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A nonlinear Schrödinger equation for the envelope of two dimensional surface water

waves on finite depth with non zero constant vorticity is derived, and the influence

of this constant vorticity on the well known stability properties of weakly nonlin-

ear wave packets is studied. It is demonstrated that vorticity modifies significantly

the modulational instability properties of weakly nonlinear plane waves, namely the

growth rate and bandwidth.

At third order we have shown the importance of the coupling between the mean flow

induced by the modulation and the vorticity.

Furthermore, it is shown that these plane wave solutions may be linearly stable

to modulational instability for an opposite shear current independently of the di-

mensionless parameter kh, where k and h are the carrier wavenumber and depth

respectively.
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I. INTRODUCTION

Generally, in coastal and ocean waters, the velocity profiles are typically established by

bottom friction and by surface wind stress and so are varying with depth. Currents generate

shear at the bed of the sea or of a river. For example ebb and flood currents due to the tide

may have an important effect on waves and wave packets. In any region where the wind is

blowing there is a surface drift of the water and water waves are particularly sensitive to

the velocity in the surface layer.

Surface water waves propagating steadily on a rotational current have been studied by

many authors. Among them, one can cite Tsao1, Dalrymple2, Brevik3, Simmen & Safmann4,

Teles da Silva & Peregrine5, Kishida & Sobey6, Pak & Chow7, Constantin8, etc. For a

general description of the problem of waves on current, the reader is referred to reviews

by Peregrine9, Jonsson10 and Thomas & Klopman11. On the contrary, the modulational

instability or the Benjamin-Feir instability of progressive waves in the presence of vorticity

has been poorly investigated. Using the method of multiple scales Johnson12 examined the

slow modulation of a harmonic wave moving over the surface of a two dimensional flow

of arbitary vorticity. He derived a nonlinear Schrödinger equation (NLS equation) with

coefficients that depend, in a complicated way, on the shear and gave the condition of linear

stability of the nonlinear plane wave solution by writing that the product of the dispersive

and nonlinear coefficients of the NLS equation is negative. He did not develop a detailed

stability analysis as a function of the vorticity and depth. Oikawa, Chow & Benney13

considered the instability properties of weakly nonlinear wave packets to three dimensional

disturbances in the presence of shear. Their system of equations reduces to the familiar

NLS equation when confining the evolution to be purely two dimensional. They illustrated

their stability analysis for the case of a linear shear. Within the framework of deep water

Li, Hui & Donelan14 studied the side-band instability of a Stokes wave train in uniform

velocity shear. The coefficient of the nonlinear term of the NLS equation they derived was

erroneous as noted by Baumstein15. The latter author investigated the effect of piecewise-

linear velocity profiles in water of infinite depth on side-band instability of a finite-amplitude

gravity wave. The coefficients of the NLS equation he derived were computed numerically

because he did not give their expression as a function of the vorticity and depth of the shear

layer, explicitly. Instead, he calculated these coefficients for specific values of the vorticity
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and depth of shear layer. Choi16 considered the Benjamin-Feir instability of a modulated

wave train in both positive and negative shear currents within the framework of the fully

nonlinear water wave equations. For a fixed wave steepness, he compared his results with

the irrotational case and found that the envelope of the modulated wave train grows faster

in a positive shear current and slower in a negative shear current. Using the fully nonlinear

equations, Okamura & Oikawa17 investigated numerically some instability characteristics of

two-dimensional finite amplitude surface waves on a linear shearing flow to three-dimensional

infinitesimal rotational disturbances.

The present study deals with the modulational instability of one dimensional, periodic

water waves propagating on a vertically uniform shear current. We assume that the shear

current has been produced by external effects and that the fluid is inviscid. In section II

a NLS equation (vor-NLS equation) for surface waves propagating on finite depth in the

presence of non zero constant vorticity is derived by using the method of multiple scales.

In subsection IIC it is shown that the heuristic method to derive a NLS equation from a

nonlinear dispersion relation is not valid when vorticity is present. This is a consequence of

the coupling between the mean flow due to the modulation and the vorticity. Section III

is devoted to a detailed stability analysis of a weakly nonlinear wave train as a function

of the parameter kh where k is the carrier wavenumber and h the depth and of vorticity

magnitude. Consequences on the Benjamin-Feir index are considered, too and a conclusion

is given in section IV.

II. DERIVATION OF THE VOR-NLS EQUATION

The undisturbed flow is a weakly nonlinear Stokes wave train propagating steadily on a

shear current that varies linearly in the vertical direction y. The wave train moves along the

x-axis. The y-axis is oriented upward, and gravity downward. Naturally, i and j are unit

vectors along Ox and Oy. When computing vector products, we shall also use k = i ∧ j.

The depth h is constant and the bed is located at y = −h. Let Ω be the magnitude of the

shear. There is a potential ϕ(x, y, t) such that the velocity writes

V = Ωyi+∇ϕ(x, y, t) (1)

since for a two dimensional flow of an inviscid and incompressible fluid with external forces

deriving from a potential the Kelvin theorem states that the vorticity is conserved. The
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Figure 1. Shear flow with Ω > 0

(waves propagating downstream)
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Figure 2. Shear flow with Ω < 0

(waves propagating upstream)

variable t is the time and −Ω is the vorticity in all the fluid that can be negative or positive

as illustrated in figures 1 and 2, respectively. Note that the reference frame is in uniform

translation with regard to that of the laboratory. Hence, the velocity of the undisturbed

flow vanishes at the surface.

A. Governing equations

As the perturbation is assumed potential, the incompressibility condition∇.~V = 0 implies

that the velocity potential satisfies the Laplace’s equation

∆ϕ = 0 − h < y < η(x, t) (2)

The fluid is inviscid and so the Euler’s equation writes :

∇(ϕt +
1

2
V2 +

P

ρ
+ gy) = V ∧ ω (3)

where ω is the vorticity vector : ω = −Ωk.

We introduce the stream function ψ associated to the velocity potential through the Cauchy-

Riemann relations :

ψy = ϕx, ψx = −ϕy (4)

We notice that

V ∧ ω = ∇(
1

2
Ω2y2 + Ωψ) (5)

so, we can rewrite equation (3) as follows

∇(ϕt +
1

2
ϕ2
x +

1

2
ϕ2
y + Ωyφx +

P

ρ
+ gy − Ωψ) = 0. (6)
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This equation may be integrated once :

ϕt +
1

2
ϕ2
x +

1

2
ϕ2
y + Ωyφx +

P

ρ
+ gy − Ωψ = f(t) (7)

We write this equation at the free surface of the fluid. The notation Φ means that ϕ is

calculated on the free surface. The same convention is used for the derivatives of ϕ or ψ.

This convention will be used in the whole paper.

The pressure on the free surface is the atmospheric pressure that can be considered as a

constant, and incorporated in the RHS of equation (7).

It is possible to add to the velocity potential function a primitive of the right hand

side f(t) of this equation, so that this term vanishes. The equation becomes

Φt +
1

2
Φ2

x +
1

2
Φ2

y + ΩηΦx + gη − ΩΨ = 0. (8)

The kinematic condition is written as follows

Φy = ηx(Φx + Ωη) + ηt (9)

The governing equations are then

∇2ϕ = 0, −h < y < η(x, t) (10)

ϕy = 0, y = −h (11)

ηt + (Φx + Ωη)ηx − Φy = 0 (12)

Φt +
1

2
Φ2

x +
1

2
Φ2

y + ΩηΦx + gη − ΩΨ = 0 (13)

To reduce the number of dependent variables, we derive the dynamic condition with respect

to x and we use the Cauchy-Riemann conditions to eliminate the stream function. The

result is

Φtx + Φtyηx + Φx(Φxx + Φxyηx) + Φy(Φxy + Φyyηx)

+ΩηxΦx + Ωη(Φxx + Φxyηx) + gηx + Ω(Φy − Φxηx) = 0
(14)

Equations (10)-(13) are invariant under the following transformations : ϕ → −ϕ, t → −t,

Ω → −Ω and Ψ → −Ψ. Hence, there is no loss of generality if the study is restricted

to waves with positive phase speeds so long as both positive and negative values of Ω are

considered.
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B. The multiple scale analysis

We seek an asymptotic solution in the following form

ϕ =
+∞
∑

n=−∞

ϕn exp[in(kx− ωt)], η =
+∞
∑

n=−∞

ηn exp[in(kx− ωt)] (15)

where k is the wavenumber of the carrier and ω its frequency.

We assume ϕ−n = ϕ∗
n and η−n = η∗n so that ϕ and η are real functions.

Then ϕn and ηn are written in perturbation series

ϕn =

+∞
∑

j=n

ǫjϕnj, ηn =

+∞
∑

j=n

ǫjηnj (16)

where the small parameter ǫ is the wave steepness.

We assume ϕ00 = 0 and η00 = 0.

Following Davey & Stewartson18, we consider a solution that is modulated on the slow time

scale τ = ǫ2t and slow space scale ξ = ǫ(x− cgt), where cg is the group velocity of the carrier

wave.

The new system of governing equations is

ǫ2ϕξξ + ϕyy = 0, −h ≤ y ≤ η(ξ, τ) (17)

ϕy = 0, y = −h (18)

ǫ2ητ − ǫcgηξ + ǫ2Φξηξ + ǫΩηηξ − Φy = 0 (19)

ǫ3Φξτ − ǫ2cgΦξξ + ǫ3Φyτηξ − ǫ2cgΦξyηξ + ǫ3ΦξΦξξ

+ ǫ3ΦξΦξyηξ + ǫΦyΦξy + ǫΦyΦyyηξ + ǫ2ΩηξΦξ + ǫ2ΩηΦξξ

+ ǫ2ΩηΦξyηξ + ǫgηξ + ΩΦy − ǫ2ΩΦξηξ = 0

(20)
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Substituting the expansions for the potential ϕ into the Laplace equation and using the

method of multiple scales we obtain

ϕ01yy = 0 (21)

−k2ϕ11 + ϕ11yy = 0 (22)

ϕ02yy = 0 (23)

−k2ϕ12 + 2ikϕ11ξ + ϕ12yy = 0 (24)

−4k2ϕ22 + ϕ22yy = 0 (25)

ϕ01ξξ + ϕ03yy = 0 (26)

−k2ϕ13 + 2ikϕ12ξ + ϕ11ξξ + ϕ13yy = 0 (27)

−4k2ϕ23 + 4ikϕ22ξ + ϕ23yy = 0 (28)

−9k2ϕ33 + ϕ33yy = 0 (29)

Solving these equations and considering the bottom conditions we obtain :

ϕ01y = 0 (30)

ϕ02y = 0 (31)

ϕ11 = A
cosh[k(y + h)]

cosh(kh)
(32)

ϕ12 = D
cosh[k(y + h)]

cosh(kh)
− iAξ

(y + h) sinh[k(y + h)]− hσ cosh[k(y + h)]

cosh(kh)
(33)

ϕ22 = F
cosh[2k(y + h)]

cosh(2kh)
(34)

ϕ03y = −(y + h)φ01ξξ (35)

ϕ13 = (hσAξξ − iDξ)
(y + h) sinh[k(y + h)]

cosh(kh)

+ (B +
h2

2
(1− 2 tanh2(kh))Aξξ + ihσDξ − Aξξ

(y + h)2

2
)
cosh[k(y + h)]

cosh(kh)

(36)

The next tedious step is to use the relations obtained from the kinematic and dynamic

conditions. Let us set Ω = Ω
ω
. Herein, it is important to emphasize that this parameter

does not correspond to a dimensionless vorticity because the frequency ω depends on Ω.

Furthermore, we set X = σΩ, where σ = tanh(kh), because this term will occur many times

in the following polynomial expressions.

• Terms in ǫE0 : They give no supplementary information
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• Terms in ǫE1 : They give a linear dispersion relation

kc2p + σ(cpΩ− g) = 0 (37)

From this linear dispersion relation it is easy to demonstrate that we have always

X > −1 or Ω > −1/σ.

We also get a relation between the fundamental modes of the velocity potential at the

surface and free surface elevation :

η11 = i
σ

cp
A =

iω

g
(1 +X)A (38)

where cp = ω/k.

From the linear dispersion relation the group velocity is :

cg =
cp
σ

×
(1− σ2)kh+ σ(1 +X)

2 +X
(39)

We recall that X > −1, so there is no singularity in this expression.

• Terms in ǫ2E0 : They only give, after simplifications :

η01ξ = 0 (40)

• Terms in ǫ2E1 : They give a system of two equations with two indeterminate coeffi-

cients η01 and η12 that can be found after some calculations :

η01 = 0 (41)

and

η12 =
1

g
[cg + h(1− σ2)Ω]Aξ +

iω

g
(1 +X)D (42)

• Terms in ǫ2E2 : They give a system of two linear equations with F and η22 as un-

knowns :

F = iω(1 + σ2)
3(1− σ2) + 3X +X2

4σ2c2p
A2 (43)

and

η22 = −
k

2c2pσ
[3− σ2 + (3 + σ2)X +X2]A2 (44)
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• Terms in ǫ3E0 : The first-order mean flow can be obtained from the following expres-

sion

[cg(cg + Ωh)− gh]ϕ01ξ =

[

gσω

c2p
(2 +X) + k2cg(1− σ2)

]

|A|2 (45)

and

gη02 = (cg + Ωh)φ01ξ − k2(1− σ2)|A|2 (46)

• Terms in ǫ3E1 : We derive two equations from which it is possible, after tedious

computations, to eliminate η13. The coefficients B and Dξ vanish owing to the linear

dispersion relation. The remaining terms are : A time derivative, a dispersive term,

a nonlinear term and a term involving the mean flow that we can substitute by its

expression taken from the other equation. Finally a nonlinear Schrödinger equation

with vorticity is derived (the vor-NLS equation)

iAτ + LAξξ = P | A |2 A (47)

where

L =
ω

k2σ(2 +X)
µ(1− σ2)[1− µσ + (1− ρ)X ]− σρ2 (48)

P =
k4cp

2(2 +X)gσ3
(U + VW ) =

k4(U + VW )

2(1 +X)(2 +X)ωσ2
(49)

U = 9− 12σ2 + 13σ4 − 2σ6 + (27− 18σ2 + 15σ4)X

+ (33− 3σ2 + 4σ4)X2 + (21 + 5σ2)X3 + (7 + 2σ2)X4 +X5
(50)

V = (1 +X)2(1 + ρ+ µΩ) + 1 +X − ρσ2 − µσX (51)

W = 2σ3 (1 +X)(2 +X) + ρ(1− σ2)

σρ(ρ+ µΩ)− µ(1 +X)
(52)

with

µ = kh (53)

σ = tanh(µ) (54)

ρ =
cg
cp

(not to be confused with the density) (55)

The relation (38) permits to replace the velocity potential A by the elevation a.

iaτ + Laξξ =M | a |2 a (56)
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where a is the envelope of the surface elevation and

M =
ωk2(U + VW )

8(1 +X)(2 +X)σ4
(57)

C. The case of infinite depth

Let us discuss what happens when depth goes to infinity in order to compare our results

to those of Li et al.14 or Baumstein15. Moreover, we shall show the importance of the

coupling between the mean flow and vorticity at third order. At this order before deriving

equation (47) the following coupled equations empasize the coupling between the mean

flow φ01ξ and vorticity Ω.

k3c2p
gσ

[

(1 + σΩ)2
(

cp + cg + khcpΩ
)

+ cp(1 + σΩ)

− (cg + cpkhΩ)σ
2
]

φ01ξA− iω(2 + σΩ)Aτ

+
{

c2g − gh+ ghσ
[

σ + kh(1− σ2)
]

+ cpkh(1− σ2) (cg − cpkhσ)Ω
}

Aξξ

= −
k5c2p
2gσ3

[

9− 12σ2 + 13σ4 − 2σ6 + (27− 18σ2 + 15σ4)σΩ

+ (33− 3σ2 + 4σ4)σ2Ω
2
+ (21 + 5σ2)σ3Ω

3

+ (7 + 2σ2)σ4Ω
4
+ σ5Ω

5
]

|A|2A

(58)

with

φ01ξ =
gkσ

(

2 + σΩ
)

+ k2cpcg(1− σ2)

cp [cg (cg + Ωh)− gh]
|A|2 (59)

The mean flow φ01ξ verifies

lim
h→+∞

hφ01ξ =
gk

(

2 + Ω
)

cp (Ωcg − g)
|A|2 (60)

The coefficient of the mean flow, induced by the modulation of the envelope, in equa-

tion (58) is of order O(h) so that the product has a finite limit when h→ ∞. More precisely,

the coefficient of hφ01ξA in equation (58) goes to

k4c3pΩ
2

g

(

2 + Ω
)

(61)

when h→ ∞.
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The remaining terms in equation (58) have also finite limits when h→ ∞. Finally, we

get the following NLS equation valid for infinite depth and constant vorticity :

iAτ −
ω(1 + Ω)2

k2(2 + Ω)3
Aξξ = −

ωk2

2c2p

Ω
2 (

2 + Ω
)2

1 + Ω
|A|2A+

ωk2

2c2p

(

4 + 6Ω + 6Ω
2
+ Ω

3
)

|A|2A (62)

This equation deals with A which is the value of the velocity potential for y = 0. Using

equation (38), the NLS equation for the enveloppe of the wavetrain is :

iaτ −
ω(1 + Ω)2

k2(2 + Ω)3
aξξ = −

ωk2

8

Ω
2 (

2 + Ω
)2

1 + Ω
|a|2a+

ωk2

8

(

4 + 6Ω + 6Ω
2
+ Ω

3
)

|a|2a (63)

We have left deliberately two nonlinear terms. The first term of the RHS comes from the

coupling between the mean flow and the vorticity while the second can be obtained heuris-

tically from the nonlinear dispersion relation. When Ω vanishes, this coupling disappears

and the heuristic method can be applied. Note that Baumstein15 and Li et al.14 missed this

coupling.

If we use the heuristic method to obtain the NLS equation from the nonlinear dispersion

relation that was found by Simmen & Saffman4, we should obtain only the second term of

the RHS of (63). So, we have shown that the heuristic method is not valid in presence of

vorticity, even in infinite depth.

Equation (63) is rewritten as follows :

iaτ −
ω(1 + Ω)2

k2(2 + Ω)3
aξξ =

ωk2

8(1 + Ω)

(

4 + 10Ω + 8Ω
2
+ 3Ω

3
)

|a|2a (64)

The dispersive and nonlinear coefficients of equation (64) present two poles Ω = −2 and

Ω = −1 and two zeros Ω = −1 and Ω = −2/3 respectively. Nevertheless, we recall that

Ω > −1 and consequently in infinite depth Ω will never be equal to −1 or −2.

For Ω = −2/3, the nonlinear coefficient vanishes and the vor-NLS equation is reduced to a

linear dispersive equation (the Schrödinger equation)

iaτ −
3

64
aξξ = 0 (65)

III. STABILITY ANALYSIS AND RESULTS

The equation (56) admits the following Stokes’s wave solution

a = a0 exp(−iMa20τ) (66)
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We consider the following infinitesimal perturbation of this solution

a = a0(1 + δa) exp[i(δω −Ma20τ)] (67)

Substituting this expression in equation (56) and linearizing about the Stokes’ wave solution,

we obtain

i
∂δa
∂τ

−
∂δω
∂τ

+ δaMa20 + L
∂2δa
∂ξ2

+ iL
∂2δω
∂ξ2

− 3Ma20δa = 0 (68)

Separating the real and imaginary parts, the previous equation transforms into the following

system














∂δa
∂τ

+ L
∂2δω
∂ξ2

= 0

L
∂2δa
∂ξ2

− 2Ma20δa −
∂δω
∂τ

= 0

(69)

This is a system of linear differential equations with constant coefficients that admits the

following solution






δa = ∆a exp[i(lξ − λτ)]

δω = ∆ω exp[i(lξ − λτ)]
(70)

Substituting this solution in the system of equations (69) gives






iλ∆a+ l2L∆ω = 0

(2Ma20 + l2L)∆a− iλ∆ω = 0
(71)

The necessary and sufficient condition of non trivial solutions is :

λ2 = ℓ2L(2Ma20 + ℓ2L) (72)

Discussion : When L(2Ma20 + ℓ2L) ≥ 0 there are two real solutions, the perturbation

is bounded and the Stokes’ wave solution is stable while when L(2Ma20 + l2L) < 0 the

perturbation is unbounded and the solution is unstable. Note that the latter condition

implies that LM < 0.

We set L = L1
ω
k2

and M = M1ωk
2 so that L1 and M1 are dimensionless functions of kh

and Ω only. The growth rate of instability is then

γ =
lω

k2

√

−2M1L1k4a20 − l2L2
1 (73)

Its maximal value is obtained for l =
√

−M1

L1

a0k
2 and is :

γmax =M1ω(ka0)
2 (74)
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Figure 3. Stability diagram in the (Ω, kh)-plane. S : stable, U : unstable.

The instability domain is plotted in figure 3 as a function of the parameters Ω and kh. As

soon as −1/σ < Ω ≤ −2/3 the waves become stable to modulational perturbations. Noting

that Ω is an increasing function of Ω, it is easy to show that −1/σ < Ω ≤ −2/3 corresponds

to −∞ < Ω ≤ −2
√

kg

3
. Hence, there is a value Ωc = −2

√

kg

3
of Ω (depending on k) for which

Ω = −2/3. For a constant vorticity corresponding to Ω ≤ Ωc waves are linearly stable. In

particular, Stokes’ waves of wavenumber k propagating on a linear shear current satisfying

Ω ≤ −2
√

kg

3
are stable to modulational instability whatever the value of the depth may be.

There is a critical value khcrit of the parameter kh, as shown in figure 3, above which

instability prevails. For Ω = 0 (no vorticity) this threshold has the well known value 1.363.

The critical value of this threshold is reached very near Ω = 0.

The linear stability of the Stokes wave solution is known to be controlled by the sign of the

product LM of the coefficients of the vor-NLS equation (56). Let us consider this product

when kh→ ∞

LM = −
ω2

8

(1 + Ω)(2 + 3Ω)(2 + 2Ω + Ω
2
)

(2 + Ω)3
(75)

The condition LM < 0 corresponds to instability whereas LM > 0 corresponds to stability.

In the domain Ω > −1, this product admits one simple root Ω = −2/3. For this value of Ω,

LM changes sign and as a result there is an exchange of stability. Hence, in infinite depth

13



we can claim that there is no modulational instability when −1 < Ω ≤ −2/3.

In order to illustrate the restabilisation of the modulational instability we consider a mod-

ulated wave packet that propagates initially without current in infinite depth and meets

progressively a current with Ω = −0.83 which corresponds to a stable regime. The results of

the numerical simulations of the vor-NLS equation are shown in figures 4 and 5. Temporal

evolutions of the ratio Amax(t)/A0 are plotted without (Ω = 0) and with (Ω = −0.83) shear

current where Amax(t) and A0 are the maximum amplitudes of the modulated wave train at

time t and time t = 0, respectively. In figure 4 the vorticity is initially set equal to zero. At

t = 200 the value of Ω is increased progressively up to −0.83 (that belongs to ]−1,−2/3]) at

t = 600 and remains equal to this value till the end of the numerical simulation. The carrier

amplitude and carrier wavenumber are kA0 = 1/16 and k = 8 respectively. The perturbation

amplitude is one tenth of the carrier amplitude and its wavenumber is ∆k = l = 1. Hence,

the criterion for the occurrence of a simple recurrence is satisfied. For Ω = 0, one can ob-

serve the Fermi-Pasta-Ulam recurrence phenomenon (FPU) which corresponds to a series of

modulation-demodulation cycles. When the shear current is introduced the Benjamin-Feir

instability is strongly reduced. In figure 5, the same numerical simulation is conducted, but

the wave steepness of the carrier wave is now kA0 =
√
3

16
= 0.1083 and so the wavenumber

2l corresponds to an unstable perturbation. In figure 5 is shown a double recurrence in the

absence of shear current. The introduction of the vorticity modifies drastically this recur-

rence. When Ω reaches the value −0.83, the modulational instability is removed. Note in

the presence of vorticity the increase of the amplitude of the envelope of the wave packet

near t = 400. At this time Ω does not yet belong to the stable interval ]− 1,−2/3].

A. Growth rate of instability

The ratio of the maximum growth rate of instability given by equation (74) to its value

in the absence of shear is plotted in figure 6 as a function of Ω for Ω > −2/3 and several

values of kh. In infinite depth, the presence of vorticity increases or decreases the maximum

growth rate of modulational instability, γmax, when Ω > 0 or −2/3 < Ω < 0, respectively.

In finite depth and −2/3 < Ω < 0, the effect of vorticity is to reduce the maximum rate of

growth whereas for Ω > 0 we observe an increase and then a decrease.

In figure 7 is shown the behavior of the normalized maximum growth rate as a function of
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Figure 4. Temporal evolution of the normal-

ized maximum amplitude of the envelope in

the case of a simple recurrence for kh = ∞ :

Ω = 0 (solid line), Ω = −0.83 (dash-dotted

line)
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Figure 5. Temporal evolution of the normal-

ized maximum amplitude of the envelope in

the case of a double recurrence for kh = ∞ :

Ω = 0 (solid line), Ω = −0.83 (dash-dotted

line)

kh for several values of Ω. Herein, the normalization is different from that used in figure 6.

Figure 7 correspond to values of Ω larger than −2/3. For Ω ≥ −2/3, the critical value khcrit

associated to restabilisation is very close to 1.363 and corresponds to Ω ≈ 0. In figure 7 for

Ω > −2/3 the maximum growth rate of instability increases with kh greater than 1.363.

In figure 8 is plotted the normalized rate of growth of modulational instability as a

function of the perturbation wavenumber ℓ for several values of Ω, within the framework of

finite depth. Figure 9 corresponds to the case of infinite depth.

B. Bandwidth instability

In figure 10 is shown the ratio of the instability bandwidth ∆ℓ to its value in the absence

of shear current ∆ℓ0 = ∆ℓ(Ω = 0) as a function of Ω for several values of kh. From equation

(73), the instability bandwidth is

√

2
∣

∣

∣

M1

L1

∣

∣

∣
k2a0. One can observe an increase of the band of

instability followed by a decrease when Ω increases, except when depth becomes infinite.

In table 1 is presented a comparison of our results with those of Oikawa et al. (1987)

in the case of two dimensional flows for two values of kh and several values of the Froude

number. Note that the Froude number, F , they used is exactly Ω. This comparison shows

a quite good agreement between Oikawa et al. and present results.
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Figure 6. Normalized maximum growth rate as a function of Ω for kh = 1.40 (solid line), kh = 1.70

(dashed line) and kh = ∞ (dash-dotted line). γ0max is the maximum growth rate in the absence of

shear current
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Figure 7. Normalized maximum growth rate as a function of kh for Ω = 0 (solid line), Ω = −0.50

(dashed line) and Ω = 3.0 (dash-dotted line). γ0max is the maximum growth rate when kh = ∞
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tion of the perturbation wavenumber ℓ for

kh = 2.0 and Ω = −0.5 (solid line), Ω = 0.0

(dashed line), Ω = 0.5 (dot-dashed line)
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Figure 9. Normalized growth rate as a func-

tion of the perturbation wavenumber ℓ for

kh = ∞ and Ω = −0.5 (solid line), Ω = 0.0

(dashed line), Ω = 0.5 (dot-dashed line)

F = 0.0 F = 0.25 F = 0.5 F = 1.0 F = 1.5 F = 2.0

kh = 1.5 1.6/1.54 1.3/1.28 1.0/1.00 1.2/1.31 6.0/5.96 6.6/6.69

kh = 2.0 2.8/2.75 2.4/2.40 2.0/1.97 4.8/4.72 −/− −/−

Table I. Comparison with results of Oikawa et al. (1987) : F is the Froude number. The first value

is estimated from their figures whereas the second one corresponds to our computations with the

vor-NLS equation

C. Benjamin-Feir index in the presence of vorticity : Application to rogue

waves

Within the framework of random waves Janssen19 introduced the concept of the Benjamin-

Feir Index (BFI) which is the ratio of the mean square slope to the normalized width of the

spectrum. When this parameter is larger than one, the random wave field is modulationally

unstable, otherwise it is modulationally stable. From the NLS equation Onorato et al.20

define the BFI as follows

BFI =
a0k

∆k/k

√

∣

∣

∣

∣

M1

L1

∣

∣

∣

∣

(76)
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Figure 10. Normalized instability bandwidth as a function of Ω for kh = 1.5 (solid line), kh = 1.8

(dashed line), kh = ∞ (dot-dashed line)

where ∆k represents a typical spectral bandwidth.

In infinite depth the BFI without shear current is

BFI0 =
4a0k

∆k/k
(77)

Hence, the normalized BFI writes

BFI

BFI0
=

1

4

√

∣

∣

∣

∣

M1

L1

∣

∣

∣

∣

(78)

The coefficients M1 and L1 depend on the depth and vorticity. Onorato et al.20 considered

the effect of the depth on the BFI. Herein, besides depth effect a particular attention is paid

on the influence of the vorticity on the BFI. In order to measure the vorticity effect on the

BFI, the ratio of the BFI in the presence of vorticity to its value in the absence of vorticity

in infinite depth is plotted in figures 11 and 12. For fixed value of Ω the BFI increases

with depth. Our results for Ω = 0 are in full agreement with those of Onorato et al.20 (the

solid line in figure 11). Furthermore, it is shown for Ω > 0 and sufficiently deep water that

the BFI increases with the magnitude of the vorticity. Therefore, we may expect that the

number of rogue waves increases in the presence of shear currents co-flowing with the waves.

For Ω < 0 the presence of vorticity decreases the BFI. For a more complete information
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Figure 11. Normalized Benjamin Feir Index

as a function of kh for several values of Ω :

Ω = 0.0 (solid line), Ω = 1.0 (dashed line),

Ω = 2.0 (dot-dashed line)
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Figure 12. Normalized Benjamin Feir Index

as a function of kh for several values of Ω :

Ω = 0.0 (solid line), Ω = −0.3 (dashed line,

Ω = −0.6 (dot-dashed line)

about rogue waves, one may consult Kharif, Pelinovsky and Slunyaev (2009)21.

IV. CONCLUSION

Using the method of multiple scales, a 1D nonlinear Schrödinger equation has been

derived in the presence of a shear current of non zero constant vorticity in arbitrary depth.

When the vorticity vanishes, the classical NLS equation is found. A stability analysis has

been developed and the results agree with those of Oikawa et al. (1987) in the case of

1D NLS equation. We found that linear shear current may modify significantly the linear

stability properties of weakly nonlinear Stokes waves.

We have shown the importance of the coupling between the mean flow induced by the

modulation and the vorticity. This coupling has been missed (or not emphasized) by previous

authors.

Furthermore we have shown that the Benjamin-Feir instability can vanish in the presence

of positive vorticity (Ω < 0) for any depth.
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