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ABSTRACT
Our objective is to learn invariant color features directly from

data via unsupervised learning. In this paper, we introduce

a method to regularize restricted Boltzmann machines during

training to obtain features that are sparse and topographically

organized. Upon analysis, the features learned are Gabor-

like and demonstrate a coding of orientation, spatial posi-

tion, frequency and color that vary smoothly with the topogra-

phy of the feature map. There is also differentiation between

monochrome and color filters, with some exhibiting color-

opponent properties. We also found that the learned represen-

tation is more invariant to affine image transformations and

changes in illumination color.

Index Terms— Unsupervised feature learning, invariant

features, sparse coding, topographic coding, color features

1. INTRODUCTION

There is a recent bloom in the field of learning deep architec-

tures [1], whereby the input data is represented by a hierarchi-

cal network of several layers. A popular deep architecture is

the deep belief net (DBN) [2], which stacks restricted Boltz-

mann machines (RBMs) in a greedy layer-by-layer manner.

Each RBM is trained via unsupervised learning and the entire

network is subsequently fine-tuned via supervised learning.

In traditional RBMs, features are learned by approximat-

ing the maximum likelihood of the data distribution. Sparsity

may be used as a regularization criterion to increase feature

differentiation and discriminative power [3, 4, 5]. However,

the representations are not invariant to input transformations.

We propose that if there is structured similarity between the

features, then representations will smoothly vary with respect

to the transformations and invariance can be achieved.

In this paper, we present a method to regularize RBM

learning to achieve with sparseness and topographical orga-
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nization. The features learned exhibit invariance to affine im-

age transformations and illumination color, while maintaining

differentiation when the transformations are significant.

2. RESTRICTED BOLTZMANN MACHINES

An RBM is a bipartite neural network that represents input

data with a layer of hidden units via symmetric weights. An

input example k is represented by visible units v(k)i and the

latent representation by hidden units h(k)
j . By fixing one layer,

activation probabilities of the other layer can be computed:

Pr
�
h(k)
j | v(k)

�
= sigmoid

�
I�

i=1

viwij + bj

�
, (1)

Pr
�
v(k)i | h(k)

�
= sigmoid




J�

j=1

hjwij + ci



 , (2)

where sigmoid (·) is the logistic function and bj and ci are

biases contributing to hidden and visible units.

The parameters of the RBM are learned via contrastive

divergence [6], whereby the maximum likelihood of the data

is approximated. Given a training set of K examples, the

visible states v+i and hidden states h+
j are sampled from the

data distribution, while v−i and h−
j are reconstructed states.

The parameter update equations are

∆wij = ε (�v+i h
+
j � − �v−i h

−
j �), (3)

∆bj = ε (�h+
j � − �h−

j �), (4)

∆ci = ε (�v+i � − �v−i �), (5)

where ε is a learning rate and �·� averages over K samples.

Early work of regularizing RBMs focused on achieving

sparse representations [3, 4]. Building on those, Goh et al. [5]

formulated a general method to regularize RBMs with more

precision. These regularizers can be designed based on any

inductive principle, such as sparsity and selectivity as origi-

nally demonstrated. The new update rules for W and b are:

∆wij = ε (�v+i sj� − �v−i h
−
j �), (6)

∆bj = ε (�sj� − �h−
j �), (7)



where

s(k)j = φp(k)j + (1− φ)h(k)+
j (8)

and φ is a hyperparameter that interpolates the observed hid-

den activation probabilities H with the desired activation

probabilities P. The resulting features learned will take on

the representational properties defined by the regularizers P.

3. SPARSE TOPOGRAPHIC REGULARIZATION

The regularization method drives the learning of features to be

dependent on both the data distribution V
+

and the regular-

izer P. We adapt an two-layered scheme [7, 8] to regularize

the RBM (Fig. 1). From hidden representation H
+

, we com-

pute a new set of activations �H based on fixed topographically

pooled weights (see Section 3.1). Subsequently, sparsity is in-

duced in both the temporal and spatial domains to obtain P

(see Section 3.2). P can then be used to regularize updating

of parameters for the RBM.

+

+

Fig. 1. The framework for inducing both sparseness and to-

pographical organization. From a batch of pixel inputs V
+

,

the latent units are activated H
+

via learned weights. The ac-

tivations are then topographically pooled based on the local-

ity of hj in the feature map via fixed weights. Subsequently,

population and lifetime sparseness are induced to obtain P.

Finally, P is used to regularize the learning of the parameters.

3.1. Inducing Topographic Organization

As shown in Fig. 1, we induce topographical structure in the

feature map by introducing a dependence between the hid-

den units via a new layer �H, where each �h(k)
j pools activa-

tions from the neighborhood of h(k)+
j . Each unit in H

+
ac-

tivates units in �H depending on the relative locality of the

units, which has the same effect as filtering the feature map.

The modified activations �h are computed as

�h(k)
j =

M�

m=1

h(k)+
m ω (j,m) (9)

where the fixed topographic pooling weights ω (·, ·) are func-

tions of the topographic distance between two units. A Gaus-

sian kernel with wrap around was used for this paper.

(a) Independent coding (b) Topographic coding

Fig. 2. Comparing activations of independent coding (a) and

topographic coding (b). Each pixel shows the activation of a

unit in the feature map, where darker color denotes a higher

activation. When topographic organization is induced, the ac-

tivations are spatially grouped within the feature map.

3.2. Inducing Lifetime and Population Sparseness

After inducing topographical organization, we sparsify the ac-

tivation probabilities to obtain the final modified activation

probabilities P. We follow the method by Goh et al. [5] to

inducelifetime and population sparseness in our representa-

tions. This is done by the following sequence of data trans-

formations:

�p(k)j =
�
rank

�
�h(k)
j , �h(k)

��(1/µ)−1
, (10)

p(k)j =
�
rank

�
�p(k)j , �pj

��(1/µ)−1
, (11)

where µ denotes the target mean of the latent activations and

rank (xn,X) is the normalized rank of element xn in vector

x such that the highest xn is assigned a value of 1, the smallest

the value of 0 and all others are uniformly distributed between

0 and 1 depending on their rank in the vector. The rank (·)
function has the same effect as histogram equalization.

4. EXPERIMENTAL RESULTS

We trained an RBM with sparse topographic regularization

using 100,000 natural image patches. The patches were of

size 10 × 10 and taken from the McGill Calibrated Colour

Image Database [9] (Fig. 3(a)). The RBM consists of 300

visible units and 400 hidden units, which are structured in a

two-dimensional 20× 20 feature map.

The resulting feature map consists of Gabor-like filters

with varying spatial frequency, position, orientation and color

(Fig. 4(b)). The appearance of filters vary smoothly across

the feature map. This was also demonstrated in other related

models [10, 11, 8]. Additionally, our feature map models

color information. As a comparison, another RBM was also

trained with sparse but independent regularization (Fig. 4(a)).



(a) The McGill calibrated color image database has 9 categories – flowers, animals, foliage, textures, fruits, landscapes, winter, man made and shadows.

(b) The subset of the Amsterdam library of object images used have been photographed under different illumination color.

Fig. 3. Sample images from data sets used.

(a) Sparse independent feature map (b) Sparse topographic feature map

Fig. 4. Feature maps learned with (a) sparse but independent regularizers and (b) sparse topographic regularizers.
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Fig. 5. Appearance of filters vary smoothly across the feature map when broken down to their component properties of (a) spatial

position, (b) orientation, (c) spatial frequency and (d) color.
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Fig. 6. Comparing the invariance of between sparse topographic features and sparse independent features for (a) translation,

(b) rotation, (c) scaling and (d) varying illumination color.



4.1. Analysis of Topographic Feature Maps

We fitted Gabor functions to the filters of the feature map to

analyze their orientations, spatial positions and spatial fre-

quencies (Fig 5). At the level of these visual components,

one clearly observes a smooth topographical organization of

filters in the feature map. There is also a presence of several

pinwheel structures in the orientation map (Fig. 5(b)).

From Fig. 5(d), we can see that the filters are clustered

by color. We also observe that some exhibit color-opponeny,

while others encode single colors. The predominant opponent

pairs based-on are red-green, yellow-blue and black-white.

From Fig. 5(b), we observe that each color-opponent pair has

filters with different orientation coding. The red-green and

yellow-blue opponent pairs tend code for lower frequency.

We also note the existence of some single-colored filters that

are mostly green, cyan and violet, with high frequency tex-

tured appearances.

4.2. Evaluating the Invariance of Features

We evaluate the features learned based on their invariance

to affine transformations (translation, rotation, scaling) and

changes to illumination color. For affine transformations,

new patches were sampled from the McGill database [9]

(Fig. 3(a)), while patches were drawn from the ALOI data

set [12] (Fig. 3(b)) for the illumination color task. For each

evaluation task, we extracted 500 evaluation batches. Each

evaluation batch consists a set of patches sampled via trans-

formations for the given task.

An evaluation batch for rotation consists of 13 patches

sampled about a fixed point with rotation ranging from -30 to

30 degrees at 5 degree intervals. The samples for translation

was drawn via horizontal translations from -3 to 3 pixels. For

scaling, a progressive scaling factor of 1.1× was used to up-

sample and down-sample a patch. To produce patches with

varying illumination color, we sampled a set of images pro-

duced by different illumination from the same coordinate.

For every input patch, the output signature of hidden unit

activations were recorded. To quantitively measure invari-

ance, we took the mean squared difference (MSD) between

the signatures of the transformed input and that of the un-

transformed input. The MSD was then averaged across the

samples and plotted in Fig. 6.

(a) Original signature (b) Slightly transformed (c) Highly transformed

Fig. 7. Variations of signatures in the sparse topographic fea-

ture map under different amounts of transformation.

In every evaluation task, when the transformation is low,

topographic features are more invariant than independent

ones. There is little difference between the two feature types

under large transformations. The signature of a slightly trans-

formed input is highly similar the original signature. As the

amount of transformation increases, the signature gradually

shifts and invariance reduces (Fig. 7). Hence, the features

retain the necessary differentiation for recognition tasks.

5. CONCLUSIONS

We introduced a method to regularize the learning of RBMs

by encouraging activations to be topographic organized. The

appearance of the resulting color features vary smoothly

across the feature map. The representations exhibit invariance

to affine transformations and changes in illumination color.
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