1,1;conn., st from

eq. (103), for the initial densities (a) ρ = 1/2 and (b) ρ = 1, and for several
penetration depths a, counted from the boundary. The full symbols give the
values for r integer.

and depends not only on the distance r between the particles but also on the
penetration depth a of the leftmost one. This connected correlator therefore describes
correlations between a particle close to the surface and another one more deeply
situated in the bulk. In figure 7, the connected stationary particle-particle correlator
and its factorial spatial decay is displayed for two values of the particle-density. It
shape strongly evolves with changes of the penetration depth a.

4. Two-species annihilation model without diffusion

We now consider two species of immobile particles, denoted by A and B that can
occupy the nodes of an infinite chain. The only admissible reaction is the pair-
annihilation between nearest-neighbour particles: A+ B → ∅ + ∅, with rate 1. As in
the single-species model treated above, the number of stationary states on a chain of

L sites grows exponentially with L and is of the order ∼
(√

2 + 1
)L

, see eqs. (A.5,A.7)
in the appendix for details. If ηi ∈ {∅, A,B} denotes the occupation of the i-th site,
the transition rates in the master equation (1) read

ωi({η} → {η′}) =
∑

i

[
δηi,Aδηi+1,B + δηi,Bδηi+1,A

]
δη′

i,∅δη′

i+1,∅
∏

j 6∈{i,i+1}
δηj ,η′

j
(104)

4.1. Probability of a n-string ABABAB . . .

4.1.1. General solution Since reactions occur whenever AB-pairs meet, we consider
the probability of having sequences of n particles, consisting of uninterrupted pairs
ABABAB . . . or BABABA . . .

An = P
(
ABABAB . . .
︸ ︷︷ ︸

n sites

)
= 〈δη1,Aδη2,Bδη3,Aδη4,B . . .〉

Bn = P
(
BABABA . . .
︸ ︷︷ ︸

n sites

)
= 〈δη1,Bδη2,Aδη3,Bδη4,A . . .〉 (105)
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Starting from the master equation

d

dt
P({η}; t) =

∑

{η′}
[P({η′}; t)ωi({η′} → {η})−P({η}; t)ωi({η} → {η′})] (106)

the evolution equation of An is

d

dt
An =

∑

{η},{η′}
δη1,Aδη2,B . . . [P({η′}; t)ωi({η′} → {η})−P({η}; t)ωi({η} → {η′})]

= −
∑

{η},{η′}

(
δη1,Aδη2,B . . .− δη′

1,A
δη′

2,B
. . .
)
ωi({η} → {η′})P({η}; t)

= −
∑

{η},{η′}

∑

i

(
δη1,Aδη2,B . . .− δη′

1,A
δη′

2,B
. . .
) [ ∏

j 6∈{i,i+1}
δηj ,η′

j

]

×
(
δηi,Aδηi+1,B + δηi,Bδηi+1,A

)
δη′

i,∅δη′

i+1,∅P({η}; t) (107)

The two terms in the parenthesis cancel unless j = i or j = i+1. When it is the case,
the second term vanishes because of the factor δη′

i,∅δη′

i+1,∅. It remains

d

dt
An = −

∑

{η}

n+1∑

i=0

δη1,Aδη2,B . . .
(
δηi,Aδηi+1,B + δηi,Bδηi+1,A

)
P({η}; t)

=
n+1∑

i=0

〈δη1,Aδη2,B . . .
(
δηi,Aδηi+1,B + δηi,Bδηi+1,A

)
〉

= −Bn+1 − (n− 1)An −An+1 (108)

where the first term is due to a transition rate acting on the first site of the string
(meaning that a B was present in front), the second to transitions in the bulk and
the last to an annihilation involving only the last site. Analogously, Bn satisfies the
evolution equation

d

dt
Bn = −An+1 − (n− 1)Bn −Bn+1 (109)

We obtain a set of two coupled differential equations similar to (13). The method of
solution close follows the one used in the previous sections. We perform the following
change of variables

An(t) = un(s)e
−(n−1)t , Bn(t) = vn(s)e

−(n−1)t ; s := e−t − 1 (110)

so that the equations of motion become, for all n ≥ 0

d

ds
un(s) = un+1(s) + vn+1(s) ,

d

ds
vn(s) = vn+1(s) + un+1(s) (111)

These two equations can be decoupled by the further change of variables

Xn(s) := un(s)− vn(s) , Yn(s) := un(s) + vn(s) (112)

for which the evolution equations read

d

ds
Xn(s) = 0 ,

d

ds
Yn(s) = 2Yn+1(s) (113)
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The first equation gives trivially Xn(s) = Xn(0) while the second one reduces to (17),
up to a time-rescaling so that we have Yn(s) = Cn(s/2), with the proper identification
of the initial condition. Adapting (23), we find

un(s) =
1

2

(
Xn(s) + Yn(s)

)
=

1

2
Xn(0) +

1

2

∞∑

m=0

2m

m!
Ym+n(0)

(
e−t − 1

)m

vn(s) =
1

2

(
Yn(s)−Xn(s)

)
= −1

2
Xn(0) +

1

2

∞∑

m=0

2m

m!
Ym+n(0)

(
e−t − 1

)m
(114)

and the probabilities of the two n-strings finally are

An(t) =
1

2

[

An(0)−Bn(0) +

∞∑

m=0

2m

m!
(An+m(0) +Bn+m(0))

(
e−t − 1

)m

]

e−(n−1)t

Bn(t) =
1

2

[

Bn(0)−An(0) +

∞∑

m=0

2m

m!
(An+m(0) +Bn+m(0))

(
e−t − 1

)m

]

e−(n−1)t

(115)

This is the first main result of this section.
As a preparation for the computation of the correlators below, we also define the

generating functions

F (x, s) :=

∞∑

n=0

un(s)
xn

n!
, G(x, s) :=

∞∑

n=0

vn(s)
xn

n!
,

X(x, s) :=
∞∑

n=0

Xn(s)
xn

n!
, Y (x, s) :=

∞∑

n=0

Yn(s)
xn

n!
(116)

which are to be found by solving the differential equations

∂F

∂s
=

∂F

∂x
+

∂G

∂x
=

∂G

∂s
,

∂X

∂s
= 0 ,

∂Y

∂s
= 2

∂Y

∂x
(117)

In particular, we see that the equations for X(x, s) and Y (x, s) decouple and we
recognise those already treated in section 2. We are thus back to (115).

4.1.2. Homogeneous initial conditions We assume that A and B particles are initially
randomly distributed on the lattice without any correlation among them. If the
densities are denoted ρA and ρB (such that 1 − ρA − ρB is the initial density of
vacant sites) then

An(0) = ρ
[(n+1)/2]
A ρ

[n/2]
B = (ρAρB)

n/2

[
1 + (−1)n

2
+

1− (−1)n

2

√
ρA
ρB

]

Bn(0) = ρ
[(n+1)/2]
B ρ

[n/2]
A = (ρAρB)

n/2

[
1 + (−1)n

2
+

1− (−1)n

2

√
ρB
ρA

]

(118)

where [x] is the largest integer smaller than x. The densities of the n-strings follow
from (115)

An(t) =
1

2
(ρAρB)

n/2e−(n−1)t

{[(

1 +
1

2

ρA + ρB√
ρAρB

)

e2
√
ρAρB (e−t−1) +

1

2

ρA − ρB√
ρAρB

]

+(−1)n
[(

1− 1

2

ρA + ρB√
ρAρB

)

e−2
√
ρAρB (e−t−1) − 1

2

ρA − ρB√
ρAρB

]}
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Figure 8. (a) Time-dependence of the particle-concentrations a(t) = A1(t)
(full lines), with α = 0.5 and β = [0.1, 0.3, 0.5] from top to bottom and
b(t) = B1(t) (dashed lines) with α = 0.5 and β = [0.1, 0.3, 0.5] from bottom
to top. (b) Stationary particle-densities a(∞) = A1,st (full lines) and b(∞) =
B1,st (dashed lines) as a function of the initial density ρA and for the ratios
ρB/ρA = [0.25, 0.50, 0.75, 1.00] from top to bottom for the A-particles and from
bottom to top for the B-particles.

Bn(t) =
1

2
(ρAρB)

n/2e−(n−1)t

{[(

1 +
1

2

ρA + ρB√
ρAρB

)

e2
√
ρAρB (e−t−1) − 1

2

ρA − ρB√
ρAρB

]

+(−1)n
[(

1− 1

2

ρA + ρB√
ρAρB

)

e−2
√
ρAρB (e−t−1) +

1

2

ρA − ρB√
ρAρB

]}

(119)

and which for n = 1 reproduces the known result [34].
In figure 8a, the relaxation of the particle-densities A1(t) and B1(t) towards

their stationary values is illustrated. In figure 8b, the stationary densities are shown
themselves, as a function of the initial parameters ρA,B.

4.2. Correlations between two strings ABAB . . . separated by one site

We now consider the probability to observe two strings separated by a single-site hole

A1
n,m := P

(
ABABAB . . .
︸ ︷︷ ︸

n sites

1 . . . ABABAB . . .
︸ ︷︷ ︸

m sites

)

=

{
〈δη1,Aδη2,B . . . δηn,A δηn+2,Aδηn+3,Bδηn+4,A . . .〉 ; if n impair
〈δη1,Aδη2,B . . . δηn,B δηn+2,Bδηn+3,Aδηn+4,B . . .〉 ; if n pair

(120)

By definition, the leftmost particle is A (thus the name of this quantity). The first
block consists of n particles of alternating species A and B. The second block similarly
consists of m particles of alternating types. The important point is that the last
particle of the first block is the same as the first of the second one. The particles on
even (odd) sites are all of the same type. The state of the site in the hole is unknown.
In the same manner, we also define the quantity
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B1
n,m := P

(
BABABA . . .
︸ ︷︷ ︸

n sites

1 . . . BABABA . . .
︸ ︷︷ ︸

m sites

)

=

{
〈δη1,Bδη2,A . . . δηn,B δηn+2,Bδηn+3,Aδηn+4,B . . .〉 ; if n impair
〈δη1,Bδη2,A . . . δηn,A δηn+2,Aδηn+3,Bδηn+4,A . . .〉 ; if n pair

(121)

but here, the leftmost particle is B. By exchanging A and B particles, A1
n,m is

transformed into B1
n,m. The equations of motion are obtained using (107)

d

dt
A1

n,m = −B1
n+1,m − (n− 1)A1

n,m − 2An+m+1 − (m− 1)A1
n,m −A1

n,m+1

d

dt
B1

n,m = −A1
n+1,m − (n− 1)B1

n,m − 2Bn+m+1 − (m− 1)B1
n,m −B1

n,m+1 (122)

where An and Bn are the correlations of a string of particles without holes previously
calculated. Next, we perform the habitual change of variables s = e−t − 1 and

A1
n,m(t) = u1

n,m(s) e−(n+m−2)t , B1
n,m(t) = v1n,m(s) e−(n+m−2)t (123)

while for the non-interrupted An and Bn, we use again (110). This leads to

d

ds
u1
n,m(s) = v1n+1,m(s) + 2(s+ 1)un+m+1(s) + u1

n,m+1(s)

d

ds
v1n,m(s) = u1

n+1,m(s) + 2(s+ 1)vn+m+1(s) + v1n,m+1(s) (124)

This set of equations cannot be decoupled at this point by defining linear
combinations of them as in (112). We therefore introduce the generating functions

F 1(x, y, s) :=
∞∑

n,m=0

u1
n,m(s)

xnym

n!m!
, G1(x, y, s) :=

∞∑

n,m=0

v1n,m(s)
xnym

n!m!
(125)

and recall the definition (116) of F (x, s) and G(x, s) for the correlation without hole.

Multiplying the evolution equations by xnym

n!m! and using the fact that

∞∑

n,m=0

un+m+1
xnym

n!m!
=

∞∑

k=0

uk+1
(x + y)k

k!
=

∞∑

k=1

uk
(x+ y)k−1

(k − 1)!
=

[ ∞∑

k=0

uk
(x+ y)k

k!

]′

(126)

we obtain (with F ′(x, s) = ∂xF (x, s) and G′(x, s) = ∂xG(x, s))

∂F 1

∂s
=

∂G1

∂x
+ 2(s+ 1)F ′(x+ y) +

∂F 1

∂y

∂G1

∂s
=

∂F 1

∂x
+ 2(s+ 1)G′(x+ y) +

∂G1

∂y
(127)

Letting now

X1(x, y, s) = F 1(x, y, s)−G1(x, y, s),

Y 1(x, y, s) = F 1(x, y, s) +G1(x, y, s) (128)

the set of equations decouples

∂sX
1 = (−∂x + ∂y)X

1 + 2(s+ 1)X ′(x+ y, s)

∂sY
1 = (∂x + ∂y)Y

1 + 2(s+ 1)Y ′(x + y, s) (129)
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where X(x, s) = F (x, s) − G(x, s) and Y (x, s) = F (x, s) + G(x, s). The solutions of
the homogeneous PDEs are

X1(x, y, s) = X1(s− x, s+ y) , Y 1(x, y, s) = Y 1(s+ x, s+ y) (130)

In the following, we denote α± := s± x and β := s+ y and we perform the following
change of variables

X1(x, y, s) = x1(α−, β, s) , Y 1(x, y, s) = y1(α+, β, s) (131)

Since

∂sX
1−(−∂x+∂y)X

1 = ∂sx
1+

(
dα−
ds

+
dα−
dx

)

∂α−
x1+

(
dβ

ds
− dβ

dy

)

∂βx
1 = ∂sx

1(132)

and

X ′(x+ y, s) =
d

dx

∞∑

n=0

Xn(0)
(x+ y)n

n!

=

∞∑

n=1

Xn(0)
(x+ y)n−1

(n− 1)!

=

∞∑

n=0

Xn+1(0)
(x+ y)n

n!

=

∞∑

n=0

Xn+1(0)
(−α− + β)n

n!

=

∞∑

n,m=0

(−1)nXn+m+1(0)
αn
−β

m

n!m!
(133)

because Xn does not depend on s according to (113), the equation of motion for x1

becomes

∂sx
1(α−, β, s) = 2(s+ 1)

∞∑

n,m=0

(−1)nXn+m+1(0)
αn
−β

m

n!m!
. (134)

This is readily integrated and gives

x1(α−, β, s) = (s2 + 2s)
∞∑

n,m=0

(−1)nXn+m+1(0)
αn
−β

m

n!m!
+ x1(α−, β, 0) (135)

The last term is written as a series

x1(α−, β, 0) =
∞∑

n,m=0

(−1)nX1
n,m(0)

αn
−β

m

n!m!
(136)

The presence of the oscillating factor (−1)n is required for X1
n,m(0) to be equal to the

initial value of X1, as can be verified a-posteriori. Its origin can be found in the fact
that α− = s − x leading to a factor (−x)n in the serie when t and thus s vanishes.
The generating function X1 is now

X1(x, y, s) = x1(s− x, s+ y, s) (137)

=
∞∑

n,m=0

(−1)n
[
(s2 + 2s)Xn+m+1(0) +X1

n,m(0)
] (s− x)n(s+ y)m

n!m!
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=
∞∑

n,m,k,l=0

(−1)n+k
[
(s2 + 2s)Xn+m+k+l+1(0) +X1

n+k,m+l(0)
] sk+l(−x)nym

n! k!m! l!

=

∞∑

n,m,k,l=0

[

(s2 + 2s)Xn+m+k+l+1(0)
(−s)ksl

k! l!
+ (−1)kX1

n+k,m+l(0)
sk+l

k! l!

]
xnym

n!m!

=

∞∑

n,m=0



(s2 + 2s)Xn+m+1(0) +

∞∑

k,l=0

(−1)kX1
n+k,m+l(0)

sk+l

k! l!




xnym

n!m!

where we have used the fact that
∞∑

k,l=0

ak+l
(−s)ksl

k! l!
=

∞∑

n=0

an
n!

n∑

k=0

n!

k! (n− k)!
(−s)ksn−k =

∞∑

n=0

an
n!

0n = a0 (138)

Similarly, the second equation (129) gives

∂sy
1 = 2(s+ 1)

∞∑

n=0

Yn+1(s)
(x + y)n

n!

= 2(s+ 1)

∞∑

n,l=0

Yn+l+1(0)
(2s)l(x+ y)n

n! l!

= 2(s+ 1)

∞∑

n,l=0

Yn+l+1(0)
(2s)l(α+ + β − 2s)n

n! l!

= 2(s+ 1)

∞∑

n,m,k,l=0

Yn+m+k+l+1(0)
(2s)lαn

+β
m(−2s)k

n!m! k! l!

= 2(s+ 1)
∞∑

n,m=0

Yn+m+1(0)
αn
+β

m

n!m!
(139)

where we have used (114). Again the s-dependence disappears and the integration
leaves

y1(α+, β, s) = (s2 + 2s)

∞∑

n,m=0

Yn+m+1(0)
αn
+β

m

n!m!
+ y1(α+, β, 0) (140)

The last term is written as a series

y1(α+, β, 0) =

∞∑

n,m=0

Y 1
n,m(0)

αn
+β

m

n!m!
(141)

The generating function Y 1 is thus

Y 1(x, y, s) = y1(s+ x, s+ y, s) (142)

=

∞∑

n,m=0

[
(s2 + 2s)Yn+m+1(0) + Y 1

n,m(0)
] (s+ x)n(s+ y)m

n!m!

=

∞∑

n,m,k,l=0

[
(s2 + 2s)Yn+m+k+l+1(0) + Y 1

n+k,m+l(0)
] sk+lxnym

n!m! k! l!

=

∞∑

n,m=0



(s2 + 2s)

∞∑

k=0

Yn+m+k+1(0)
(2s)k

k!
+

∞∑

k,l=0

Y 1
n+k,m+l(0)

sk+l

k! l!




xnym

n!m!



Exact correlation functions in particle-reaction models with immobile particles 30

Taking the sum and the difference of (138) and (143), we recover the generating
functions F 1 and G1 and then the coefficients u1

k,l and v1k,l by identifying the

coefficients of xnym

n! m! :

u1
n,m(s) =

1

2

(
Xn,m(s) + Yn,m(s)

)
=

s2 + 2s

2

[

Xn+m+1(0) +

∞∑

k=0

Yn+m+k+1(0)
(2s)k

k!

]

+
1

2

∞∑

k,l=0

(
(−1)kX1

n+k,m+l(0) + Y 1
n+k,m+l(0)

) sk+l

k! l!

(143)

and

v1n,m(s) =
1

2

(
Yn,m(s)−Xn,m(s)

)
=

s2 + 2s

2

[

−Xn+m+1(0) +
∞∑

k=0

Yn+m+k+1(0)
(2s)k

k!

]

+
1

2

∞∑

k,l=0

(
(−1)k+1X1

n+k,m+l(0) + Y 1
n+k,m+l(0)

) sk+l

k! l!

(144)

Applying now the transformations s = e−t − 1 and (123), we finally obtain

A1
n,m(t) =

1

2

[

(
e−t − 1

)(
e−t + 1

)

(

Xn+m+1(0) +
∞∑

k=0

Yn+m+k+1(0)
2k
(
e−t − 1

)k

k!

)

+

∞∑

k,l=0

(
(−1)kX1

n+k,m+l(0) + Y 1
n+k,m+l(0)

)
(
e−t − 1

)k+l

k! l!



 e−(n+m−2)t (145)

and

B1
n,m(t) =

1

2

[

(
e−t − 1

)(
e−t + 1

)

(

−Xn+m+1(0) +

∞∑

k=0

Yn+m+k+1(0)
2k
(
e−t − 1

)k

k!

)

+

∞∑

k,l=0

(
(−1)k+1X1

n+k,m+l(0) + Y 1
n+k,m+l(0)

)
(
e−t − 1

)k+l

k! l!



 e−(n+m−2)t (146)

4.3. Correlations between two strings ABAB . . . separated by r sites

We now consider the probability to observe two strings separated by a hole of r ≥ 2
sites and define

Ar
n,m := P

(
ABABAB . . .
︸ ︷︷ ︸

n sites

r . . . ABABAB . . .
︸ ︷︷ ︸

m sites

)
(147)

=







〈δη1,Aδη2,B . . . δηn,A δηn+r+1,Aδηn+r+2,Bδηn+r+3,A . . .〉 ; if n impair, r impair
〈δη1,Aδη2,B . . . δηn,B δηn+r+1,Bδηn+r+2,Aδηn+r+3,B . . .〉 ; if n pair, r impair
〈δη1,Aδη2,B . . . δηn,A δηn+r+1,Bδηn+r+2,Aδηn+r+3,B . . .〉 ; if n impair, r pair
〈δη1,Aδη2,B . . . δηn,B δηn+r+1,Aδηn+r+2,Bδηn+r+3,A . . .〉 ; if n pair, r pair

The leftmost particle is again A (thus the name of this quantity). The first block
consists in n particles of alternating types A and B. The hole corresponds to r sites.
The second block consists in m particles of alternating types. The important point is
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that the particle types in the second block is completely determined by the first block.
If n+ r is odd, the first particle of the second block is B while it is A if n+ r is even.
The state of the r sites in the hole in unknown. In the same way, we also define the
quantity

Br
n,m := P

(
BABABA . . .
︸ ︷︷ ︸

n sites

r . . . BABABA . . .
︸ ︷︷ ︸

m sites

)
(148)

=







〈δη1,Bδη2,A . . . δηn,B δηn+r+1,Bδηn+r+2,Aδηn+r+3,B . . .〉 ; if n impair, r impair
〈δη1,Bδη2,A . . . δηn,A δηn+r+1,Aδηn+r+2,Bδηn+r+3,A . . .〉 ; if n pair, r impair
〈δη1,Bδη2,A . . . δηn,B δηn+r+1,Aδηn+r+2,Bδηn+r+3,A . . .〉 ; if n impair, r pair
〈δη1,Aδη2,B . . . δηn,B δηn+r+1,Bδηn+r+2,Aδηn+r+3,B . . .〉 ; if n pair, r pair

In spite of these complex-looking definitions, the equations of motions have the
relatively simple form, found by using (107)

d

dt
Ar

n,m = −Br
n+1,m − (n− 1)Ar

n,m −Ar−1
n+1,m −Ar−1

n,m+1 − (m− 1)Ar
n,m −Ar

n,m+1

d

dt
Br

n,m = −Ar
n+1,m − (n− 1)Br

n,m −Br−1
n+1,m −Br−1

n,m+1 − (m− 1)Br
n,m −Br

n,m+1

(149)

As before, a first simplification is obtained by making the change of variables

Ar
n,m(t) = ur

n,m(s)e−(n+m−2)t , Br
n,m(t) = vrn,m(s)e−(n+m−2)t ; s = e−t − 1 (150)

and we have

d

ds
ur
n,m(s) = vrn+1,m(s) + ur−1

n+1,m(s) + ur−1
n,m+1(s) + ur

n,m+1(s)

d

ds
vrn,m(s) = ur

n+1,m(s) + vr−1
n+1,m(s) + vr−1

n,m+1(s) + vrn,m+1(s) (151)

As before, we assume these equations to be valid for all n,m ≥ 0 and emphasise that
ur
n,0 6= ur

n 6= ur
0,n and similarly for the v. We then can introduce the generating

functions

F r(x, y, s) =

∞∑

n,m=0

ur
n,m(s)

xnym

n!m!
, Gr(x, y, s) =

∞∑

n,m=0

vrn,m(s)
xnym

n!m!
(152)

Multiplying the evolution equations by xnym

n!m! , we obtain

∂sF
r = ∂xG

r + ∂yF
r + (∂x + ∂y)F

r−1

∂sG
r = ∂xF

r + ∂yG
r + (∂x + ∂y)G

r−1 (153)

Letting now

Xr(x, y, s) := F r(x, y, s)−Gk(x, y, s),

Y r(x, y, s) := F r(x, y, s) +Gk(x, y, s) (154)

the set of equations decouples

∂sX
r = (−∂x + ∂y)X

r + (∂x + ∂y)X
r−1

∂sY
r = (∂x + ∂y)Y

r + (∂x + ∂y)Y
r−1 (155)

As before in the case r = 1, and following standard techniques [28], we denote
α± := s± x and β := s+ y and we perform the following change of variables

Xr(x, y, s) = xr(α−, β, s) , Y r(x, y, s) = yr(α+, β, s) (156)
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Since the relation (132) holds also for Xr, the PDE for xr is

∂sx
r(α−, β, s) = (∂x + ∂y)X

r−1 = (−∂α−
+ ∂β)x

r−1 (157)

The case r = 2 is obtained from (135):

∂sx
2(α−, β, s)

= (−∂α−
+ ∂β)

∞∑

n,m=0

[
(s2 + 2s)(−1)nXn+m+1(0) + (−1)nX1

n,m(0)
] αn

−β
m

n!m!
(158)

=

∞∑

n,m=0

[
2(s2 + 2s)(−1)nXn+m+2(0)− (−1)n+1X1

n+1,m(0) + (−1)nX1
n,m+1(0)

] αn
−β

m

n!m!

which leads after integration to

x2(α−, β, s) = x2(α−, β, 0)

+

∞∑

n,m=0

(−1)n
[

2

(
s3

3
+ s2

)

Xn+m+2(0) +X1
n+1,m(0)s+X1

n,m+1(0)s

]
αn
−β

m

n!m!
(159)

where

x2(α−, β, 0) =
∞∑

n,m=0

(−1)nX2
n,m(0)

αn
−β

m

n!m!
(160)

We can infer the solution for a general r :

xr(α−, β, s) =
∞∑

n,m=0

2r
(

sr+1

(r + 1)!
+

sr

r!

)

(−1)nXn+m+r(0)
αn
−β

m

n!m!

+

∞∑

n,m=0

(−1)n
k−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Xr−l

n+p,m+l−p(0)
sl

l!

αn
−β

m

n!m!
(161)

Expressing now this quantity in terms of the original variable x and y leads to

Xr(x, y, s) = xr(s− x, s+ y, s)

=
∞∑

n,m=0

2r
(

sr+1

(r + 1)!
+

sr

r!

)

(−1)nXn+m+r(0)
(s− x)n(s+ y)m

n!m!

+
∞∑

n,m=0

(−1)n
r−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Xr−l

n+p,m+l−p(0)
sl

l!

(s− x)n(s+ y)m

n!m!

=
∞∑

n,m,
a,b=0

2r
(

sr+1

(r + 1)!
+

sr

r!

)

(−1)aXn+m+a+b+r(0)
sa+bxnym

n!m!a b!

+

∞∑

n,m,
a,b=0

(−1)a
r−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Xr−l

n+p+a,m+l−p+b(0)
sl

l!

sa+bxnym

n! a!m! b!

=

∞∑

n,m=0

2r
(

sr+1

(r + 1)!
+

sr

r!

)

Xn+m+r(0)
xnym

n!m!

+

∞∑

n,m,

a,b=0

(−1)a
r−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Xr−l

n+p+a,m+l−p+b(0)
sl

l!

sa+bxnym

n! a!m! b!
(162)
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where we have used (138).
The same procedure has now to be applied to the calculation of yr. Similarly to

(132), the PDE for yr is

∂sy
r(α+, β, s) = (∂x + ∂y)Y

r−1 = (∂α+ + ∂β)y
r−1 (163)

The case r = 2 is obtained from (140):

∂sy
2(α+, β, s) = (∂α+ + ∂β)

∞∑

n,m=0

[
(s2 + 2s)Yn+m+1(0) + Y 1

n,m(0)
] αn

+β
m

n!m!

=
∞∑

n,m=0

[
2(s2 + 2s)Yn+m+2(0) + Y 1

n+1,m(0) + Y 1
n,m+1(0)

] αn
+β

m

n!m!
(164)

which leads after integration to

y2(α+, β, s) = y2(α+, β, 0)

+

∞∑

n,m=0

[

2

(
s3

3
+ s2

)

Yn+m+2(0) + Y 1
n+1,m(0)s+ Y 1

n,m+1(0)s

]
αn
+β

m

n!m!
(165)

where

y2(α+, β, 0) =
∞∑

n,m=0

Y 2
n,m(0)

αn
+β

m

n!m!
(166)

We can infer the solution for a general r :

Y r(α+, β, s) =

∞∑

n,m=0

2r
(

sr+1

(r + 1)!
+

sr

r!

)

Yn+m+r(0)
αn
+β

m

n!m!

+

∞∑

n,m=0

r−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Y r−l
n+p,m+l−p(0)

sl

l!

αn
+β

m

n!m!
(167)

Expressing now this quantity in terms of the original variables x and y leads to

Y r(x, y, s) = yr(s+ x, s+ y, s)

=

∞∑

n,m=0

2r
(

sr+1

(r + 1)!
+

sk

r!

)

Yn+m+r(0)
(s+ x)n(s+ y)m

n!m!

+

∞∑

n,m=0

r−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Y k−l
n+p,m+l−p(0)

sl

l!

(s− x)n(s+ y)m

n!m!

=

∞∑

n,m,c=0

2r
(

sr+1

(r + 1)!
+

sr

r!

)

Yn+m+c+r(0)
(2s)cxnym

n!m! c!

+

∞∑

n,m,
a,b=0

r−1∑

l=0

l∑

p=0

l!

p! (l − p)!
Y r−l
n+p+a,m+l−p+b(0)

sl

l!

sa+bxnym

n! a!m! b!
(168)

Finally, the original generating functions F r = 1
2 (X

r+Y r) andGr = 1
2 (−Xr+Y r)

can be formed and the coefficients ur
n,m and vrn,m extracted from their series

expansions. We find
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ur
n,m =

1

2

[

2r
(

sr+1

(r + 1)!
+

sr

r!

)[

Xn+m+r(0) +

∞∑

c=0

Yn+m+c+r(0)
(2s)c

c!

]

(169)

+

∞∑

a,b=0

r−1∑

l=0

l∑

p=0

l!

p! (l − p)!

[
(−1)aXr−l

n+p+a,m+l−p+b(0) + Y r−l
n+p+a,m+l−p+b(0)

]sl+a+b

l!a! b!





vrn,m =
1

2

[

2r
(

sr+1

(r + 1)!
+

sr

r!

)[

−Xn+m+r(0) +

∞∑

c=0

Yn+m+c+r(0)
(2s)c

c!

]

+
∞∑

a,b=0

r−1∑

l=0

l∑

p=0

l!

p! (l − p)!

[
(−1)a+1Xr−l

n+p+a,m+l−p+b(0) + Y r−l
n+p+a,m+l−p+b(0)

]sl+a+b

l!a! b!





The correlations follow, for all integers r ≥ 1

Ar
n,m(t) =

1

2

[

2r
(
(e−t − 1)r+1

(r + 1)!
+

(e−t − 1)r

r!

)

(170)

×
[

(An+m+r(0)−Bn+m+r(0)) +

∞∑

c=0

(An+m+c+r(0) +Bn+m+c+r(0))
2c(e−t − 1)c

c!

]

+

∞∑

a,b=0

r−1∑

l=0

l∑

p=0

[(
1 + (−1)a

)
Ar−l

n+p+a,m+l−p+b(0)

+
(
1− (−1)a

)
Br−l

n+p+a,m+l−p+b(0)
] (e−t − 1)l+a+b

p! (l − p)! a! b!

]

e−(n+m−2)t

and

Br
n,m(t) =

1

2

[

2r
(
(e−t − 1)r+1

(r + 1)!
+

(e−t − 1)r

r!

)

(171)

×
[

Bn+m+r(0)−An+m+r(0) +
∞∑

c=0

(An+m+c+r(0) +Bn+m+c+r(0))
2c(e−t − 1)c

c!

]

+
∞∑

a,b=0

r−1∑

l=0

l∑

p=0

[(
1− (−1)a

)
Ar−l

n+p+a,m+l−p+b(0)

+
(
1 + (−1)a

)
Br−l

n+p+a,m+l−p+b(0)
] (e−t − 1)l+a+b

p! (l − p)! a! b!

]

e−(n+m−2)t

which is our last result. In the stationary state, only the density-density correlations
Ar

1,1 and Br
1,1 survives.

4.3.1. Homogeneous initial conditions As before, we assume that A and B particles
are initially randomly distributed on the lattice without any correlation among them.
The densities being denoted ρA and ρB, the initial correlations reads

Ar
nm(0) = (ρAρB)

(n+m)/2

[
1 + (−1)n

2
+

1− (−1)n

2

√
ρA
ρB

]

(172)

×
[
1 + (−1)m

2
+

1− (−1)m

2

(
1 + (−1)n+r

2

√
ρA
ρB

+
1− (−1)n+r

2

√
ρB
ρA

)]
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Figure 9. Stationary connected particle-particle correlator Ar
1,1;conn., st (open

symbols) and Br
1,1;conn., st (full symbols) with respect to the distance r between

the two particles. The different symbols correspond to different values of the
initial densities.

Br
nm(0) = (ρAρB)

(n+m)/2

[
1 + (−1)n

2
+

1− (−1)n

2

√
ρB
ρA

]

×
[
1 + (−1)m

2
+

1− (−1)m

2

(
1 + (−1)n+r

2

√
ρB
ρA

+
1− (−1)n+r

2

√
ρA
ρB

)]

The connected density-density correlations in the stationnary state, as given by (170)
and (171) in the limit t → +∞, are plotted in figure 9. Qualitatively, the behaviour
is similar to the one found above in the single-species model.

5. Conclusions

We have been studying densities and correlators in interacting-particle models with
immobile particles and irreversible reactions which have an exponentially large number
of stationary states. These models are relevant in the context of rsa or else for weakly
tapped granular systems, since they have a non-vanishing configurational entropy (or
‘complexity’). The main results are as follows. In the case of a single type of particle
with the annihilation reaction A+A → ∅+ ∅, we have computed exactly:

(i) the density (23) of the n-strings on the infinite chain

(ii) the string-string correlator (58) of two n-strings on the infinite chain

(iii) the density (73) of the n-strings on the Bethe lattice with arbitrary coordination
z ≥ 2

(iv) the density (84) of the n-strings without translation-invariance, including the
semi-infinite chain

(v) the string-string correlator (102) of two n-strings without translation-invariance,
including the semi-infinite chain

In the case of two species of particles A and B evolving through the reaction
A+B → ∅+ ∅, we obtained the

(i) density (115) of AB-strings of total length n,
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(ii) the string-string correlator (170,171)

All these results are given for arbitrary physically admissible initial configurations.
Setting n = 1, they include explicit expressions for the average particle-densities
and their correlators. In the special situation of initially uncorrelated particles of
prescribed densities, we reproduce all previously obtained results [29, 20, 21, 34, 36,
37, 38, 48, 13, 2] as special cases.

In general, one observes a rapid relaxation in time, typically described by a
double exponential form when considering particles on a chain; and by a factorial
(rather than exponential) decrease of the connected spatial correlators. In the vicinity
of a boundary, the results deviate strongly from what is found deep in the bulk.
In comparison with the kdh model which originally motivated this work, the kink
densities and correlators under consideration here are distinct from the slowly relaxing
global observables examined before [18]. It would be interesting to see whether one
might identify a ‘dual’ to the two-species annihilation model of which global variables
could be treated in a way analogous to the kdh-model. The two-species model offers
the further possibility to analyse segregation phenomena.

Acknowledgements: This collaboration has benefited from an agreement between
the french COFECUB agency and the university of São Paulo (agreement Uc Ph
116/09).
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Appendix. Number of stationary states in the two-species model

Generalising the discussion of the single-species model [10, 13, 26, 27], we briefly
outline the analogous computation of the number of stationary states on a chain of
L sites in the two-species pair-annihilation model of section 4. The counting is based
on the observation that stationary states cannot contain neither AB nor BA pairs on
nearest-neighbour sites.

First, consider an open chain. Let SL be the number of stationary states for a

chain of L sites, and let AL := N
(

A L-1
)

denote the number of stationary states

on a chain of L sites where the leftmost site is occupied by an A-particle. Similarly

define BL = N
(

B L-1
)

and OL := N
(

∅ L-1
)

, such that SL = AL +BL +OL. For

small lattices, one has S0 := 1 and S1 = 3, S2 = 7, S3 = 17, S4 = 41 . . . . The three
contributions to SL satisfy the recursions

OL = N
(

∅ L-1
)

= N
(

∅∅ L-2
)

+N
(

∅A L-2
)

+N
(

∅B L-2
)

= OL−1 +AL−1 +BL−1 = SL−1 (A.1)

AL = N
(

A L-1
)

= N
(

A∅ L-2
)

+N
(

AA L-2
)

= OL−1 +AL−1 (A.2)

BL = N
(

B L-1
)

= N
(

B∅ L-2
)

+N
(

BB L-2
)

= OL−1 +BL−1 (A.3)

and collecting terms, we have the recursion

SL = 2SL−1 +OL−1 = 2SL−1 + SL−2 (A.4)

The solution is readily found, for all L ≥ 0

SL =
1

2

(

1 +
√
2
)L+1

+
1

2

(

1−
√
2
)L+1 L≫1≃ 1.207

(

1 +
√
2
)L

. (A.5)

Second, consider a periodic chain. The number of stationary states is denoted by

SL = AL + BL + OL, where AL := N
(

A L-1
∥
∥
∥

)

denotes the number of stationary

states on a periodic chain of L sites where one of the particles is of species A and the
trait indicates the periodic boundary conditions. BL and OL are defined similarly.
For small lattices, one has S1 = 3, S2 = 7, S3 = 15, S4 = 35, . . .. Now, if one of the
sites is empty, this opens the chain so that the number of stationary states is equal to
the one of an open chain of L− 1 sites, hence OL = SL−1 = OL. Furthermore

AL = N
(

A L-1
∥
∥
∥

)

= N
(

A L-2 ∅
∥
∥
∥

)

+N
(

A L-2 A
∥
∥
∥

)

= N
(

∅A L-2
∥
∥
∥

)

+N
(

AA L-2
∥
∥
∥

)

= AL−1 +N
(

A L-2
∥
∥
∥

)

= AL−1 +AL−1 (A.6)

since for the counting of the stationary states the pair AA acts in the same way as a
single A-particle. Similarly, BL = BL−1 +BL−1. Adding these contributions, we find

SL = SL−1 +AL−1 +BL−1 +AL−1 +BL−1

= SL−1 + 2 (SL−1 − SL−2)

= 1 +
(

1 +
√
2
)L

+
(

1−
√
2
)L L≫1≃

(

1 +
√
2
)L

(A.7)

where the expression in the last line, valid for L ≥ 1, is obtained by using (A.5).
As found previously for the single-species model [10, 18, 27], the number of

stationary states is on an open chain about 20% larger than for a periodic chain.
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[11] C. Coulon, R. Clérac, L. Lecren, W. Wernsdorfer and H. Miyasaka, Phys. Rev. B69, 132408

(2004).
[12] O. Dauchot, in M. Henkel, M. Pleimling and R. Sanctuary (eds), Ageing and the glass transition,

ch. 4, p. 161, Springer Lecture Notes in Physics 716, Springer (Heidelberg 2007).
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