
HAL Id: hal-00716072
https://hal.science/hal-00716072

Preprint submitted on 9 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LIPN UIMA Platform 0.1.* User/developer guide
Erwan Moreau

To cite this version:

Erwan Moreau. LIPN UIMA Platform 0.1.* User/developer guide. 2011. �hal-00716072�

https://hal.science/hal-00716072
https://hal.archives-ouvertes.fr

Technical Report

LIPN UIMA Platform 0.1.*

User/developer guide

Erwan Moreau
Erwan.Moreau@lipn.univ-paris13.fr

October 2010
last update: May 2011

Contents

1 Introduction 4

1.1 Preamble: what this guide is (and is not) . 4

1.2 Main objectives and content . 4

1.3 History and current state . 6

2 Getting started 6

2.1 Getting help with UIMA . 6

2.2 The LIPN UIMA Platform environment . 6

2.3 Installing the external programs . 7

2.3.1 Installing TreeTagger, Unitex, TagEN, LIA Tagg and LIA NE 7

2.3.2 Installing YaTeA . 8

2.3.3 The recommended way . 9

2.4 Installing the main software . 9

2.5 Quick testing . 10

2.6 Using LIPN UIMA Platform . 10

2.6.1 Creating/editing a CPE descriptor . 10

2.6.2 Running a CPE . 11

2.6.3 Visualizing results . 12

1

2.6.4 Running as a black box . 12

2.7 Compiling sources . 12

2.7.1 Modules dependencies . 13

2.7.2 With Eclipse . 13

2.7.3 With Maven (command line) . 13

2.7.4 SVN repository structure, stable and unstable versions . 14

3 Wrapper annotators: principle, approach and main issues 14

3.1 Definition and issues . 14

3.2 General programming good practices . 16

3.2.1 Genericity, re-usability . 16

3.2.2 Versions . 17

3.3 Input/output issues . 17

3.4 (Threads) concurrency issues . 18

3.5 Dealing with errors . 18

4 The LIPN UIMA Platform Type System 19

4.1 A generic Type System . 19

4.2 Concurrent annotations . 22

4.2.1 Definition . 22

4.2.2 Motivation . 22

4.2.3 Representing concurrent annotations in UIMA . 23

4.3 The extended LIPN TS . 24

4.3.1 Modularity . 24

5 Components: tools and annotators 25

5.1 Handling annotations . 26

5.1.1 Adding annotations: setGenericAttributes . 26

5.1.2 Reading annotations: iterators and filters . 27

5.1.3 Filters management . 27

5.2 Other features/conventions . 27

5.2.1 Language . 27

5.2.2 Charset encoding . 28

2

5.3 Example: the TreeTagger wrapper AE . 29

5.4 Components specific features . 29

5.4.1 Yatea AE . 29

6 UIMA independent packages: module lipn-nlptools-utils 29

6.1 Package fr.lipn.nlptools.utils.externprog . 29

6.1.1 ExternalProgram: principle . 30

6.1.2 Providing input / recovering output of an external program 30

6.2 Package fr.lipn.nlptools.utils.align . 31

6.2.1 Principle . 32

6.2.2 Usage . 33

7 Troubleshooting 33

7.0.3 UIMA general path problems . 33

7.0.4 Wrapped programs problems . 34

7.0.5 Yatea bugs . 34

7.0.6 Miscellaneous . 36

8 Future work 36

8.0.7 LIA bin/lia nomb2alpha Numbers converter . 37

9 Glossary 38

3

1 Introduction

This document describes the “LIPN UIMA Platform” software, developed in 2010 by the author at LIPN1. This
software mainly consists in a UIMA-based evolutive platform devoted to corpora annotation. It is divided into two
modules (lipn-uima-core and lipn-nlptools-utils) and is distributed as an archive containing a environment providing
a few tools (scripts, CPE descriptors, examples etc.). Currently the software is located2 at:

http://www-lipn.univ-paris13.fr/~moreau/uima/lipn-uima-core.tgz

Remark. Two modules are provided: UIMA-dependent packages (annotators etc.) belong to lipn-uima-core, whereas
all other packages belong to lipn-nlptools-utils3. The latter is contained in the former archive as a JAR package,
but can also be found as a standalone archive at the same address.

1.1 Preamble: what this guide is (and is not)

The LIPN UIMA Platform components are quite complex. This document is intended to help the user under-
stand what are their goals, how they can be used, and the reasons of various design/implementation choices. It
is mainly thought as a “user guide”, not as an exhaustive documentation: for precise documentation on some
class/method/parameter, please refer to the Javadoc API. This document is neither a UIMA tutorial: to
obtain information about this framework please see the UIMA official site (see 2.1). It is rather intended to propose
a global point of view on the LIPN UIMA Platform components, with explanations about how these components
work together. It also details the conventions/guidelines which have been used, and that the user should preferably
also follow when coding new components using/relating/belonging to LIPN UIMA Platform. Thus this guide is
intended to different kind of readers/users:

• If you4 only want to run the components from a Java program or from a command line, see 2.6.4.

• If you only want to use the UIMA independent packages, see 6 and API.

• If you have at least basic knowledge about UIMA (main audience) and you want to be able to use the
components in an unconstrained UIMA environment, you should preferably have a look at all sections, but
you can esily skip details/implementation parts (in particular section 6). Do not forget to read details about
the annotators parameters in the descriptors files.

• If you plan to develop new UIMA components using LIPN UIMA Platform ones the same applies, but you
should probably skip less parts.

• If you want to correct/improve the components that this document describes, I humbly suggest you read the
whole guide (and I will probably hear about you sooner or later!)

The structure of this document is perhaps a bit confused, because there are many ways to tackle UIMA software
in general and this one in particular. This user guide should hopefully make clear most aspects of the components,
but feel free to contact the author if you think something is wrong/missing/should be improved5.

1.2 Main objectives and content

These software components were created in the following goals:

1This work was funded by OSEO the Quaero project. The preliminary steps of this work were implemented by Sondes Bannour.
The author also thanks Fabien Poulard, PhD student at LINA, who helped him a lot to understand UIMA mechanics during this work.

2If the link does not exist anymore, please contact the author.
3Actually the latter still depends on the uima-core package, but only because the UIMA Logger class is used (this technical point is

not significative).
4In these sentences “you want to ...” can be replaced with “your PhD advisor asked you to ...” if applicable.
5The author also apologizes for the very poor English in this document, sorry!

4

http://www-lipn.univ-paris13.fr/~moreau/uima/lipn-uima-core.tgz

• Update/improve existing software tools used at LIPN, mainly to make them more flexible (in the way to use
them) and more robust. These tools are (more or less) those previously used in the Ogmios/Alvis platform
(TreeTagger and YaTeA essentially). In this goal, tools are provided to use the corresponding components as
“black boxes”, allowing the user not to care about all the UIMA stuff.

• Build the core of a UIMA platform devoted to LIPN research tasks (semantic annotation), in order to initiate
a long-term approach towards a better organization of software developped in the lab. This is the main reason
why UIMA has been chosen. In particular, we hope that future pieces of code will be more uniform, easier
to combine with each other and also easier to maintain. Thus choices are made to make this platform as
evolutive as possible.

• Propose a new approach in the design of an NLP platform, with two main ideas:

– Using a very generic Type System (see 4) in order to promote the modularity of components in a
processing pipe. Following UIMA’s principles about making data transmission easier between different
components not knowing about each other (or not much).

– Making possible and as convenient as possible the use of concurrent annotations (see 4.2). This point
requires that components are designed in a way which makes it possible, and also suitable tools for a
user.

As a side effect, this library also fulfill several other needs:

• It provides tools for calling an external program (see 6.1) from Java in a quite robust, safe and convenient
way. The library contains both a UIMA independent component and a UIMA generic annotator (see 3).

• It provides tools for re-aligning and/or converting structured data (mainly intended for NLP standard anno-
tations format) in a uniform and modular way (see 6.2). A UIMA independent package is provided, which
can also easily be used inside UIMA.

Most of the UIMA annotators provided in this library are wrappers for previously existing tools. This choice is
done for time and cost reasons: it is clearly more reasonable to use these existing annotation tools, among which
some are LIPN expertise, rather than re-coding them from scratch in a “pure” UIMA environment. That is why
these first components will actually be wrappers for what we call “external programs”, in the sense that they
run as a black box (in the UIMA platform viewpoint). This is clearly not the ideal situation: UIMA provides a
very complete, convenient and safe environment for connecting annotators together in some complex system (error
handling, logging, resources management, deployment, etc.), so calling external programs introduces a lot of possible
flaws (portability problems, I/O errors, uncontrolled use of resources, concurrency errors, etc.). This a critical point
because a complex task can involve quite a lot of different components, so it can be very vulnerable to any problem
in the chain: clearly one does not want that the complete system fails because a single document makes a single
component crash due for example to some minor charset encoding problem.

Thus a large part of this work has been devoted to deal with these drawbacks with care. This is actually the reason
why the code has been divided into two distinct modules: lipn-uima-core contains the real UIMA components, while
lipn-nlptools-utils is devoted to this kind of problems and consists in several utility packages which are (almost)
UIMA independent (see 1).

One of the most important consequences about this recycling strategy is that the LIPN components are not
portable (at least they can not be considered portable). Due to the software used as external programs itself
and/or the constraints to use it from inside the platform, all wrapper components are Linux (or Unix-like) only!
The following (main) components are provided (most of them handle only English and/or French as language):

• The TagEN named entities recognizer (for French and English), created a few years ago at LIPN by Thierry
Poibeau and Jean-François Berroyer. An updated version has been integrated to the platform. Warning:
resources used by this tagger are a bit old.

5

• The TreeTagger Part-of-speech tagger6, by Helmut Schmid, including tokenizers, lemmatizers and chunkers
for a lot of languages (English, French, German, Spanish, Italian, Dutch, Greek, Bulgarian).

• The “LIA tools” are a set of taggers for French and English under GPL (General Public Licence) by Frederic
Bechet. It includes a tokenizer, a POS tagger, a lemmatizer and a NE recognizer (French only).

• The YaTeA term extractor for French and English, by Thierry Hamon and Sophie Aubin.

Some more packages provide tools for the common tasks of LIPN UIMA annotators. These are not only provided for
convenience, but also to ensure that all annotators follow some general guidelines, in order to strengthen consistency
and compatibility among components.

1.3 History and current state

This library has been written from June to December 2010, using UIMA 2.3.0 and Sun/Oracle Java 6 SDK.
Since Apache UIMA is a dynamic fast-growing project7, it is possible that future UIMA versions make some
parts of this work obsolete. Future maintainers are encouraged to follow UIMA developments and make improve-
ments/corrections appropriately!

The current version 0.1.* proposes the basic bricks of this UIMA platform. A lot of design/implementation choices
have been made: most of them (or at least the major ones) have been carefully thought before adoption. In general,
these choices are meant to provide an approach that future component developers can simply follow, unless there
is an important reason not do so.

Nevertheless, as of version 0.1.* the LIPN UIMA Platform library should be considered as a beta version: there are
probably still bugs, and maybe even some crucial parts will have to be modified in the future. In particular, it is
possible that future versions do not satisfy backward compatibility (even if compatibility should always be prefered
if possible). Indeed there is not enough retrospect to consider this library as an achieved product. This is one of
the reasons why this document will try to detail design and implementation choices whenever possible, in order to
make future evolution easier.

About future work, see also 8.

2 Getting started

2.1 Getting help with UIMA

This document does not address UIMA general documentation. The reader who wants to learn about UIMA can
refer to the UIMA official site8, which contains documentation and tutorial(s). There are also mailing lists to which
users can ask their questions: the official one of course9, but also the UIMA-FR one. UIMA-FR10 also provides
some good tutorials and explanations for beginners (in French).

2.2 The LIPN UIMA Platform environment

Basically UIMA is only a set of Java packages, which can simply be used by adding the corresponding JAR archives
in the CLASSPATH variable. However “installing” UIMA (uncompressing the archive and possibly setting Eclipse

6There is also a UIMA TreeTagger wrapper proposed by the LINA: http://www.lina.univ-nantes.fr/-Composants-UIMA-.html
7It became an Apache Top-Level Project in May 2010.
8http://uima.apache.org
9See http://uima.apache.org/mail-lists.html

10http://uima-fr.org

6

http://www.lina.univ-nantes.fr/-Composants-UIMA-.html
http://uima.apache.org
http://uima.apache.org/mail-lists.html
http://uima-fr.org

plugins) makes life easier because the apache-uima directory contains a lot of tools, examples, descriptors (and
using UIMA Eclipse plugins is more convenient). The LIPN UIMA Platform has been packaged in the same way:
the essential packages are contained in two JARs (corresponding to modules lipn-uima-core and lipn-nlptools-utils),
but a “user friendly” environment is provided: it contains API documentation, scripts, examples, descriptors.
Additionally this environment is an “src” release, that is to say it contains the Java sources and the way to compile
them easily (see 2.7.3). For all these reasons we recommend using this environment11.

A module structure contains the following directories:

• src contains the Java sources

• lib contains the required libraries (generated after compiling with Maven)

• bin contains the binary classes after compilation (generated after compiling)

• target contains the final JAR archive of the module (generated after compiling with Maven)

• doc contains the Javadoc generated API.

Additionaly the following directories are provided in lipn-uima-core:

• desc contains the descriptor files

• resources contains resources files (needed in the CLASSPATH and included in the final JAR)

• conf contains configuration files (like the logging parameters file)

• install-scripts contains scripts to install external programs (see 2.3)

• tests/data contains example data (see 2.5)

• tests/CPEs contains example CPEs (see 2.5)

• output contains the resulting XMI files after running a CPE contained in tests/CPEs

We tried to make this environment as easy to use as possible. In particular relative path are used, since an absolute
path is more likely to be wrong in general (see also 7.0.3). There is no need to set an environment variable indicating
the path to project root (contrary to the UIMA SDK environment), but consequently some path problems may
happen, in particular when using the provided examples in the tests directory from another location: whenever
possible, call a test from the root project. If this is not possible/convenient, be sure to include the right parameters
concerning path and/or CLASSPATH (the lipn-run-cpe.sh script handles some options to do so). Anyway, be
prepared to face such problems using UIMA!

2.3 Installing the external programs

2.3.1 Installing TreeTagger, Unitex, TagEN, LIA Tagg and LIA NE

As explained in the introduction, the current library needs some external software to run since most components
are wrappers. Depending on the user needs, it is not always necessary to install all programs:

• TreeTagger12 (no version number in TreeTagger: use a recent version, since the authors sometimes improve
the soft/correct bugs)

• Unitex13 version ≥ 2.0 (needed for TagEN). Tested with 2.0 and 2.1beta

11And you can of course release a program using LIPN UIMA Platform by simply providing the JAR files (or, better, specifying the
dependencies in a Maven project), as usual.

12http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
13http://igm.univ-mlv.fr/~unitex

7

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
http://igm.univ-mlv.fr/~unitex

• TagEN14 version ≥ 2.0

• LIA Tagg15 version ≥ 1.1 (needed for LIA NE). Tested with 1.1.

• LIA NE16 version ≥ 2.2. Tested with 2.2.

• YaTeA17 version 0.5.

A few scripts are provided to help installing these tools, but be careful: they are not robust at all! They should not
destroy anything (hopefully!), but they will likely fail if the version changes or for any unexpected configuration.
These scripts actually only download the program, execute any needed compilation step as indicated in each program
documentation, and finally run a simple test. In other words, each script executes the normal procedure you would
have to do by hand. If it does not work run the normal manual installation, and if you experience problems you
can have a look inside the corresponding script to understand what is wrong. A few more details are available by
running any of these scripts with the -h option. The scripts are located in the install-scripts directory of the
lipn-uima-core environment. You can run install-scripts/install all.sh to try to install all programs except
YaTeA. If you plan to install YaTeA (see below), it is more convenient to install it before running install all.sh,
because it will try to create links to the executable/config files needed by the library.

2.3.2 Installing YaTeA

There is no script for installing YaTeA, you must install it manually because it uses the Perl modules install
mechanisms. The more convenient way to install YaTeA is to use the CPAN command line tool:

• run it as root if you want to install YaTeA in the standard /usr/... location.

• on the contrary, if you plan to install it locally (say in ~/my perl libs) set PERL5LIB environment variable
so that it includes your local Perl modules directory, e.g.:
export PERL5LIB=$PERL5LIB:~/my perl libs/share/perl5:~/my perl libs/lib/perl5

• run cpan (if this is the first use, cpan asks you about the configuration: you can accept the automatic
procedure)

• if you plan to install YaTeA locally, before installing YaTeA type the following commands to tell cpan where
is the target dir (inside cpan):

– o conf makepl arg PREFIX=~/my perl libs

– o conf make install arg PREFIX=~/my perl libs

– o conf commit (to remember changes)

• inside cpan, type install Lingua::YaTeA and allow cpan to look for dependencies. Normally that is enough,
however you will likely experiment errors: the compilation (usually) works fine but the process fails when trying
to copy executable and configuration files to the right directories. You wil probably have to copy these files
manually18:

– cd ~/.cpan/build/Lingua-YaTeA-0.5-<xxxxxx>

– cp -r etc/yatea /usr/local/etc (root) or cp -r etc/yatea ~/my perl libs/etc (local)

– cp -r share/* /usr/local/share (root) or cp -r share/* ~/my perl libs/share (local)

– cp -r bin /usr/local/bin (root) or cp -r bin ~/my perl libs/bin (local)

If the cpan procedure fails, you will have to install YaTeA manually:

14Currently available at http://http://www.lipn.univ-paris13.fr/~moreau/tagen-2.0.1.tgz (temporary location)
15http://pageperso.lif.univ-mrs.fr/~frederic.bechet/download_fred.htm
16http://pageperso.lif.univ-mrs.fr/~frederic.bechet/download_fred.htm
17http://search.cpan.org/~thhamon/Lingua-YaTeA-0.5
18The directory structure may vary depending on your system.

8

http://http://www.lipn.univ-paris13.fr/~moreau/tagen-2.0.1.tgz
http://pageperso.lif.univ-mrs.fr/~frederic.bechet/download_fred.htm
http://pageperso.lif.univ-mrs.fr/~frederic.bechet/download_fred.htm
http://search.cpan.org/~thhamon/Lingua-YaTeA-0.5

tar xvfz Lingua-YaTeA-0.5.tar.gz

cd Lingua-YaTeA-0.5

perl Makefile.PL [PREFIX=~my_perl_libs]

make

make test

make install

You will probably face missing dependencies (then the make step will fail indicating their names), and have to install
each such module manually (using the same procedure).

IMPORTANT: There are several bugs in Yatea, some of them require manual correction. Make sure to check
part 7.0.5 for instructions.

2.3.3 The recommended way

By default all the components are parameterized to run the suitable program located in a directory named tools:
for example, the TreeTagger wrapper will look for the program tools/TreeTagger/bin/tree-tagger. Of course
the executable name can always be provided as a parameter, but to run these components in the most convenient
way we recommend to create a directory called tools containing all needed external software: to be able to run all
components, tools must contain the following directories (with the exactly same name):

• tagen2 for TagEN, containing a directory (possibly a link) called unitex containing (resp. refering to) Unitex
≥ 2.0;

• TreeTagger for TreeTagger ;

• lia tagg and lia ne for LIA tools ;

• The YaTeA case is a bit more complex because of the way YaTeA is installed by default19:

– a symbolic link YaTeA pointing to the directory my-path-to-perl-modules/share/YaTeA (which con-
tains config and locale subdirectories) ;

– a directory bin containing a symbolic link to the yatea executable.

Warning: most of these tools can not be installed in a path containing whitespaces.

Notice that you can use symbolic links everywhere in this file structure, e.g. tools and/or TreeTagger may be a
link to the real directory, and/or any of the other directories.

2.4 Installing the main software

The software can be found at: http://www-lipn.univ-paris13.fr/~moreau/uima/lipn-uima-core.tgz

Since LIPN UIMA Platform is a set of Java packages, strictly speaking the installation procedure is very simple
(see below). However you will probably want to learn more about the “environment”, especially if you experiment
problems: details are provided in 2.2. Additionally dependencies between modules are described in 2.7.1, and you
may also want to compile sources (or understand how it works): see 2.7.

the LIPN UIMA Platform JAR packages can be directly (simply by adding their location to your CLASSPATH or
calling java with the -cp option). However LIPN UIMA Platform is provided with an “environment” intended
to make it more convenient to use: in this section we will consider using this environment. You only need to
decompress the .tgz archive wherever you want:

19This point could be improved in the future

9

http://www-lipn.univ-paris13.fr/~moreau/uima/lipn-uima-core.tgz

tar xvfz lipn-uima-core.tgz

The lipn-nlptools-utils package is included in the environment. Moreover there is no real need to install UIMA to
use LIPN UIMA Platform, it is only required to have all the required JAR packages (including the UIMA ones).
However for any “not beginner” use the UIMA environment is recommended (see UIMA official documentation),
because it contains useful tools (see also 2.2).

2.5 Quick testing

In the LIPN UIMA Platform environment several examples are provided in the tests directory. To test the
installation you can simply call the ./lipn-run-cpe.sh script with one of the CPEs as parameter (from the
environment root), for example:

./lipn-run-cpe.sh tests/CPEs/lia-tagg-chain+lia-ne-fr-small-iso.xml

./lipn-run-cpe.sh tests/CPEs/tagen-eng-small-utf8.xml

./lipn-run-cpe.sh tests/CPEs/tt-yatea-fr-small-iso.xml

For each of them, the expected output is a .xmi file which will be written in the output directory (notice that the
first and the last example use the same input so the output filename is the same). If an error occur, refer to 7.

Warnings:

• Some of the CPEs may not work, because the data they refer to is not included as part of the environment.

• Some of the CPEs process big-sized files, therefore need a lot of memory to run (see the lipn-run-cpe.sh

script options, Java documentation and 7.0.6).

2.6 Using LIPN UIMA Platform

LIPN UIMA Platform is a set of UIMA components, and as wrappers components they need that the underlying
software be installed. Basically that is all that experienced UIMA users need to know; nevertheless we provide
below a short survey about the different ways to use UIMA components, together with some more specific notes.

2.6.1 Creating/editing a CPE descriptor

A CPE descriptor contains all the information needed to run a process: the components themselves (collection
reader, AEs and possibly CAS consumers) and for each of them values for its parameters. In particular it is worth
noticing that the input data is also specified in the CPE, since it is usually a parameter of the collection reader20.

Of course The CPE descriptor can be created by hand or using any XML editor. For convenience a standard
graphical editor is provided in UIMA. Even if this editor has some limitations (and sometimes even bugs), it makes
the task easier, in particular by making visible the parameters which can be set for each component (though the
description of a parameter or a component is not visible). The CPE GUI can be called in three different ways:

• by running class org.apache.uima.tools.cpm.CpmFrame

• by using the UIMA script $UIMA HOME/bin/cpeGui.sh

• in Eclipse, by running the UIMA example application UIMA CPE GUI

20Because even if files are frequently used as input, there is no reason to limit a CPE to this kind of input: one can imagine a collection
reader grabbing its input on the internet, for example.

10

One of the most important limitations of the CPE GUI is about “imports by name”. In UIMA descriptors (not
only for CPEs) one can use either “import by location” or “import by name” to include an external element (in
this case a component). The former requires the location of the imported descriptor file in the filesystem, whereas
the latter requires the name of the descriptor in the (current) Java CLASSPATH. Using “imports by name” is far
more convenient: this way descriptors are read in the CLASSPATH, thus one has only to include the right JAR files
in it (the lipn-uima-core JAR for example), so there is no path problem, and no need for the user to change the
descriptor each time she wants to run it from a different location.

The CPE GUI can not:

• write any import by name (only by location),

• and read a CPE containing “import by name” for the Collection Reader and/or the CAS consumer (strangely
it seems to work for AEs).

As explained above, this is a real problem in order to make the descriptor independent from the place it is used.
This is probably something that will be corrected sooner or later in IUMA. Currently we recommend to:

1. create and configure a CPE using the CPE GUI, possibly test it, and save it

2. for future use (i.e. for a CPE intended to be run several times possibly in different locations), open the
descriptor using any XML editor (or any editor!) and modify it by hand: you only have a few lines to change
to replace the “imports by locations” with “imports by name”21 (see UIMA doc).

This is the way the provided example descriptors have been created (see 2.5). As aforementioned, the drawback
is that such descriptors can not be open using the CPE GUI. In the future, an alternative CPE graphical editor
should be released from the LINA22.

2.6.2 Running a CPE

There are several ways to run a CPE:

• using the UIMA “run CPE” tool:

– running class org.apache.uima.examples.cpe.SimpleRunCPE

– using the UIMA script $UIMA HOME/bin/runCPE.sh

– in Eclipse, using the UIMA example application UIMA Run CPE

• using the lipn-run-cpe.sh script (see below)

• using the UIMA CPE GUI tool:

– running class org.apache.uima.tools.cpm.CpmFrame

– using the UIMA script $UIMA HOME/bin/cpeGui.sh

– in Eclipse, using the UIMA example application UIMA CPE GUI

• using the UIMA document analyser, which can be used to run a CPE and/or visualize annotations:

– running class org.apache.uima.tools.docanalyzer.DocumentAnalyzer

– using the UIMA script $UIMA HOME/bin/documentAnalyzer.sh

– in Eclipse, using the UIMA example application UIMA Document Analyzer

• and finally from a Java application (see UIMA doc)

21Frequent error: don’t forget to remove the .xml filename extension!
22The tool is called Dunamis and is already available for testing, contact Jérôme Rocheteau for more details.

11

The script lipn-run-cpe.sh is intended to make a bit more convenient the configuration needed to start a CPE
in the context of the LIPN environment. It will use either the UIMA standard way to run a CPE (UIMA HOME must
be set), or use the CLASSPATH variable to read UIMA libraries. This script should preferably be called from the
project root, especially when using it with the test data provided with lipn-uima-core (but this is not mandatory).
Run ./lipn-run-cpe.sh -h for details.

2.6.3 Visualizing results

The standard way to store the annotated documents in UIMA is the XML XMI standard format (see UIMA doc).
Such an output is produced by the UIMA standard CAS consumer org.apache.uima.tools.components.XmiWriterCasConsumer
(descriptor available in $UIMA HOME/examples/descriptors/cas consumer/XmiWriterCasConsumer.xml). There-
fore there are UIMA tools to visualize the artifact and annotations contained in such files:

• The UIMA document analyser:

– running class org.apache.uima.tools.docanalyzer.DocumentAnalyzer

– using the UIMA script $UIMA HOME/bin/documentAnalyzer.sh

– in Eclipse, using the UIMA example application UIMA Document Analyzer

• The UIMA visualizer:

– running class org.apache.uima.tools.AnnotationViewerMain

– using the UIMA script $UIMA HOME/bin/annotationViewer.sh

– in Eclipse, using UIMA example application UIMA Annotation Viewer

Warning: a very frequent error consists in passing a wrong TS as a parameter to the visualizer. Usually there is
no error message, but any annotation type which is not in the TS will not be shown in the result: thus not seeing
all annotations (sometimes no annotation at all), the user may erroneously think that the process failed, although
they are simply not visible.

This tool has also some limitations. The Dunamis tool planed by the LINA should be more complete (see above).

2.6.4 Running as a black box

Unfortunately there was not enough time to implement this behaviour. Hopefully that will be achieved later.

2.7 Compiling sources

This part explains how to compile sources, this is not necessary for most users (who can simply use the JAR archives).
We propose two methods, using Eclipse and Maven. Of course it is also possible to compile these modules without
these tools, but be careful: do not assume that basic dependencies between Java classes are enough, because UIMA
components do not have a main method. That means that the project does not have a tree structure concerning
compiling dependencies. Moreover do not forget to copy the content of the resources and desc directories into
bin.

LIPN UIMA Platform was developed using UIMA 2.3.0 and Sun/Oracle Java 6 SDK. If you encounter problems
when trying to compile/run the software, check that you use the Sun JRE23.

23In Eclipse: go to Window/Preferences/Java, then in Installed JREs you can configure the JRE to use, and in Compiler you can set
the Java version.

12

2.7.1 Modules dependencies

The following dependencies must be satisfied for the components to run. If you experiment Class not found errors
when testing any component, check that your CLASSPATH contains the right modules.

• The lipn-nlptools-utils requires the following modules: commons-cli24 and uimaj-core (used only for the
Logger interface).

• The lipn-uima-core requires the following modules: uimaj-core, uima-cpe.jar, uima-document-annotation.jar,
uima-tools.jar and commons-cli. It also requires lipn-nlptools-utils.

In both modules these packages are included in the lib directory. Be careful however: there may exist newer versions
at the time you use it (possibly including bug corrections). Notice that you can simply use the lipn-nlptools-utils
JAR to compile the lipn-uima-core (instead of compiling both).

2.7.2 With Eclipse

To open the lipn-nlptools-utils using Eclipse, create a new Java project and choose Create project / Java / From
existing sources. Normally the needed JAR files will automatically be loaded from the lib directory; if not, add
them manually to the Build path.

To open the lipn-uima-core using Eclipse, create a new Java project and choose Create project / Java / From
existing sources. Normally the needed JAR files will automatically be loaded from the lib directory; if not, add
them manually to the Build path (see 2.7.1). Then add the desc and resources directories as source folders.
Binaries will be written to the bin directory.

If you want to use the version oflipn-nlptools-utils you opened as an Eclipse project, you should remove the corre-
sponding JAR from the Build path (or remove it from the lib directory before creating the project), and add the
lipn-nlptools-utils to the Build Path as a project.

Note: if you work with svn and do not want to use the svn Eclipse plugin, you can exclude .svn folders from the
buiding process. This is useful in particular for resources folders, because Eclipse will complain about duplicate
resources otherwise (warnings). Simply go to Window -¿ Preferences. . . , Java -¿ Compiler -¿ Building. Under
“Output folder” add “, .svn/” to “Filtered Resources” (so that you get “*.launch, .svn/”)25.

2.7.3 With Maven (command line)

Apache Maven26 is a software project management and comprehension tool. This tools is intended to make easier
the compiling/deploying process, in particular in dealing with dependencies between projects. As a very rough
comparison, its role is similar to tools like make or ant. This tool is probably already a standard one in Java
development, and is frequently used in the UIMA community (because sharing UIMA components often requires
to deal with dependencies).

That is why Maven is used in the LIPN UIMA Platform modules. Nevertheless we did not use the standard Maven
project structure, in order that the modules could esily be used without Maven27. The main part of the POM
(Maven pom.xml config file) is:

<build>

24Used to parse command line options.
25From http://blog.projectnibble.org/2009/08/11/repost-make-eclipse-ignore-svn-directories
26http://maven.apache.org
27We have followed a tutorial by Fabien Poulard: http://www.uima-fr.org/planet/#article10

13

http://blog.projectnibble.org/2009/08/11/repost-make-eclipse-ignore-svn-directories
http://maven.apache.org
http://www.uima-fr.org/planet/#article10

...

<sourceDirectory>src</sourceDirectory>

<outputDirectory>bin</outputDirectory>

<resources>

<resource>

<directory>desc</directory>

</resource>

<resource>

<directory>resources</directory>

</resource>

...

</resources>

</build>

Compiling using Maven28 is very simple: run mvn install (at the root of the project)29 for lipn-nlptools-utils firstly,
then for lipn-uima-core, because the latter depends on the former30. If all is fine a JAR archive has been created
in the target directory.

Remark for Maven beginners: the install phase is almost the highest in the compiling process. It actually implies
(if needed) several other phases among which:

• mvn compile which only compiles sources (thus updates the bin directory)

• mvn package which creates a JAR archive stored in the target directory

• mvn install which installs the module in the Maven local repository31, so that it can be used by other
modules needing this one as a dependency.

2.7.4 SVN repository structure, stable and unstable versions

The current svn repository contains the development version(s) in the dev directory, whereas stable releases are put
in the pub directory. Developers writing to the repository are encouraged to stick to such a policy (or a better one)
in the future. The following Maven convention is also used: development versions are named with suffix -SNAPSHOT.
As usual, using such a version is unsafe but possibly corrects bugs compared to the latest stable release.

3 Wrapper annotators: principle, approach and main issues

3.1 Definition and issues

The first LIPN components (and actually most components in version 0.1.*) which have been created are wrappers
for previously existing programs. An external program wrapper is a UIMA annotator which delegates its work to
some external program. Thus such a component consists in

1. Initializing any parameter that the external program needs (possibly resources etc.)

2. Reading the CAS and converting the data (text and/or annotations) in the format expected by the external
program

28Installing Maven is also simple: generally you just need to run sudo apt-get install maven2.
29Maven will probably download a lot of dependencies the first time it is used. This happens only once.
30Currently you can not compile only lipn-uima-core without, because the lipn-nlptools-utils must be in the local Maven repository

in order to satisfy the dependency.
31By default it is $HOME/.m2/repository.

14

3. Calling the external program, and

• providing it with the input (obtained from the CAS and converted)

• receiving its output

4. Reading the external program output and converting it back to the CAS (finding the annotations and adding
them)

5. Cleaning any temporary element

As one can see, the main task of such an annotator consists in converting the input and output. But there are
serious issues to address:

Portability/Safety Using a system call is very unsafe, especially in Java because this language is intended to be
portable. Of course, a system call is almost never portable (as of version 0.1.*LIPN UIMA Platform compo-
nents are only Linux/Unix compatible). Moreover it relies on the existence and behaviour of a component
which is out of Java control. A lot of general safety mechanisms become ineffective (exceptions, shutdown
hooks, concurrency, etc.), and this is the reason why using such an approach requires a lot of care to minimize
the risk of errors/problems.

Safety/UIMA process The UIMA framework is supposed to have complete control over the process during a run.
This is how safety is guaranted in a complex process where there can be concurrency issues, network issues,
etc. UIMA deals in a subtle and robust way with errors (suitable exceptions), with resources management,
with logging possibilities. Thus the general UIMA processing flow is broken in duch a context.

Ease of development/use In general, it will be more difficult to use a wrapper component than a standard one:
of course the user must install the external program, and has sometimes to accept unexpected constraints.
Moreover the component must (try to) handle all errors that could happen inside this program, which is
harder in this (more or less) black box case. It must also make these errors as clear as possible for the user,
in order that he does not have to look at the external program level to understand what is wrong. Flaws in
these development requirements would clearly imply very complex problems for the user.

Input/Output transmission:

• Conversions entail potential flaws in the data viewpoint. Format errors may occur because sometimes it
is hard to take all possible cases into account. Additionnaly the external program format is not always32

fully specified (forbidden/special characters, program expecting or returning “normalized” sequences,
etc.)

• I/O physical transmission can be achieved in different ways: file stored in the disk is the most simple
one, but some programs can/must read/write their input/output as the standard input/output stream
(stdin/stdout). Both methods have drawbacks and advantages (see 3.3).

• Whatever the I/O transmission method, once again there are important safety issues since any I/O
operation can fail or block for various reasons.

Efficiency Calling an external program in a UIMA process necessarily implies time and space waste: data con-
version and transmission are clearly an additional step in the process. Furthermore, there can be serious
memory overload problems because the memory still contains all the UIMA stuff in memory (including the
CAS) during the call. As a rough approximation, that means that the document and its annotations will be
stored twice during the execution of the external program (see 3.3 for more details).

The lipn-nlptools-utils module has been created to deal with these issues (see 6). But as a general rule these issues
imply that a strict and careful programming policy is required. Indeed, there are a lot of possible flaws and the
developer should not forget that the UIMA components could be used in various contexts and with various kind of
data. If these components are used as a part of a big UIMA system processing large documents, the user should be
able to trust the basic annotators and should not have to face any hazardous behaviour. Above all he should not

32Almost never actually!

15

have to dig into the annotator code to undertand what happened if an error occured. The following guidelines are
intended to prevent such problems.

Remark: during the period where LIPN UIMA Platform was implemented, another wrapper generic annotator has
been created by Nicolas Hernandez at LINA, see:
http://enicolashernandez.blogspot.com/2010/10/reutiliser-des-outils-externes-via-des.html [fr]

3.2 General programming good practices

To sum up, the context is: (1) the coded components are intended to be used in various not already known contexts,
(2) the coded components should be able to deal with huge documents, (3) it uses black boxes sub-programs, and
(4) a lot of possible technical flaws are expected... That may sound obvious, but programming in such a context
requires more care than when you have to code some simple script that will be used only once or twice. Thus a few
classical guidelines are in order:

• Documenting the components outside: preparing clear Javadoc API, possibly enriching it with some other
documentation (user guide)

• Documenting the components inside: comments for future developers/maintainers;

• Logging, i.e. writing any intermediate information that could be useful for debugging to the log file. Notice
that UIMA comes with a built-in logging mechanism;

• Testing components as much as possible;

• Searching and using previously existing objects/methods (which have been widely tested and used) rather
than writing possibly buggy code to do the same.

• Searching and using any standard/convention about representing data of any kind (e.g. using XML rather
than a component-specific tagging format, read/write charset encoding names rather than assuming always
some particular charset, indexing String in the standard Java way, etc.)

• Avoiding ambiguities or possible coding flaws: for example by removing any warning at compile time33: even
if the developer knows what he does, someone else could modify the code in a way which makes it buggy.

It is impossible to guarantee that a code is error-free; however it is possible to make the code simpler to cor-
rect/debug/maintain. Clearly that takes time, but this is the price to pay for “long-term programming”, which is
the objective to have in mind wuth UIMA.

3.2.1 Genericity, re-usability

The Object Oriented Programming paradigm offers convenient “tools” to develop in a generic way, that is to
say a way which permits to re-use as much as possible existing code, by factorizing common methods/objets and
specializing them whenever necessary. This is a time consuming effort: indeed, it is usually simpler to analyze each
particular problem/task one after the other and not bother about the previous or next one. Nevertheless it is once
again not a good solution in the long term: planning future uses of the implementation makes it more scalable and
easier to maintain; additionally, it is useful to guarantee some local form of standardized behaviour between similar
tools. As an example, Reader and Writer objects34, which are classical Java objects, are used a lot in LIPN UIMA
Platform: this permits to process the same way (for example) a text file, a String object or a text stream (like
stdin/stdout).

In most complex NLP components, there are multiple small choices which are mainly conventions, in the sense
that any option is acceptable; however using always the same option (which is easy when relying on generic objects

33This is rather easy with an IDE like Eclipse (no, not by using @SuppressWarnings ;-).
34To avoid confusion, please recall that a Reader (resp. Writer) is not an object which reads (resp. writes), but an object in which

it is possible to read (resp. to write).

16

http://enicolashernandez.blogspot.com/2010/10/reutiliser-des-outils-externes-via-des.html

since the same method is called) improves consistency between different components, and finally makes a whole
system more robust. Needless to say, it is also a huge advantage when debugging: (1) when trying to track a bug,
it is easier when all similar code is located in the same place; (2) when correcting a bug/problem, the modification
applies to all components using this generic object, contrary to the case where it is necessary to make the same
correction in the different components (risking to forget it somewhere). Of course, such a generic implementation
may seem more complex (and actually is generally more complex).

3.2.2 Versions

Remark For future developers of LIPN UIMA Platform: This system is intended to be scalable/progressive, so it is
susceptible to become more and more complex when growing. This is why it is important to have a clear versioning
policy, at least making the difference between stable and unstable versions and keeping a copy of old stable releases.
Currently we only initiated a very simple versioning approach; a clear policy should be adopted in the future.

One of the most important points in following a rigorous version policy (like in most recent implementations of any
software) is not to consider that a software is achieved: systems are too complex to be considered achieved because

• each component rely on a lot of other components (ranging from the libraries used to the programming
languuage and even the operating system), which can change themselves.

• at least in NLP, any component which can seem simple is actually not: there are always different choices,
formats, features which can need to be modified in the future.

• Finally a developer who pretends to provide a totally bug free code should be asked to prove it!

As a consequence software components evolve, and it is necessary to organize this evolution in a rigorous way.
software versioning tools are now widely used and there are a lot of guides/documentation about using them wisely.

3.3 Input/output issues

When calling an external programs from a UIMA process, the UIMA annotator task consists in extracting data
from the CAS, formatting it, sending it to the program as input, and then to receive the program output, reading
it and adding new annotations to the CAS. For the sake of efficiency the data is transmitted “on the fly” whenever
possible: indeed, a lot of tools read their input as a stream (stdin) and write their output as another one (stdout).
Transmitting data on the fly avoids storing it as a file or in memory: firstly this saves space, and (memory) space
may sometimes be a problem with very large documents. Secondly this is a gain of time, since both in input and
output the receiver does not have to wait for the sender to transmit the whole data (the gain is even more important
compared to storing the data as a file, since disk access are very time consuming).

A comparison between the different ways to transmit data from the CAS to the external program and back is given
in table 1. In this table

• p means “process” (time for the external program to process the data)

• [rw][mds] means Reading|Writing Memory|Disk|Stream

• // means “simultaneously”, but not necessarily in different real threads/processes: for example the reading
and writing operations in reading from a file to memory are called “simultaneous” here. It is worth noticing
that x//y is lower or equal than x+y: maybe nearly equal if in the same thread, but lower if in different
threads.

Moreover two cases (A) and (B) are considered:

17

(A) The external program needs to store the complete data in memory

(B) The external program does not store the whole data in memory, and processes data on the fly (for example
it receives a sentence, processes it and writes it before processing the next one)

Space used Time used
Temporary file (A) 2× RAM + disk 2× rm//wd + 2× rd//wm + p

Temporary file (B) 1× RAM + disk rm//wd + rd//p//wd + rd//wm

Stream using a String35(A) 3× RAM 2× rm//wm + 2× rm//ws//rs//wm + p

Stream using a String (B) 2× RAM 2× rm//wm + rm//ws//rs//p//ws//rs//wm

Stream using a Reader (A) 2× RAM 2× rm//ws//rs//wm + p

Stream using a Reader (B) 1× RAM rm//ws//rs//p//ws//rs//wm

Table 1: The different ways to transmit data.

Table 1 clearly shows that transmitting data on the fly is a lot more efficient: using a temporary file requires
disk accesses which are very time consuming, and using a String object requires a lot more mremory space. Of
course these differences are negligible when processing small documents, but it is important to remember that the
component may be used in the future in cases that had not been planed. Furthermore, the risk of failure for a
component should be minimized as much as possible, because it can have serious consequences in a complex system.
This is particularly true for memory overload, which will eventually make the other components fail if they use the
same memory space.

See also 6.1 and 6.1.2, in particular about charset encoding issues.

3.4 (Threads) concurrency issues

Threading data transmission when calling an external program requires quite careful programming and testing,
but it is not very hard (see 6.1). On the contrary, using concurrency when accessing the CAS is quite challenging:
actually UIMA is designed to deal with different threads running several (instances of) annotators in the same time,
but it is not intended to handle concurrency inside a single annotator. Thus all CAS accesses have to be protected
(synchronized), which is in fact quite tedious. LIPN had then to develop an approach and tools to embed most
thread-related code, in order to make things easier for the annotator developer. These tools are now achieved, and
have been rather thoroughly tested (since concurrency bugs are a real pain to track). See 5.1.2 for the general
principle, and the API for more details.

3.5 Dealing with errors

The developer must keep in mind that the component he builds might be used in a wide range of different contexts.
As a consequence, the way errors are handled is crucial, because it affects all components which would be run after
it, and any data which would be computed based on its own output. Additionally, it is important to remember
that the component is likely to be used with huge data in a very time-consuming process in which any fatal error
can be very costly. Therefore it is important:

• for a component to try as much as possible to solve the errors which belong to its scope (i.e. that it is able
to solve itself), in order not to

– keep a minor error propagate and possibly alter the posterior data computed after it;

– make the process stop in an unrecoverable way in some posterior stage of the process.

35We suppose using a String object both for input and output: this means that the data must be copie from the CAS to a String

before sending it, and conversely is received in a String before being copied in the CAS (this is why there are 2 rm//wm).

18

• but a component must not extrapolate error corrections to cases where

– it does not have the needed “knowledge” to fix it (e.g. with some ambiguous data, unknown character,
assumption about what the user intention, etc.);

– there can be different interpretations of the problem: something which is invalid for some component
may be valid for another one, thus no final decision should be made which would alter the behaviour of
the posterior components.

In those cases, most of the time the component should indicate the error/problem to its environment:

– throwing a Java/UIMA exception, possibly caught at some higher level of the process

– writing/storing the pieces of information using the UIMA logging mechanism if it is a minor problem.

Explaining in the component description/documentation/API the errors cases and especially the ambiguous cases
(where the problem can be interpreted both as an error or not) is very important. In general, up to now a “stop as
soon as possible” policy has been applied (in the cases where the component can not internally solve the problem):

• whenever a component encouters invalid data or parameter, it throws an exception. It does not have to try to
infer the value (or use a default value) unless it is clearly its role to do so (for example, if an invalid character
is read in the data and the user had requested the component to ignore such characters)

• this behaviour should be applied as soon as possible: for example if a user defined parameter is invalid, it is
a good idea to stop the process (throwing an exception) in the initialization stage of the component, and not
to wait for the processing stage. This behaviour saves time, and if the process is very long it is preferable to
stop it early in order that it does run uselessly before failing.

• as a consequence, it is preferable to check for errors even if they do not have an impact at the current stage.
For example, most wrappers annotators have to parse the external program output in order to extract the
data needed to add some annotations; suppose the output is supposed to contain one token by line (that was
provided as input) followed by some tags (which is the actual output): the annotator could easily ignore the
token since they are already stored in the CAS, but by checking that each token received indeed corresponds
to the input token the annotator ensures that there is no gap which could possibly cause an error later in the
proess36. Moreover it is a way to reinforce the robustness and consistency of the whole process.

4 The LIPN UIMA Platform Type System

4.1 A generic Type System

One of the most important points in designing a complex UIMA platform is the Type System (TS), i.e. the typology
of the annotations. Generally speaking, there are two main approaches in designing a TS: either it is intended to
be very precise and exhaustive, or on the contrary very general and abstract. The former approach (for which [?]
is an example) describes the data in straightforward and complete way. But its fixed nature is a serious issue: it is
then very hard (sometimes impossible) to create new kinds of annotations, or to slightly modify the existing ones
(e.g. to add a feature), because the components using this TS are intended to em a priori know the whole set of
possible annotations. Moreover, it is by definition less flexible, and therefore less suited for concurrent annotations
(see below). Additionally, this kind of TS is often very complex and may be difficult to handle at first (this issue
being known as the “Monster TS” problem).

On the opposite, the latter approach consists in providing the components with the widest possible range of freedom

36It is however advised to keep an option (usually a component parameter) which disables this strict behaviour: there are cases where
it is either useless, too time-consuming, or even counter-productive (e.g. one knows there are errors but wants voluntarily to try it
anyway). It should also be mentioned that this behaviour has some drawbacks: sometimes the strict checking causes more problems
that it solves, if the external program on which it relies has some hardly predictable behaviour.

19

about extending the TS37. In that case the TS is very small, and it is intended to be extended and/or used with
the least possible constraints. Nevertheless it must be noticed that the problem of representing annotations is not
solved this way, it is only partly delegated to the future components designers. Thus such a TS is a lot more
flexible, but often more difficult to use “in a clean way”, because it is not constraining. Therefore maintaining
consistency between components depends both on the original desing of the TS (including use guidelines) and on
the components designers/developers.

The main reasons why LIPN choses the latter ”abstract TS” approach are the following:

• It is better suited for the sake of flexibility and modularity. Our goal being to permit to integrate any kind
of annotations, it is preferable to postpone the concrete creation of a relevant TS as late as possible, in order
to have the best possible information when taking decisions.

• It is also more suited to the actual context where it takes place: the goal is not (at least currently) to achieve
a complete self-contained system dedicated to some particular task; LIPN intends to progressively build tools
which will hang on this platform, without knowing exactly which ones, when, and how.

• The first components that will be created are mainly existing tools which were not intended to be integrated
in such a framework and not always easily adaptable; that is also why it is important not to impose strong
constraints.

• Finally we also think that this approach is more suitable for dealing with concurrent annotations (see 4.2).

The generic TS that we opted for is represented in figure 1. All types derive from the standard UIMA su-
pertype for text annotations, namely uima.tcas.Annotation (which makes a lot of types-related operations
easier). All types used in LIPN annotators will actually derive from GenericAnnotation, which inherits from
uima.tcas.Annotation. This root type (and consequently any inheriting type) includes the following features:

• a confidence score confidence;

• a type identifier typeId, that annotators can use as an alternative to adding new “real” specialized types in
the TS;

• a component identifier componentId, in order to identify the annotator responsible for this annotation, which
is especially important in the case of concurrent annotations (see 4.2);

• a user defined identifier runId (see 4.2).

Moreover LIPN types must inherit from one of the three following types:

• Segment: if the type simply defines an area (e.g. tokens, sentences, chunks);

• AnnotationTag: if the type adds some information about the data (e.g. a POS tag, a NE category);

• Relation: for ”meta-annotations”, that is to say annotations related to some other annotations (e.g. syntactic
relation based on POS annotations);

• TaggedRelation for a Relation labeled with some information (e.g. kind of syntactic relation).

As a generic/abstract TS, this Type System is planed to be locally specialized by the AEs (generally groups of
related AEs). However these extensions should remain consistent with the genericity-oriented framework that the
original TS aims at building. Thus the following conventions should be followed:

• The specialized/local part of the TS should also be as generic as possible. In particular it should avoid
using a high number of different types (precise information should preferably be stored inside annotation

37Remark: we actually want to use at least a minimal TS structure, but there are also ways not to make any assumption about the TS:
about such “TS agnostic” approaches, see http://lexgarden.blogspot.com/2010/07/4-strategies-for-building-type-system.html.

20

http://lexgarden.blogspot.com/2010/07/4-strategies-for-building-type-system.html

Figure 1: The LIPN Type System

features); similarly it should not make the inheritance hierarchy too complex/specialized, nor adding complex
relationships between types (especially mandatory ones). This is important for the reasons explained above,
in order not to impose constraints about the way the other components have to deal with these annotations.

• All annotations should remain as atomic as possible; in other words, the types are supposed to contain a
minimum number of features. This way (1) a component can work on the exact part of the annotations
it has to, without having to manage with some extra features (possibly it does not know how to interpret
them and/or what value to specify for them); (2) it is more convenient to handle concurrent annotations (see
below), since there can be different possibilities for a given feature and only one for the other.

• The components should always prefer using the generic methods provided in fr.lipn.nlptools.uima.common

to handle annotations (see the API for details). If there is no suitable method for some particular (non-
specialized) task, then the LIPN UIMA Platform maintainer should be noticed about this missing feature.

In order to remain consistent with the principle of a generic “simple” TS, the extensions of this TS should avoid
using complex types (with a lot of features, or with complex relations linking types together, etc.) and prefer small,
simple and independant types. Thus concise types (typically based on AnnotationTag extensions) should be used
whenever possible, even if that multiplies the number of different types. For example we have chosen to represent
Part-of-Speech annotations and Lemmas annotations in two distinct types (see 4.3):

• this way a component can create Part-Of-Speech annotations whithout defining Lemmas and without leaving
an undefined value for the lemma38; moreover it makes it possible to have one Part-of-Speech together with
several possible Lemmas (see also 4.2);

• if a components has some more precise information to write (adding features), it can use a specific extended
(inherited) type so that a component which does not need/know this extension can ignore it (reading it as
the original type);

• the drawback is that matching related annotations together is harder: usually one wants a Lemma to be
connected to its corresponding Part-of-Speech annotation. In the simple case where there is no ambiguity,
it is sufficient to have both annotations exist together superimposed: it is not very hard to match them
with using their indexes in the text (see also 4.3 about priority lists); in the most complex cases, a specific
mechanism should be used, typically using an Interpretation annotation (see 4.2).

38Undefined values should be avoided as much as possible, because they can be a source of errors: a component could suppose that
the value exists for all annotations, or it could interpret the undefined value differently (e.g. ”not initialized”, ”unable to find a value”,
”an error occured”, ...)

21

4.2 Concurrent annotations

4.2.1 Definition

Intuitively, concurrent annotations are distinct annotation sets which relate to the same text, in other words wich
“superimpose” together. Such a definition is too loose, in particular because this concept is not needed in some
classical cases like superimposing a POS tag and a lemma tag (and possibly some others like NE, term etc.).
However this concept is useful mainly in the two following cases:

Alternative annotations , where annotations from the two sets (or at least a subset of them) play a similar role,
in other words describle the same kind of information. Example: two series of tags obtained by two distinct
tools which yield the same kind of annotations.

Conflicting annotations , where annotations from the two sets are not compatible. Example: two series of
annotations, one being POS tags and the other being NE tags, in the case where the tools which have yielded
them do not tokenize words in the same way; such a case may cause overlapping or nested tokens, which are
a source of compatibility problems.

From these two cases, we propose the following definition39:

Definition. Two sets of annotations A and B are called concurrent series of annotations if they satisfy the four
following conditions:

1. they relate to the same text (complete document or portion of text);

2. the annotations contained in any of the two sets (considered independently) are compatible together;

3. the sets A and B are independent, i.e. there is no reference between an annotation from A to an annotation
from B and conversely;

4. the set formed by the union of A and B contains incompatibilities.

About the third condition, a dependency relation exists between two annotations in different cases:

• if there is an explicit reference, e.g. in the case of a relation (see above);

• but also if there is an implicit reference, e.g. a pair of POS/lemma tags which are jointly computed.

These cases are excluded in order to maintain consistency: two series of annotations can not be both dependent
together and incompatibles40.

Example. Tokenization is the most simple example of concurrent annotations: for example, if a tokenizer X
considers the word aujourd’hui as one single token whereas another tokenizer Y breaks it into three different tokens
aujourd - ’ - hui, then a tokenizing process using X and Y on a text containing this word yields two series of
concurrent annotations.

4.2.2 Motivation

There are numerous reasons why concurrent annotations are useful:

39In which there is no explicit reference to the case of “alternative annotations, because this is useless: two alternative series must
contain at least one incompatibility, otherwise they would not differ and therefore would not really be “alternatives”.

40Incompatibility among the annotations inside one serie being excluded by the second condition, such a case would mean either that
the annotations distribution between the two sets is wrong, or that the system which yielded the set containing the incompatibility is
faulty.

22

• Comparing different series of annotations in order to evaluate (quantitatively ot qualitatively) different tools
is one of the first applications: being able to represent simultaneously different series of annotations coming
from different analysis components:

– permits to observe clearly the differences between these components;

– makes easier a figured comparison (assuming an homogeneous format among these annotations).

• Merging the yield of different comparable components: using some aproach which allows to select the best label
among the different annotations coming from the components (e.g. the one obtained by most components),
it is possible to build a meta-component which may perform better than any individual component.

• Improving the quality of annotations a posteriori by using annotations which are generally computed at an
earlier stage, so unavailable to the component. For example, to obtain an enhanced words tokenization, it
is worth computing it in two stages: the first classical one, and the second one after running some other
components, using syntactic information, NE and/or terms tags etc. This second step should increase the
likelihood of the whole tokenization.

• Considering the example with tokenizers X and Y (see above), suppose that we want to build a processing
pipeline including some components X’ and Y’ which require tokenized text; suppose also that we know that
X’ gives better results when using the tokenization performed by X, whereas on the contrary Y’ prefers the Y
tokenization. Thus it is preferable to run both tokenizers, then to select the right serie of tokens annotations
before starting each component X’ and Y’.

• Representing ambiguities: in some rather simple cases such as assigning different labels to the same word
(typically the different POS tags together with their associated probability); but also in some complex cases,
for example in syntactic analysis, where it is necessary to be able to represent different superimposed alter-
natives, and even possibly to nest such alternatives at several levels. Any posterior process (including human
observation) will be easier if a suitable representation is used.

Thus the ability to deal with concurrent annotations in a complex (modular and parameterizable) analysis system
is important in general: without it, the system can only be used in the classical sequential way, which is rather
static and constraining.

4.2.3 Representing concurrent annotations in UIMA

Dealing with concurrent annotations in a generic framework is not trivial, because the cases where concurrency will
be used and the way it will be used are not known a priori. This requires to design some general mechanism so
that this feature is taken into account at several levels:

• At the lowest level (probably in a package or class which embeds all technical details about concurrent
annotation access, providing methods to be called by the actual annotators), the question is: how to represent
two concurrent series of annotations in the CAS? If possible, this representation should be efficient, and
convenient access to this level should be provided.

• At the Annotator Engine level, there are cases where the annotator is aware that it works with concurrent
annotations (e.g. to select the most relevant annotation among different series); but it must also be possible
to run a “standard” component (not intended to deal with concurrent annotations) on some particular serie
of annotations among several concurrent series (ignoring the other ones). That means that it should be
possible for a component to access to concurrent annotations “transparently”, i.e. in the same way than
usual annotations. That implies that it is necessary to determine when and how an annotator access to the
“concurrent side” of the annotations.

• At the highest user41 level, it is necessary to provide a way to control the series of concurrent annotations:
if the CAS contains different series of annotations, it must be possible to tell a “standard” annotator (which

41It is worth noticing that in the UIMA framework it is sometimes hard to precisely define the user level, because this user may be
either someone who only runs the component on some document, or someone who develops a new component which uses its output, or
someone who includes this component in a pipe process: these different “users” do not have exactly the same viewpoint and knowledge
about the component, and the developer must take all these into account.

23

reads a single set of annotations and write some new ones) which serie it should read, and possibly if the
annotations it writes should be considered as a concurrent serie among some other ones.

We have studied three different approaches, among which the first two have been implemented in the current version:

• A specific feature. This what the runId feature (see fig. 1) is intended to (and also the componentId

feature in a minor way). The value set for this feature can be used to distinguish between different series of
annotations. This is simple and sufficiant for most cases, as soon as (1) this feature can be parameterized by
the user (to select the serie to read/write bu a component) and (2) the component takes this parameter into
account42. Nevertheless this solution can not handle complex cases, because the user must be able to control
the number and the identifiers of the concurrent series (which excludes cases where a component internally
handles different series).

• A meta-type used to encapsulate the annotations contained in a concurrent serie. UIMA permits to define a
feature as a reference to another type or to an array of other types. This ability is used in the Interpretation
(see fig. 1), which is intended to point to the different annotations contained in a serie. This method is a bit
more complex in a technical viewpoint, but it is more complete and allows a component to (internally) handle
different series of annotations (e.g. in the case of dealing with syntactic ambiguities). Additionally it is worth
noticing that it is possible to nest as many levels as needed using such annotations.

• Using UIMA’s concept of view. Originally designed to represent the same document in different ways
(e.g. with/without HTML tags, or the same content in different languages), a view can also be used as a
container for a concurrent serie of annotations (even for a small text portion). It simply requires that a special
type be defined to indicate the concurrency, in such a way that its instances indicate both the position of the
text and the identifier of the view in which the concurrent serie is written (in other words views are used as
generic pointers to the annotations series). As in the case of of the Interpretation type above, it is possible
to deal with complex cases and in particular to nest different levels of concurrency. However there are two
drawbacks: the access time/space to the different views may be costly, and it is more difficult in that case to
come back from an annotation to the text that it relates to (and/or to its position, depending on the way it
is implemented).

See also 5.1.

4.3 The extended LIPN TS

As explained above in 4, the TS we use is a generic one, which implies that it is can be extended. This part describes
how it has been extended for the requirements of the components which have been implemented so far. In the same
time, these explantations can be seen as an illustration of how our generic TS can be used.

4.3.1 Modularity

The generic part of the TS is intended to be shared by all components; but the extensions should not be common
in general, because this is precisely one of the advantages of a generic TS not to be complex (and extending it for
all components together would basically dismiss this advantage). That is why extensions are supposed to be local:
of course some types are very commonly used and have to be shared; additionally, “local” does not mean local for a
single component: on the contrary, it is important that a group of components which are intended to work together
(or simply belong to the same domain) use the same extended TS, in order to facilitate communication among this
group. That is why we recommend not to define the TS in the component descriptor, but rather in an independant
TS descriptor43 (which is then imported by the components which need it).

42In our opinion this point is implicitly induced by the fact that the component uses this TS, in the sense that it is therefore supposed
to be aware of the role played by each type/feature.

43Even if there is only one component using this particular TS, because one should always think that future components may want
to use it.

24

Therefore we propose that the basic TS be extended in a modular way, which is rather easy in the UIMA framework,
thanks to the “import” mechanism: any TS can import one or several other TS defined somewhere else. This is
what was done for the first components, and the current TS is divided into three parts:

1. fr.lipn.nlptools.uima.common.lipn-base-TS is the generic basis (see 4.1);

2. fr.lipn.nlptools.uima.common.lipn-standard-TS is the common part among the existing components:
it contains some very common types, which are all defined in a very simple way (in order to avoid types with
multiple features/complex relations:

• inherited from Segment: Token Sentence and DocumentDivision;

• inherited from AnnotationTag:

– PartOfSpeech → expected value is the POS label44;

– Lemma → expected value is the lemma;

– NamedEntity → expected value is the kind of entity (category, e.g. ”person”, ”location”, ”organi-
zation”,...);

– TermOccurrence → expected value is the term lemma;

• inherited from Relation: Term which, if used, should contain the list of all occurrences for this term45;

• inherited from Interpretation: POSLemmaPairInterpretation, which is intended to link together a
PartOfSpeech and its corresponding Lemma annotation.

3. fr.lipn.nlptools.uima.common.lipn-extended-TS is the whole TS containing not only the standard one
but also the local specific TSs. This TS should not be imported in another TS or in a component, it is
provided only for convenience (it can be useful in order to visulalize an annotated document when one does
not know what annotations ot contains). Currently this TS consists in the import of46:

• fr.lipn.nlptools.uima.common.lipn-standard-TS;

• fr.lipn.nlptools.uima.common.lia.lia-TS, which defines a type LiaCleaned47 which is specific to
the LIA tools (LIA Tagg and LIA NE);

• fr.lipn.nlptools.uima.common.yatea.Yatea-TS, which defines two specific types extending Term and
TermOccurrence with some additional features.

Some built-in iterators are provided for a component to easily deal with these types. But it can be useful to
undertand the priority lists mechanism that we use: [TODO à finir]

5 Components: tools and annotators

[TODO not platform independent!]

The first point is that an Annotator Engine (AE) developed in the LIPN UIMA Platform framework should always
be defined as a subclass of fr.lipn.nlptools.uima.common.LipnExternalProgramGenericAnnotator. This is
how it can have access to various common methods to deal with the particular features provided in the framework.

44Be careful, no normalization is required: a component can use any set of labels.
45Normally these occurrences should all have the same lemma, but that is not mandatory.
46It is worth noticing once again that new TS descriptors are created even to add only one type for the sake of modularity (see above).
47This type is used to store the “cleaned version” of a token that a LIA component has modified. Actually there still are some

issues with this type, because the data it contains should be used as a replacement for the covered text: there is no way in UIMA
for a given annotation to return “its own version” of the covered text (as that would be done using an interface with standard Java
objects), therefore any component which is not aware that such annotations exist can not transparently obtain the correct value. The
only solution would be to consider this case as a general case within LIPN UIMA Platform framework so that a component always has
to check for such annotations, but we think this case is too specific to be handled this way.

25

5.1 Handling annotations

In order to maintain as much as possible a consistent representation/usage of annotations in the context of the LIPN
UIMA Platform components, we propose some guidelines together with some built-in methods that any component
can call to deal with annotations in the “LIPN intended way”.

5.1.1 Adding annotations: setGenericAttributes

Every annotation contains the following features: confidence, typeId, componentId and runId (see 4). The
confidence is an optional information that a component writing an annotation can provide if it is able to provide a
degree of confidence for this annotation (the value is supposed to be in [0,1]; other values are permitted but then
that should be clearly stated in the documentation of the component); the three latter are intended to permit a
component to filter the annotations it wants to read. Therefore it is important to set these values carefully, even if
you do not intend to use them, since some future components might expect them. In order to make the process of
setting up new annotations easier, the following methods are provided in
fr.lipn.nlptools.uima.common.LipnExternalProgramGenericAnnotator:

public static void setGenericAttributes(GenericAnnotation a, int start, int end,

String componentId, String typeId, String runId,

double confidence);

public static void setGenericAttributes(GenericAnnotation a, String componentId, String typeId,

String runId, double confidence);

public void setGenericAttributes(GenericAnnotation a, String componentId, String typeId,

double confidence);

public void setGenericAttributes(GenericAnnotation a, int start, int end, String componentId,

String typeId, double confidence);

public void setGenericAttributes(GenericAnnotation a, double confidence);

public void setGenericAttributes(GenericAnnotation a, int start, int end, double confidence);

public void setGenericAttributes(GenericAnnotation a, int start, int end);

public void setGenericAttributes(GenericAnnotation a);

All these methods are variants of the first one: they simply assign the provided values to suitable features in
annotation a (first parameter). The first obvious advantage for a component tu use one of these methods is
to synthetize all these assignments in one line, which makes the code more readable (and is faster to write!).
The variants with one or more “missing” parameters always assign a standard default value to the “missing”
parameter(s), which are:

• for confidence, DEFAULT CONFIDENCE, which is defined as Float.NaN;

• for typeId, the annotation object class name (obtained via a.getClass().getSimpleName());

• for componentId, DEFAULT COMPONENT ID, defined as this.getClass().getCanonicalName() (in other words
the Java class name of the AE; notice that this is the actual annotator name, not
fr.lipn.nlptools.uima.common.LipnExternalProgramGenericAnnotator);

• for runId, the value is supposed to be obtained dynamically as a component parameter that the user is able
to define. Thus this mechanism works only if

– the component descriptor declares a RunIdValue parameter (defined as optional and of type String), and

– the common initialization method is called by the component: either
void initCommonParameters(UimaContext, String, String, String, boolean)

or initCommonParameters(UimaContext, String, String, String);
alternatively the component can manage by itself to read the parameter value and assign it to the
runIdValue variable.

26

See also 4 and 5.1.3.

The Begin/End features must always be set; the variants without them are intended for components which need to
assign values to them at a different time than the other features.

5.1.2 Reading annotations: iterators and filters

ThreadSafeFSIterator

All components in the LIPN framework are expected to read annotations only through the generic iterators provided.
This is intended to make sure the components behave consistently with respect to concurrent annotations and
annotations filters. Indeed, the mechanism used to deal with concurrent annotations works in the following way
(see part 4.2):

• a component writes a concurrent serie of annotations in two cases:

– it itself writes several series of annotations: it must then provide a way for further components to
distinguish between different series;

– it writes a serie of annotations which is in fact added to some previous concurent serie of annotations.
In that case the component is “not aware” (in general) of concurrency: at the higher level (CPE), a
parameter has been provided in order to make the component write annotations with a distinctive label.

• similarly, a component reads a concurrent serie of annotations in two cases:

– it itself “knows” that there are different series and how to interpret these;

– it reads a serie wich is actually concurrent to some other series. Once again, the component is in general
“not aware” of concurrency: a parameter has been provided to make it read the right serie.

The first case in either reading or writing annotations is rather simple in terms of management of annotations: the
component is responsible for its behaviour. However in the second case (which is in fact the more interesting and
useful one) almost the whole task must be dealt with at a different level

5.1.3 Filters management

5.2 Other features/conventions

5.2.1 Language

Language48 is represented using the international conventions (see 3.2): the two lowercase letters code for language
(following ISO 639-1), possibly followed by a two or three letters code for country (ISO 3166), for example en-US for
American English. The second code can be omitted (up to now no lipn-uima-core component differentiate between
country codes).

In UIMA language is (can be) stored as a feature in the special instance of DocumentAnnotation associated with
the CAS (cf. UIMA JCas API). Language can be set in (at least) three different ways:

• The Collection Reader component can set the language in the CAS depending on a parameter that the user
gives (as in the UIMA standard FileSystemCollectionReader), or depending on some other information
(for example read in the metadata if processing some known format of document).

48General localisation issues are currently not addressed in lipn-uima-core because the existing AEs make no difference, but the same
kind of convention should be followed in this case.

27

• Each AE can have a language parameter which is also set by the user (normally this parameter is not written
in the CAS)

• An AE responsible for detecting the language can be used, which should set the language in the CAS.

The prefered way to deal with language is to use the (standard) DocumentAnnotation in the CAS, either set
by the Collection Reader or by a specific language detector AE. This option is simpler for the user, since she
does not have to provide language as a parameter to all different AEs. Moreover it more flexible to use the
CAS DocumentAnnotation, in particular by permitting that different documents (thus different CASes) can be in
different languages.

That is why we consider that the use of a parameter specific to the AE should be interpreted as a strong constraint:
if the user choses to set it for an AE in particular, then this choice overrides any other option. Thus the priority
strategy of the lipn-uima-core AEs ti determine which language to use for a given component is the following:

1. if the AE defines a language parameter and the user sets a value for it, then consider this is the language

2. otherwise, look in the CAS DocumentAnnotation and consider this is the actual language if defined.

Then language is checked against the set of the possible languages of the AE.

We apply our “stop as soon as possible approach” (cf 3.5): the language (if defined as a parameter of the AE) is
verified in the initialize method (and an exception may be raised here if it is defined but not valid), then we
check it again in the process method in case it was not defined as a parameter but it is in the CAS (once again
an exception is thrown if it is not valid). The first test in the initialize method is not necessary since it will be
done a second time in process, but it should be emphasized that it is useful: supppose a CPE containing a chain
of AEs in which A is at the end; if the language parameter for A is wrong and is not checked in the initialize

method (which is called in the initialization step of the whole CPE) then all preceding AEs will be run in vain, and
eventually the process will stop with an error when it reaches A.

5.2.2 Charset encoding

Normally the input charset encoding is a parameter of the Collection Reader (component responsible for reading
the input and writing it to the CAS, see UIMA documentation). Then the textual data is stored in the CAS as
UTF16 (as usual in Java) by the UIMA engine. Thus it is important to notice that the encoding issues concerning
the wrapper annotators are totally masked to the user: he only has to provide the correct encoding as input, and
not to care about the encoding used by the wrapped programs.

Thus a fair amount of work has been done to prevent charset encoding issues, so that the end-user should not have to
bother with those which are due to the external programs used49. That means that each lipn-uima-core component
must try to convert the input in the encoding expected by the external program (and convert it back, but this is
usually easier) without restrictions on the original data encoding. This is not possible in general, nevertheless it
is possible to make this process painless for the user, at least in the most frequent cases and for the most used
encodings (ASCII, ISO8859-1 and UTF-8, UTF-16).

Of course problems can still happen, thus it is important to either correct them smoothly if required and possible,
or to report them in a clear way (typically by providing the position where the error happens, see 6.2). In lipn-uima-
core, in order to ignore invalid characters (see also 6.1.2), it is recommended to use the replaceCharacterCodingErrorReplacementValue
option, which replaces any invalid character with a custom defined one50.

49The user still has to deal with the encoding of the input data which is provided: clearly problems will occur if the input is not valid
w.r.t the given encoding.

50This choice is due to the fact that chosing the “ignore” option causes errors when re-aligning the annotated text w.r.t the reference
text, because the former does not contain the wrong characters anymore but the latter still contains them. This problem is solved
by replacing them with a specific value (generally chosen because it is a very unlikely one) which can be taken into account in the
re-aligning process (see wildcards parameters in the related classes API).

28

5.3 Example: the TreeTagger wrapper AE

[TODO ...]

5.4 Components specific features

5.4.1 Yatea AE

The Yatea AE (more precisely the YateaXMLOutputParser class) deals with Yatea bug about wrong positions (see
7.0.5) in the following way:

• if both CheckOccurrenceForm and CorrectYateaPosition parameters are true (default): when reading a
new term from Yatea XML output, YateaXMLOutputParser will check (for every occurrence) that it is indeed
this term form which appears at the expected position (given by Yatea). In case there is no match, it will
then try to recover the right position in the sentence, by comparing every token in the term with with every
token in the source sentence. In case there are several occurrences for a given token, the one closest to the
expected position is selected. Warning: this is a heuristics, and as such does not guarantee to provide the
exact result51.

• if only CheckOccurrenceForm is set, then there can be no error recovering: in case such an error happens,
the AE raises an exception. The advantage is that if there is a result (i.e. no exception occured) it does not
contain any error (which might be caused by the heuristics).

• if only CorrectYateaPosition is set, then the behaviour is the same as if CheckOccurrenceForm was also
set (because it does not make sense to correct something if it is not checked before).

• if none is set, then the position told by Yatea is always trusted: there is no check so if the corresponding
position is found the mapping it is annotated with it, no matter what the covered text is. However if Yatea
is wrong it usually does not provide a valid position which exists in the mapping, therefore an exception is
raised if this happens.

6 UIMA independent packages: module lipn-nlptools-utils

The very first part of implementation has consisted in designing, coding and testing a few packages which are
responsible for interfacing with any external program in an “as robust and safe as possible” way. Here we only
describe the two main packages in lipn-nlptools-utils, because the three others are simply not important. The
first one, namely fr.lipn.nlptools.utils.externprog, is devoted to the environment in which the external
program is called (see 6.1); the second one, namely fr.lipn.nlptools.utils.align, handles the output for-
mat issues (see 6.2). It is important to notice that both modules do not depend on UIMA52, and can be used
from any other Java program (see example classes fr.lipn.nlptools.utils.testing.ExternalProgramTest and
fr.lipn.nlptools.utils.align.TaggedTextAligner).

6.1 Package fr.lipn.nlptools.utils.externprog

This package is intended to control the process of calling an external program, dealing with the possible problems
(interruption, I/O error, possibly time out to avoid forever loop), raising suitable exceptions if needed. It is also

51Though I did not find such a case during tests.
52Actually the latter still depends on the uima-core package, but only because the UIMA Logger class is used (this technical point is

not significative).

29

implemented in an efficient way concerning data transmission: whenever possible, instead of simply copying the
data from memory to a file then copying back at the end of the process, the data is transmitted on the fly (using
several threads), thus minimizing in the same time the time and space needed. The implementation was originally
inspired by class ProcessLauncher, written by Fabio Marazzeto and Yann D’Isanto.

6.1.1 ExternalProgram: principle

The most important class in fr.lipn.nlptools.utils.externprog is ExternalProgam. It works in the following
way:

1. Initialize an ExternalProgam object: the only mandatory parameter is the command line53. Additionaly
several options are proposed: time out/working directory/charset encoding can be set using the detailed
constructor, but several other options are available through different methods after initializing the object (e.g.
setting environment variables, setting the behaviour in case of encoding error, etc.).

2. Call the run method: it will cause the process to start and will not return until one of the following condition
happens:

• the external process has finished;

• running for too much time (if time out was set)

• an error occurred (an ExternalProgramException will be thrown)

By default the external program is supposed not to expect any input stream and its output/error streams are
simply stored in some String objects. These strings can be recovered after the run method has finished by call-
ing ((StringReaderConsumer) getLastStd[out|err]Consumer()).getString(). But it is often necessary (and
better) to parameterize an ExternalProgram with some custom input/output objects, as explained below.

6.1.2 Providing input / recovering output of an external program

The fr.lipn.nlptools.utils.externprog package is particularly suited for programs using the stdin/stout
streams for textual input/output. This feature is actually the main contribution compared to the Java standard
ProcessBuilder class (ExternalProgram can of course still be used in the more simple case). There are two main
issues in dealing with such I/O.

The first issue is only a technical one and the user does not need to care about it. It consists in taking a lot of care
to send/receive the data, mainly because particular I/O errors can happen during the process. As stated in the
Java API (see java.lang.Process): “Because some native platforms only provide limited buffer size for standard
input and output streams, failure to promptly write the input stream or read the output stream of the subprocess
may cause the subprocess to block, and even deadlock.”. In other words, there is a deadlock problem if the external
program writes some output to stdout and waits for it to be read before continuing, while the Java program which
called this program waits for it to finish before reading the output. The case actually happens quite frequently when
processing large amount of text as streams. This is the reason why it is necessary to run each part of the process
in its own thread. Thus there is for example a thread responsible for providing the input stream to the program,
and another one for reading the output stream that the program writes. This way no deadlock can happen, since
input/output is processed “on the fly”: for example the output stream reader thread will continue its task if the
program stops, thus freeing the buffer and allowing the program to continue. The second advantage with this
approach is that processing data on the fly is more efficient (see 3.3).

The second issue is due to the fact that transmitting textual data on the fly (using text streams) is a bit more
complex than simply transmitting String objects references. Thus it requires some mechanism to interface between

53Be careful, the command line must be provided as an array of String objects representing the tokens of the actual command line.
For example {"myprog", "-a", "myfile1", "-b", "myfile2"} is correct. It is not possible to use any shell specific feature like pipe or
redirection, you must create an external script file and call it to do so. See Java API about java.lang.ProcessBuilder for more details.

30

the calling program and the external program. Since the package is intended for text files, Reader and Writer

objects are used. In order to transmit such objects and to start reading/writing inside the corresponding thread (see
above), the two following interfaces are provided, which are widely used in the package and in the lipn-uima-core
module:

• An object which implements the fr.lipn.nlptools.utils.externprog.ReaderConsumer interface is in-
tended to consume a Reader object. That means that it provides a method (consumeReader(Reader)) which
will read on the Reader object until the whole data is read. It is typically called inside the output stream
reader thread, thus permitting:

– to customize the behaviour depending on the task planed with the output,

– and not to wait for the end of the process to start processing the data (saving time and memory).

• In the same way, an object which implements fr.lipn.nlptools.utils.externprog.WriterFeeder interface
is intended to feed a writer object. That means that it provides a method (feedWriter(Writer)) which will
write on the Writer object all the data which has to be written. It is typically called inside the input stream
writer thread, with similar advantages than in the ReaderConsumer case.

Several useful classes which implement these interfaces are provided: among others, StringWriterFeeder and
StringReaderConsumer can be used to transmit/receive text as a simple String object (not recommended for large
texts); FromReaderWriterFeeder and ToWriterReaderConsumer can be used to write the content read in a Reader

to a Writer and conversely; the BroadcastReaderConsumer is a special ReaderConsumer which multiples the stream
and sends it to several other Readerconsumer objects: in other words it acts like the unix standard tee program,
and it is useful when one one needs both to store an intermediate result and process it normally (such an option is
provided with most lipn-uima-core annotators).

Finally the features about charset encoding issues deserve a special explanation: firstly even if the default is to
use the same encoding for the three streams (stdin, stdout and stderr), it is possible to specify a different one
for each stream through accessors methods [g|s]etStd[in|out|err]Encoding(...). Moreover it is possible to
define the behaviour in case a charset encoding I/O error happens, using the Java objects CodingErrorAction:
“instances of this class are used to specify how malformed-input and unmappable-character errors are to be handled
by charset decoders and encoders” (from Java 1.6 API). This is useful: by default an exception is raised if (1) a
invalid character is read w.r.t the given input encoding charset or (2) a character can not be mapped into the given
output encoding charset when writing. But this is a typical frequent problem to process a dirty corpus containing
a few invalid characters, and sometimes one simply wants to ignore them rather to stop the whole process (see also
5.2.2).

6.2 Package fr.lipn.nlptools.utils.align

Since each external program expects its input and provides its output in a particular format, the transmission of
the data is also a critical point. The output direction (from the external program to the main process) is more
complex because it is necessary to re-align the data with respect to the original input while taking new annotations
into account. In the UIMA framework, annotations are stored outside the document data itself by referencing them
with start/end indexes; but some tools use (XML) tags, some other ones use a tabular format (token followed
by a set of annotations), etc. That is why a complete re-aligning solution has been implemented, in a way that
offers as much flexibility as possible: a first objet is responsible for reading the annotated data, a second one reads
the original data and matches the portions of text, and finally the third one has to store this information in the
right way. This modular approach permits to easily combine each kind of object; for example, it is possible to
read any kind of tagged text with the ”tagged text reader” without knowing the content of the annotations, since
interpreting this information is the task of the third object. Of course this simple approach consists only in good
programming practices (modularity to avoid having the same code in different places), but it should be emphasized
that such an approach is crucial concerning conversion issues: it is highly important to avoid the multiplication of
small independents converters, which are frequent sources of problems and are a lot harder to maintain (of course
a bug-free implementation can never be guaranted, but it can make the correction more or less easy - see 3.2).

31

6.2.1 Principle

Let consider the reference54 text:

0 5 10 15 20 25

Peter (really) loves Nutella. (1)

Suppose a NE tagger is applied on this text and returns

0 5 10 15 20 25 30 35 40 45 50 55 60

<person>Peter</person> (really) loves <org>Nutella</org> . (2)

Notice that the tool applied did not only add some tags, it also added spaces around punctuation marks (it could
also have added or removed line breaks, etc.). The goal of the fr.lipn.nlptools.utils.align package is to re-
align (2) with respect to (1). It can be done in a lot of different ways, and have a lot of different output forms. For
example the TagEN tools uses this package to re-align the output produced by Unitex (which changes whitespaces
and/or line breaks), in order to provide a text output which is exactly the input text where only NE tags have been
added.

In the framework of UIMA we will usually be interested in recovering the positions of the annotated text: in the
above example we want to add two UIMA annotations, covering tokens Peter and Nutella in the original text. Thus
we need to obtain positions 0-5 and 21-2855. This can not be done directly from the output text, since positions
are altered both by the added tags and the fact that whitespaces have been added.

As shown in figure 2, the general principle in this set of tools provided in the fr.lipn.nlptools.utils.align

package is the following:

Annotated text

InputReader AlignerConsumer

Result

Reference text

AnnotatedTextReader

read by read by

does something with the data...

(1)
tokens

+
associated
annotations

(2)
tokens

+
annotations

+
position

Figure 2: The fr.lipn.nlptools.utils.align package: general principle

1. An AnnotatedTextReader object is responsible for reading the annotated text and tokenizing it incrementally.
It transmits each token and possibly the annotation(s) related to this token to an InputReader object.

2. An InputReader object is responsible for reading the reference (source) text and tokenizing it incrementally
(or managing to recover positions of tokens contained in the text in any way). When receiving data from the
AnnotatedTextReader object, it has to find the corresponding token in the original text and transmit the
whole information to an AlignerConsumer object.

3. Finally an AlignerConsumer object receives the data and “consumes” it in some way: standard behaviours
include writing the data into a file or in a String object, or writing it into the CAS in the UIMA case. There
are different options about the form of the data it receives, depending on the need for all tokens or only
annotated ones, positions of tokens, etc.

54Also named source or original in the implementation.
55The usual convention in String indexing about returning the last+1 character position as the last index is used (in such a way that

end-start=length).

32

6.2.2 Usage

These three elements are provided as interfaces, except AnnotatedTextReader which is an abstract class because it
“controls” the whole process: it contains the main method align which (normally) does not need to be overriden.
This method simply calls the specific overriden methods in the other classes (see javadoc API for details). Several
useful implemented classes are provided, among which:

• SimpleTaggedTextReader and SimpleTokenByLineReader are two AnnotatedTextReader objects. The for-
mer reads a text annotated with tags <mytag>...</mytag> (like in the above example). The latter reads a
text annotated in the form of one token by line, followed by annotations, i.e.
Peter person

(-

really -

) -

loves -

Nutella org

. -

• SimpleInputReader and TokenIteratorInputReader are two InputReader objects. The former reads the
source text from a Reader object (file, String or stream), and the latter expects an already tokenized text
provided using an Iterator object.

• TagAlignerWriterConsumer and TagPositionConsumer are AlignerConsumer objects. The former writes
the text together with its annotations to a Writer object, while the latter is intended to deal with positions
(this one has to be instanciated with a TagPositionConsumer.AnnotationReceiver which is resposible to
“do something” with the annotations and positions). Notice that contrary to the two previous classes the
AlignerConsumer object is generally totally overriden, because its behaviour is very specific.

This modular approach permits to deal with different formats at any of the three levels in a similar way: for example
it is possible to use any of the two InputReader implemented classes with any of the two AnnotatedTextReader

implemented classes, and the same holds (more or less56) for AlignerConsumer objects. This way a lot duplicate
similar code is avoided, and the behaviour of all components using these classes is consistent (see 3.2). Finally
components using these objects only have to deal with their specific format issues, and do neither add duplicate
code for the common parts of the process.

7 Troubleshooting

[TODO 1) regarder msg d’erreur complet (stack trace), 2) regarder log file 3) éventuellement changer
le type de log et relancer ; distinguer erreurs à l’init et erreurs au process]

Here are listed several problems which can appear quite frequently with UIMA and/or the lipn-uima-core module,
together with their solution. Unfortunately it is not possible to propose an exhaustive list!

7.0.3 UIMA general path problems

Path problems are very very frequent using UIMA, because of the descriptors system: where a classical Java
program would simply include calls to some other packages/classes (and therefore missing classes would make the
compilation fail with a clear statement of what is missing), with a UIMA program it is impossible to know whether
something is missing at compilation time. Additionally:

56Of course meaningless combinations do not work: reading “token by line” annotations from the annotated text as “tags” annotations
in the consumer will surely fail.

33

• there is no way to check that an XML descriptor is valid w.r.t the elements it refers to (other descriptors,
Java classes);

• the modular policy implies that there are a lot of such references;

• the “by location” references become wrong as soon as something changes in the filesystem (file or directory);

• there can be confusions between references “by name” and “by location”.

Therefore errors occur quite frequently, but the following recommendations may help:

• Whenever possible, prefer import by name rather than import by location. import by name means
that the UIMA engine will look for the descriptor in the CLASSPATH57: this is a lot safer, because this way
all the dependencies are contained in the same place (usually in a JAR archive) that you specify in your
CLASSPATH.

– common error with import by name: do not write the .xml extension for the descriptors. UIMA engine
will automatically look for the name plus its xml extension (and then will not find some mydesc.xml.xml
file!).

– common error causing a descriptor missing in the CLASSPATH: forgetting to copy the data directories (in
particular desc containing the descriptors) in the Java output directory (usually bin). See 2.7 for how
to do so depending on the compilation method.

– when using the UIMA CPE GUI tool (provided with UIMA) to create CPE descriptors, the imports are
always written as by location absolute pathes. This is not convenient at all and causes frequent errors
once you change anything in the filesystem. Either do no use this tool at all, or edit the descriptor by
hand after creating it (see also 2.6.1).

• If ever using imports by location, do not use absolute pathes in locations but relative ones, otherwise the
system is broken as soon as the project is moved elsewhere.

• Have a clear strategy about where descriptors should be located, and what kind of import (reference) is used.
When you perform changes in the CLASSPATH folders structure, do not forget that it can impact descriptors.

7.0.4 Wrapped programs problems

• path problems. if a CPE using lipn-uima-core complains at initialization step about not finding some
file/directory/program, check:

1. that the external program called is installed on your system;

2. that it can be accessed by the way specified through the descriptor: the default structure is detailed
in 2.3. If the default does not meet your needs, you have to specify explicitly the location(s) in the
descriptor (check the parameters descriptions to understand exactly what should be provided).

7.0.5 Yatea bugs

There are several bugs in Yatea 0.558 (official current version). Below is a non exhaustive list together with some
workarounds. Some of them are errors which are recovered by the Yatea AE provided in this package, but others
are internal bugs: it is strongly recommended to apply the changes for the latter59.

• Symptom: in some cases the following fatal error stops the Yatea process:

57or datapath (as far as I know this is the same in standard use). If you do not understand how Java works with CLASSPATH (this is
not specific to UIMA at all), please refer to some Java official documentation about that. In particular let me recall that the CLASSPATH

does not only contain Java classes, but can also contain any file, e.g. XML descriptors.
58Yatea does not seem to be maintained anymore: I reported these bugs to Thierry Hamon (the author) and did not receive any

answer. As far as I know the official CPAN module has not been modified for a few years.
59The script install-scripts/patch yatea.sh can perform these changes for you.

34

Can’t locate object method "getFather" via package "Lingua::YaTeA::RootNode"

at [your-perl-modules-location]/Lingua/YaTeA/Node.pm line 1496.

Cause: missing parentheses in two places (lines 1496 and 1528, same condition) in Node.pm in the following
condition (correction in red):

if(

(isa($node,’Lingua::YaTeA::InternalNode’))

&&

($node->getFather->getEdgeStatus($position) eq "HEAD")

&&

(

(

($position eq "LEFT")

&&

($node->getRightEdge->searchLeftMostLeaf->getIndex < $to_insert)

)

||

(

($position eq "RIGHT")

&&

($node->getFather->getRightEdge->searchLeftMostLeaf->getIndex < $to_insert)

)

)

)

This bug is corrected by install-scripts/patch yatea.sh (you have to provide the path).

• Symptom: in some cases the following fatal error stops the Yatea process:

Can’t call method "getIndex" on an undefined value at

[your-perl-modules-location]/Lingua/YaTeA/Node.pm line 2099

Cause: missing test in the following condition line 2097 in Node.pm (correction in red):

if(defined($new next) && ($new_next->getIndex > $index))

This bug is also corrected by install-scripts/patch yatea.sh (you have to provide the path).

• Symptom: when no term at all has been found, Yatea crashes with the following error:

Illegal division by zero at [your-perl-modules-location]/Lingua/YaTeA/Corpus.pm line 1299.

Cause: no test for zero in division line 1299 in Corpus.pm (correction in red):

$mean_occ=(scalar(keys %$term candidates h)>0)?($total_occ/scalar keys %$term_candidates_h):’NaN’;

This bug is also corrected by install-scripts/patch yatea.sh (you have to provide the path).

• Positioning strategy (more a particular feature than a bug): In Yatea output tokens are indexed according
to their sentence number and position in this sentence. However the position index is also incremented by 1
at each token encountered, as if tokens were separatated by one space60. The Yatea AE (more precisely the
YateaXMLOutputParser class) deals with this indexing and recovers the original position in the text.

60Yatea is not provided with the actual corpus, its input is a TreeTagger file with one token by line.

35

• Errors in positioning: in some cases involving complex terms containing shorter terms, yatea will assign wrong
position indexes. This happens where there are difference occurrences of the same term with different words
orders. For instance, in a corpus containing both ”Pneumopathie lobaire inférieure droite infectieuse” and
”Pneumopathie infectieuse lobaire inférieure droite” (and maybe other variants), Yatea is able to recognize
that they both refer to the same term. But the Yatea output format does not permit different forms for a
single term, so they are both assigned the same form (the first one): so far this is not an error (maybe a
questionable design at worst); however it becomes bad when shorter terms are contained in these terms :
probably because their position is computed by Yatea using the longer term from which they are extracted
possibly using the wrong form, they can be assigned shifted position indexes. In the case of the long term, this
is not too bad since it is still inside the terms bounds, but positions of the term itself (if it appears outside
the context of the long term) are also wrong. The Yatea AE tries to recover the right position (and usually
succeeds): see part 5.4.1 for details.

7.0.6 Miscellaneous

• Charset encoding. Normally the AEs deal with most charset encoding issues, but errors can still happen
in the following cases:

– the input encoding is wrong or (more frequently) the input text actually contains invalid characters (w.r.t
this encoding). Theoretically in this case an I/O exception should be raised by the Collection Reader
(i.e. at the beginning of the process). But for some unknown reason (?) Java seems not to report all
errors, so the process continues until another conversion is needed and this is often when writing the
data into another encoding that the error is reported. Such cases were encoutered but we do not have
real solutions for that; nevertheless being aware of that behaviour may help the user fixing problems.

– the encoding expected by the program does not permit to represent some characters: this is an un-
avoidable restriction by the external program. If these characters can be ignored without serious con-
sequences, the workaround consists in using the replaceCharacterCodingErrorReplacementValue pa-
rameter (which is provided with all wrapper AEs in lipn-uima-core).

See also 6.1.2.

• the UIMA Annotation visualizer: if you do not see all annotations in the resulting files (or even no
annotation at all), do not forget to check that you specify the right Type System descriptor to the visualizer
(any type which is not defined in this TS will not be visible).

• Java memory: if the process stops with an exception related to lack of memory space, you need to specify
more memory for the Java Virtual Machine, using the -Xms ans -Xmx options (see Java documentation). Be
careful, when using a 32 bits architecture the JVM is usually limited to 1.5G to 3G.

[TODO pbm possible avec lia : -m 32, manque de mémoire]

8 Future work

LINA components: [TODO http://www.lina.univ-nantes.fr/-Composants-UIMA-.html]

• Continue to test the platform in various cases, possibly correct/improve code.

• Develop new / integrate existing annotators. There are different ideas that LIPN may study:

– A term tagger, because it is a very useful component for LIPN,

– A syntaxic parser, which would be useful of course but would also have another interest: it is indeed
interesting to create/test concurrent annotations in a context where there are possibly different nested
structures (due to syntactic ambiguities),

– A customizable tokenizer, based on applying some rules defined by the user.

36

http://www.lina.univ-nantes.fr/-Composants-UIMA-.html

8.0.7 LIA bin/lia nomb2alpha Numbers converter

Among LIA programs there is number converter named lia nomb2alpha, which converts (digits) numbers into
their expanded (letters) form. This program is supposed to be called after tokenizing the input text (as tokens and
sentences), and before calling the POS tagger bin/lia tagg. In particular it is used in the LIA NE named entities
recognizer, and probably this NER performs better if this preprocessing step has been applied. It seems to work
only for French, because there is no English corresponding resource. Here is an example:

echo "Parmi les 2397 personnes présentes le 25 avril 2008, 12 possèdent plus de 41,53 $." |

$LIA_TAGG/bin/lia_tokenize $LIA_TAGG/data/lex80k.fr.tab |

$LIA_TAGG/bin/lia_sentence $LIA_TAGG/data/list_chif_virgule.fr.tab |

$LIA_TAGG/bin/lia_nett_capital $LIA_TAGG/data/lex80k.fr.tab |

$LIA_TAGG/bin/lia_nomb2alpha $LIA_TAGG/data/list_chif_virgule.fr.tab

This command output is:

<s>

parmi les deux mille trois cent quatre vingt dix sept personnes

présentes le vingt cinq avril deux mille huit , douze possèdent

plus de quarante et un virgule cinquante trois dollars . </s>

Notice that this text is tokenized as follows (obtained by running the same command without the last line):

<s>

parmi les 2397 personnes présentes le 25 avril 2008 , 12 possèdent

plus de 41 , 53 $.

</s>

Thus as one can see this tools has the particularity not only to transform the input text (contrary to simply add
some information), but also to transform a given token into several tokens. In the next steps (e.g. POS tagging)
these tokens will be considered exactly as original tokens. There are two issues with this behaviour:

• The first issue is: how is it possible to represent such a transformation in the CAS ? This question is not
trivial, but there are approaches to solve it. In particular we could use our concurrent annotation mechanism
(see 4.2: for example it is possible to use the Interpretation type to build an annotation containing the
annotations concerning each such special element (typically it would contain a list of Token types, and probably
PartOfSpeech types etc. later). Moreover that would be consistent with the general idea of concurrent
annotation: seeing numbers in their expanded form is another point of view on these tokens, and it is a
reasonably useful information to keep.

• The second issue is a simple technical problem: it is necessary for each UIMA wrapper annotator engine to
be able to interpret the external program output, in particular to be able to locate exactly any information it
receives. This is usually done using the alignment tools (see 6.2) which compare the source input text to the
annotated text, and for each annotated token return its position in the source text to know where the added
information should go. Considering several tokens at once is not a problem, as soon as it is always possible to
know where the annotation starts and ends. Unfortunately this is where things go wrong here, because there
can be any number of consecutive “old” tokens transformed in any number of “new” tokens. Therefore there
is no way to know where the first token ends and the second begins, like in the example: without knowing
exactly how the program works, it is impossible to tell which new tokens concern “41”, which ones concern
“,”, etc.

37

One can notice that the problem would be solved if the program output had follow the original tokenization in
any way, e.g. by providing the set of (new) tokens corresponding to a given (old) token on the same line. This
is not the case, even if the tokens are provided one per line (to check call $LIA TAGG/bin/unmotparligne before
bin/lia nomb2alpha in the previous example).

This is why it is (at least currently) impossible to integrate LIA bin/lia nomb2alpha to the LIPN UIMA Platform
platform.

9 Glossary

For UIMA terms and acronyms, please refer to UIMA official documentation. In particular, a convenient glossary
is proposed in the “Overview and Setup” part61.

• Alignment In LIPN UIMA Platform, refers to the re-alignment process needed when trying to integrate
the annotations added by some external program into the source text. It is then necessary to find the exact
corresponding part between the annotated text and the original one. The fr.lipn.nlptools.utils.align

package is provided to do this task, see 6.2

• CAS (Common Analysis Structure) The main UIMA data structure containing the document data, the
Type System and the annotations. See UIMA documentation.

• CLASSPATH The standard environment variable which contains the locations where Java looks for classes (and
any other files). Since this mechanism is very important to understand how descriptors and classes work
together in UIMA, refer to the Java official documentation in case you are not confortable with it.

• Concurrency Can refer to two very different points that should not be confused: the usual “time” concur-
rency refers to using different threads to process different tasks at the same time (see Threads/Concurrency).
Whereas annotations concurrency (concurrent annotations) is about different sets of annotations existing in
the same environment (see Concurrent annotations).

• Concurrent annotations Refers to the case where different sets (or series) of annotations which are inde-
pendent are used in the same environment, typically the same CAS. In general these series have more or less
the same “role” (e.g. different tokenizations of a text), this is why it may be an issue for an annotator not to
confuse between the different series (see 4.2).

• CPE Collection Processing Engine. From “UIMA Overview and Setup”: Performs Collection Processing
through the combination of a Collection Reader, zero or more Analysis Engines, and zero or more CAS
Consumers. The Collection Processing Manager (CPM) manages the execution of the engine. The CPE also
refers to the XML specification of the Collection Processing engine. The CPM reads a CPE specification and
instantiates a CPE instance from it, and runs it.

• External program A non-Java program called by a wrapper annotator using a system call (an equivalent
to Runtime.getRuntime().exec(String)). A package is devoted to running such a program, see 6.1.

• ReaderConsumer (interface) An object implementing this interface is able to read the content of a Reader

object when its consumeReader method is called. Used to read an external program output on the fly, see
6.1.2.

• Threads/Concurrency Running different threads to process different tasks at the same time. This is an
issue if they share the same CAS (see 3.4)

• Wrapper A component whose main task is actually proceded by some sub-component which was not intended
to be used in this context. Thus this sub-component has a “black box” behaviour, since there can be no
communication between it and the main process. See 3.

• WriterFeeder (interface) An object implementing this interface is able to write some data to a Writer

object when its feedWriter method is called. Used to write the external program input on the fly, see 6.1.2.

61http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/overview_and_setup/overview_and_setup.

html#ugr.glossary

38

http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/overview_and_setup/overview_and_setup.html#ugr.glossary
http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/overview_and_setup/overview_and_setup.html#ugr.glossary

	Introduction
	Preamble: what this guide is (and is not)
	Main objectives and content
	History and current state

	Getting started
	Getting help with UIMA
	The LIPN UIMA Platform environment
	Installing the external programs
	Installing TreeTagger, Unitex, TagEN, LIA Tagg and LIA NE
	Installing YaTeA
	The recommended way

	Installing the main software
	Quick testing
	Using LIPN UIMA Platform
	Creating/editing a CPE descriptor
	Running a CPE
	Visualizing results
	Running as a black box

	Compiling sources
	Modules dependencies
	With Eclipse
	With Maven (command line)
	SVN repository structure, stable and unstable versions

	Wrapper annotators: principle, approach and main issues
	Definition and issues
	General programming good practices
	Genericity, re-usability
	Versions

	Input/output issues
	(Threads) concurrency issues
	Dealing with errors

	The LIPN UIMA Platform Type System
	A generic Type System
	Concurrent annotations
	Definition
	Motivation
	Representing concurrent annotations in UIMA

	The extended LIPN TS
	Modularity

	Components: tools and annotators
	Handling annotations
	Adding annotations: setGenericAttributes
	Reading annotations: iterators and filters
	Filters management

	Other features/conventions
	Language
	Charset encoding

	Example: the TreeTagger wrapper AE
	Components specific features
	Yatea AE

	UIMA independent packages: module lipn-nlptools-utils
	Package fr.lipn.nlptools.utils.externprog
	ExternalProgram: principle
	Providing input / recovering output of an external program

	Package fr.lipn.nlptools.utils.align
	Principle
	Usage

	Troubleshooting
	UIMA general path problems
	Wrapped programs problems
	Yatea bugs
	Miscellaneous

	Future work
	LIA bin/lia_nomb2alpha Numbers converter

	Glossary

