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Abstract—Fault-tolerance has been widely studied these years
in order to fit new kinds of applications running on unreliable
systems such as the Internet. Erasure coding aims at recovering
information that has been lost during a transmission (e.g.
congestion). Considered as the alternative to the Automatic
Repeat-reQuest (ARQ) strategy, erasure coding differs by adding
redundancy to recover lost information without the need to
retransmit data. In this paper we propose a new approach using
the Finite Radon Transform (FRT). The FRT is an exact and
discrete transformation that relies on simple additions to obtain a
set of projections. The proposed erasure code is Maximal Distance
Separable (MDS). We detail in this paper the systematic and non-
systematic implementation. As an optimization, we use the same
algorithm called ”row-solving” for creating the redundancy and
for recovering missing data.

I. INTRODUCTION

Erasure codes play an important role in protecting chunks of
data in communication and storage. In distributed systems, a
lot of applications focus attention on fault-tolerance and high-
performance for message blocks [1]. Compared with the repli-
cation strategy, erasure codes can divide by two the capacity
of the storage for the same availability usually measured at
99% with couples of 9 beyond the comma. Research is really
active in this area [2].

In video communication, erasure codes are essential to
prevent packet loss and preserve Quality of Service (QoS)
parameters [3]. Implementations support today real-time video
transmission [4]. For this type of application, Reed-Solomon
(RS) codes [5] are very popular. RS codes are MDS codes
i.e optimal Maximum Distance Separable codes. With MDS
codes, if you encode from k message packets to n > k redun-
dant packets, it is possible to recover missing message packets
from any k received packets out of n. Some implementations
relax this optimality requiring k + ε incoming packets for
the benefit of complexity reduction. Example of (1 + ε)MDS
codes are LDPC (Low Density Parity Check) [6], Tornado and
Raptor [7] codes.

Our research focus on MDS implementation with the goal
of complexity reduction. To make this, we promote the use
of discrete geometry and discrete tomographic operators. We
already proposed erasure codes and multiple description codes
based on Mojette transform. An overview of these codes is
given in [8]. The order of complexity is very low with this
transform but computed projections suffer from linear size
increasing with discrete projection angles. In this paper, we

propose to use the Finite Radon Transform (FRT) for erasure
encoding. FRT is very close to the Mojette transform and
provides more compact projections with constant sizes despite
the discrete angles. Our first study in [9] was focused on the
connection between geometric and linear algebra formulation
(in particular the link with Vandermonde matrices was demon-
strated). In this paper, the complete algorithm is given with a
drastic improvement in data packing and error recovery by the
row-solving algorithm.

The following parts are organised as follows. Section II
presents the Finite Radon Transform. Section III describes
FRT as an erasure codes with data packing for non-systematic
and systematic MDS constructions. Section IV focuses on
error recovery by the row solving algorithm.

II. FINITE RADON TRANSFORM

The data introduced in this paper are represented as cells
in a discrete P × Q grid which holds boundary conditions,
where p = 0, that make it similar as a tore. A cell is reduced
to its center point. The FRT is a discrete version of the Radon
Transform, described as

Rm(t) =



p−1∑
y=0

I(m× y + t (mod p), y) if m < p ,

p−1∑
x=0

I(x, t) if m = p .

(1)

where 0 ≤ m ≤ p and 0 ≤ t < p The FRT transforms
a p × p image space I(x, y), represented as a grid, into a
p(p + 1) projection space R(t,m). It projects through p + 1
discrete angles m, and shift up to p pixels by t translations.
In consequence, the projected space is redundant p× (p+1).
The value of m is directly linked to the discrete projection
angle (r, s) following the minimum distance between the pixel
samples. Clearly, m = 0 studies the sum of columns as it
draws vertical lines, 0 < m < p means (m, 1) angle lines
while m = p focuses on row summations. The location (x, y)
which defines the ray is given by x = m× y + t (mod p).

In order to preserve exactly the information, the FRT is
supposed to project all the values of the cells. Following the
different values of m, we draw lines that sum the values of
the cell centers it runs over. This summation gives the value of
the corresponding FRT cell. Fig. 1 describes a 3×3 grid with
the related Radon space and the reconstructed image space.
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Fig. 1. Forward and Inverse FRT - (a) A 3 × 3-image space (i.e. p = 3).
Pixels values are symbolic a, b, ..., i - (b) shows the (p+1) FRT projections.
The example in red shows how we compute the projection for t = 0 and
m = 2, where afh means a + f + h. (c) The reconstructed image space
is computed with opposite value of m. Each pixel is the sum of p times the
former value with Isum = a+ b+ ...+ i. Extracted from [10].

Taking a p× p grid, the FRT is incomplete for each size of
p except for primes. In consequence, p must be prime in order
for the projection rows to be sum of all the p× p cells, called
Isum. The boundary conditions make each cell contributes
once and only once in a projection row.

This paper aims at designing an optimal code by exploiting
the MDS property studied in section III. For that, we need
the same number of elements in the Radon space than in the
image. The solution here is to set a parity column (resp. row)
in the image space in order to reduce the size of the Radon
domain. The sum of all values regarding the direction m = p
[horizontal projection lines] (resp. m = 0 [vertical projection
lines]) is then null. The consequence in the Radon space is that
the last row (resp. the last column) is null. This 1:1 mapping
offers maximum compactness that will be exploited for the
MDS property in section III.

Algorithm 1 Direct Finite Radon Transform algorithm
1: image = p× p
2: radon = p× (p+ 1)
3: for all projection angles m do
4: for all rows y do
5: for all translations t do
6: radon(t,m)+ = image(m× y + t (mod p), y)
7: end for
8: end for
9: end for

Algorithm 1 shows the forward FRT algorithm that cor-
responds to equation (1). The simple computations rely on
additions following different values of m and t. The raw
complexity of the algorithm is O(p3) which is similar to
classical RS implementations. The inverse transform runs with

the same method and cost as much as the forward :

I(x, y) =
1

p

(
p∑

m=1

Rm(x− y ×m (mod p))−
p−1∑
t=0

Rj(t)

)
,

(2)
where 0 ≤ j ≤ p and 0 ≤ m < p. Svalbe et al. have however
implemented methods using the Direct Fourier Transform
(DFT) or the Number Theoretic Transform (NTT) that reduce
the cost of computations up to p2 log p [10].

Despite the image grid representation this paper deals with,
it is usable to any discrete data.

III. ERASURE CODING BY FRT

Normand et al. [9] showed that the FRT∗, limited to
the first p rows, can be seen as a Vandermonde matrix :
V(x0, ..., x−(p−1)) = x−(m−1)(t−1) which is always invertible
by definition. The Radon space is then expressed as :

R∗
m(t) = V(x0, ..., x−(p−1)) tI (3)

where tI is the transpose of the image I . A sub-matrix of
any Vandermonde matrix is still invertible. Taking any k × p
subpart of the matrix, whose rows correspond to the erased
rows, is sufficient to recover the source part.

Practically, an optimal (n, k) erasure code is designed to
cut an original data object into k data chunks. The encoder
computes these data fragments in order to get n−k redundant
chunks through an MDS erasure coding. This kind of erasure
code can tolerate n−k failures. Therefore, in case of erasures
during the transmission, a sufficient amount of k chunks is
enough to recover the source message.

An optimal erasure code relies on the MDS property com-
bined with an efficient design. This section focuses on the
systematic form of our erasure code that modify the way to
encode and decode our data.

A. Encoding and Erasure Resilience Design

The non-systematic form is about sending the p projections
from an image space divided between k×(p−1) data bits and
r×(p−1) bits set to zeros. This area is required for the erasure
resilience as studied in the next section. The last column is
reserved for parity constraint as seen in section II. An overview
of our construction is given in Fig. 2(a) which shows at first
the simple coding computation of a non-systematic erasure
code.

The systematic form aims at sending directly the image
space composed by the source and redundant data. The coding
computation is here trickier as a prior work is required to get
the r × p redundancy. We use ”row-solving” to compute the
r × p area in the FRT domain filled with zeros. The row-
solving algorithm detailed in IV is also used to recover data
rows. Here, we consider the redundant rows as erased rows
to create the redundancy. This area filled with zeros is similar
as the one in the non-systematic image space. Likewise, Fig.
2(b) shows the systematic encoding.
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Fig. 2. Non-Systematic and Systematic Form Designs - starting with an image composed of k data, a parity column and r zeros, we have the choice through
the FRT projections to transfer information (non-systematic) or to compute redundancy by the row-solving algorithm (systematic). Over the erasure channel,
the 5× 5 space represented here lost N = 3 rows corresponding to rows b, d, e. This incomplete space reconstructs a ghosted space. To recover information,
the row-solving algorithm compares this ghosted area and the former one, filled with zeros.

B. Decoding and Data Recovery Introduction

The principle of decoding is different for both designs. The
non-systematic decoder requires an inverse FRT to get the
image space from which it will extract the source data.

The advantage of the systematic decoding is that the receiver
just needs to extract the k × p source data from the received
data without computation. However, keep in mind the prior
computations of the encoder to calculate the redundancy. A
further disadvantage is that the source data are readable in the
case of a man-in-the-middle attack.

Let show how to be resilient to erasure. We set here some
definitions. In case of failures, the received space is called the
erasure space. The reconstruction of this incomplete space by
the FRT (or its inverse) is known as the ghosted space. The
ghosted space is supposed to hold an r × p area filled with
zeros by the constraint of the previous encoding design. The
algorithm for recovering data known as row-solving by de-
ghosting relies on this area. It is described in the next section.

IV. FRT TO RECOVER ERASED DATA

Using the previous section designs, it is possible for the
decoder to recover erased information if k rows at least have
been received. The row-solving algorithm introduced in this
section deals with data recovery. It is used for the redundancy
solver and the data recovery as well.

A. Ghosts and Redundancy

We designed in section III our erasure code in such a way
that the FRT of the send data has an p×r area filled with zero
values. Recovering data is based on the modifications brought
by erasures. Since rows are missing in the erasure space after

failures occur, this area is no more null. It results then to an
addition of artefacts called ghosts.

Ghosts are invisible distributions arising from an incomplete
space. This paper deals with discrete ghosts that correspond
to superimposed artefacts whose projection regarding a fixed
angle m is null. It is defined as

∑
f(x, y) = 0 for m fixed.

When erasures occur, the values of the concerned rows in
the erasure space are set to zero. Applying the FRT on an
incomplete space results in getting a ghosted projection space.
Ghosts are finite artefacts created by the reconstruction of
missing rows.

Data recovery is a process that removes all the artefacts from
the ghosted space. The erasure space is repaired by iteratively
finding the ghost values in the ghosted space and project them
back into the erasure one. This process is called de-ghosting.

B. Recovering Lost Data by De-ghosting

Using the FRT in order to recover information has already
been proved by linear algebra [9]. The ghosts distribution is
a submatrix of the Vandermonde matrix that, once inverted,
provides a tool to rerieve lost data from the row-solving
algorithm. Similarly, Chandra [10] showed that the structure
of these ghosts is circulant for each m value of the missing
rows, according to the nature of the FRT. This m variable
corresponds to the position N of these rows. A circulant
matrix is defined as a matrix whose row elements are cyclically
rotated by m (mod p) to the right relative to the preceding
row.

The ghosted area is a superimposition of ghosts following
the scheme described by the circulant theory [11]. Knowing
the position of the missing rows, it is possible to know



a0 + b0 + c0 a1 + b1 + c1 a2 + b2 + c2 a3 + b3 + c3 a4 + b4 + c4

a4 + b2 + c1 a0 + b3 + c2 a1 + b4 + c3 a2 + b0 + c4 a3 + b1 + c0

a3 + b4 + c2 a4 + b0 + c3 a0 + b1 + c4 a1 + b2 + c0 a2 + b3 + c1

a2 + b1 + c3 a3 + b2 + c4 a4 + b3 + c0 a0 + b4 + c1 a1 + b0 + c2

a1 + b3 + c4 a2 + b4 + c0 a3 + b0 + c1 a4 + b1 + c2 a0 + b2 + c3

Fig. 3. Circulant repartition of ghosts {a, b, c} corresponding respectively to
m = {1, 3, 4} in a p = 5 ghosted image space (e.g. non-systematic context).
We circular shift rows to align the first element of ghosts, which are stressed
here, before removing them to recover ghosts c, b then a.
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Fig. 4. Integration process - ghost a and b removals have added shifted
ghost c artefacts. Linearity of shift and subtract computations makes feasible
to recover the initial ghost by integrating first by 4− 1 = 3 and 4− 3 = 1.

how their ghosts influence the space through their respective
discrete angle m. The Fig.3 shows this representation in a
non-systematic context for missing rows corresponding to
m = {1, 3, 4} and p = 5. Algorithm 2 introduces the steps of
the de-ghosting implementation.

Algorithm 2 Row Solving by Spatial Ghost Recovery
1: for i = N to 0 do
2: shift cyclically N rows by −k ×mg {align ghost g}
3: subtract rows in pair {remove ghost g}
4: for all ghosts that have been removed do
5: integrate by mN−1 −mg {erase the shifted multiple

values}
6: end for
7: shift back and back-substitute the row
8: end for

The objective of this method is to retrieve successively the
N thghost from the ghosted space, put it back in the erasure
space and reconstruct the ghosted space until ghosts are erased.
Following the example of the Fig. 3, we shift each redundant
row by −k×mg , where k is the index of the redundant rows,
in order to align ghost a. Subtracting rows in pair, we remove
ghost a from the sub-space. Similarly, we remove ghost b,
then only ghost c remains. Shifts and subtracts bring a new
shifted negative version of ghost c mixed with the former one
and an offset. Integration deals with cancelling these versions.
Starting with 0, we add elements with a step of mN−1 −
mg for each ghost g removed. The offset is subtracted from
each element by the division of the sum of the ghost by p.
Fig.4 shows the integration process following the context of
the previous figure. The ghost obtained is then shifted by the
inverse value of the first rotation k×mg to get back the well-

oriented ghost. Reconstruction of the erasure space is realised
by setting back the result of the N thghost as the last missing
row.

V. CONCLUSION

In this paper, we introduced a novel (n − k) erasure code
that uses the simple computations of the exact and invertible
FRT for encoding and decoding. High performances come
from the code design which is MDS. Furthermore, it lets
the choice of the systematic form. An implementation has
been realised and provides an efficient failure tolerant code.
We present an easy spatial implementation through the row-
solving algorithm. It provides an efficient and original method
to recover lost data without using the classical linear algebra
used in Reed Solomon (RS) codes.

Further experimentations have to be done in order to com-
pare our results with other codes as RS, LDPC and Raptor. The
choice of systematic form needs to be discussed depending on
the targeted application. Finally, techniques exist in order to
improve the computation speed. For instance, the Central Slice
Theorem (CST) is able to construct the Radon space by using
the Fast Fourier Transform (FFT). This speed improvement
might be supported by the use of finite fields.
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