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ABSTRACT. The velocity of a passive particle in a one-dimensional wave

field is shown to converge in law to a Wiener process, in the limit of

a dense wave spectrum with independent complex amplitudes, where

the random phases distribution is invariant modulo π/2 and the power

spectrum expectation is uniform. The proof provides a full probabilis-

tic foundation to the quasilinear approximation in this limit. The result

extends to an arbitrary number of particles, founding the use of the en-

semble picture for their behaviour in a single realization of the stochastic

wave field.
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1. INTRODUCTION

We first recall the physical setting in sec. 1.1. Indeed the quasilinear ap-

proximation is an ubiquitous scheme for deriving irreversible, diffusion-like

equations from many-body dynamics, involving a “propagation of chaos”

kind of argument in a system with mean-field behaviour. Original deriva-

tions of this approximation are sketched in sec. 1.2. A different, more re-

cent analysis in the framework of hamiltonian chaotic dynamics is recalled

in sec. 1.3. As these arguments are well detailed in the literature, we do not

reproduce the calculations and proofs but merely highlight their key points.

Our main result and particulars of the present work are stressed in sec. 1.4.

1.1. Physical setting. The motion of a particle in the field of many waves

is a fundamental process in collisionless plasma physics. Even if the particle

motion does not feed back on the wave parameters, viz. for a test particle,

undergoing passive transport, this problem still presents open issues. Its

most elementary instance, in one space dimension, is also a benchmark for

approximation techniques.

This one-dimensional problem describes the motion of a particle in a lon-

gitudinal, electrostatic, time-dependent potential. Electrostatic modes occur

in various contexts [GoRu95, DMA05], including (i) the non-relativistic

regime of Coulomb plasmas, where magnetic fields are negligible ; (ii) par-

ticle motion parallel to the applied magnetic field in strongly magnetized

plasmas ; (iii) particle motion along the axis of a waveguide, such as travel-

ing wave tubes used as amplifiers in telecommunications. The time depen-

dence of the field leads to the propagation of waves, which are longitudi-

nal : Langmuir waves are the simplest collective modes in plasmas. When

it applies (in particular for hot plasmas), the neglect of collisions in particle

dynamics within plasmas rests on the long-range nature of Coulomb inter-

action leading to a mean-field picture in both the Vlasov kinetic equation

and the Euler fluid models.

In many situations, the wave field evolution involves a response to the

particle motion. However, in some instances the particle feedback on the

electrostatic field is negligible, and one may take the field as given. The

equations of motion for a particle with charge e and mass m then read

dX

dt
= V (t)(1)

dV

dt
=

e

m

E(X(t), t)(2)

where the electric field E is a prescribed process. It is convenient to rep-

resent E as a Fourier series, E(x, t) = ∑m Em ei(kmx−ωmt+ϕm), where ampli-

tudes Em and phases ϕm may be tunable, while (km,ωm) are given by the
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waves dispersion relation.1 The key effect of a single wave with phase ve-

locity vϕ,m = ωm/km on a particle with velocity v is a tendency [DEM05]

to reduce the relative velocity |v− vϕ,m|, and this effect works best when

m(v− vϕ,m)
2 ∼ |eEm/km|. The competition between two waves m,m′ in

attempting this synchronization is measured by the wave overlap parameter

(3) sm,m′ := 2| e
m

|
1/2 |Em/km|1/2 + |Em′/km′|1/2

|vϕ,m − vϕ,m′| .

When this parameter is small, a particle cannot interact strongly with both

waves simultaneously, and the dynamics can be analyzed perturbatively.

Actually, the dynamics (1)-(2) is well known to be nonintegrable as soon as

there is more than a single wave phase velocity ; the two-wave model is a

paradigm of hamiltonian chaos with 1.5 degrees of freedom, with a KAM

limit as s → 0, and transition to “large scale chaos” as s & 1. [Es85, ElEs03]

Denoting by ∆vϕ the typical relative velocity of a wave with respect to

its nearest neighbours, by ktyp a typical wavevector, and by Etyp a typical

amplitude, the regime of interest for this paper is the dense spectrum limit,

where a particle is typically influenced significantly by many waves ; in this

regime the typical resonance overlap parameter s= 4
√

|(eEtyp)/(mktyp)|/∆vϕ

is large. It is then tempting to consider the acceleration in the right hand

side of (2) as an approximate white noise, and the particle velocity V as a

kind of diffusion process : this is the core of the quasilinear approximation

[RoFi61, VVS61, VVS62, DrPi62]. The latter is widely used, in diverse

physical contexts, as it is easily implemented and relies on simple ideas,

which we comment in the following.

1.2. Original derivations of the quasilinear approximation. Classical

derivations of the quasilinear approximation in plasma physics textbooks,

e.g. [Kad65, GoRu95, HaWa04], start from viewing the motion of the test

particle as the transport of a measure dµ = f dxdv on (x,v) space (with

f (., ., t) possibly a distribution),

(4) ∂t f + v∂x f =− e

m

E(x, t)∂v f ,

and begin an iterative solution with respect to E,

f (x,v, t) = f (x− vt,v,0)− e

m

∫ t

0
E(x− v(t − t2), t2)∂v f ((x− v(t − t2),v, t2)dt2

+(
e

m

)2
∫ t

0

∫ t2

0
E(x− v(t − t2), t2)E(x− v(t2 − t1), t1)

∂v f ((x− v(t − t1),v, t1)dt1 dt2 .(5)

1Note that this model differs from stochastic acceleration problems in a random poten-

tial, for which the field E(x, t) reduces to a static random E(x).
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On performing an x average which highlights the correlation function of

the electric field E, one then relies on independence of E from the (slaved,

passive, tracer) particle distribution dµ to eliminate the first order term,

and obtains an integro-differential evolution equation for the x-averaged f̄ .

Then, on considering that the velocity process V must be Markov on time

scales longer than the correlation time of E, the equation for f̄ (v, t) reduces

to

(6) ∂t f̄ −∂v(D(v)∂v f̄ ) = 0

where the velocity-dependent diffusion coefficient

(7)

D(v) =
e

2

m
2

∫ ∞

0
〈E(x, t)E(x− vτ, t − τ)〉 dτ =

πe2

m
2

∫

δ (ω − kv)〈|Ek|2〉 dk

is determined by the wave field lagrangian autocorrelation, with appropriate

averaging 〈·〉 and assuming that phases ϕm are independent and uniformly

distributed. The Fourier form in (7), with a Dirac distribution, obtains in

the continuous spectrum limit.

The “appropriate averaging” 〈·〉may imply (see e.g. sec. 9.4 in [HaWa04])

that one no longer considers the evolution of test particles velocity distribu-

tion
∫

f (x,v, t)dx in a single realization of the field E but rather the expecta-

tion of this
∫

f (x,v, t)dx with respect to the ensemble of wave fields. Such a

view pertains to the statistics of particle velocities collected from repeated

experiments, but it does not apply a priori to the description of transport in a

single realization, as stressed in more general terms e.g. p. 45 in [HaWa04].

This derivation may be criticized (within its own viewpoint) on the ground

that, however small the coefficient E may be, the differential operator ∂v

is unbounded for many function spaces. Formal, diagrammatic [Bo62a,

Bo62b, Bo65, ThBe73, BrFr74] expansions in E ∂v are therefore less straight-

forward than they may seem.

An alternative derivation, based on particle motion and E-power expan-

sion, also leads to the diffusion equation (6) via its Langevin counterpart,

assuming that the particle velocity is a Markov process and computing the

first two moments of its increments [St66]. In this context, the “random

phase approximation” is actually invoked so that, to practical ends, “la-

grangian” (as seen by a test particle) phases km(x− v(t − t j))+ϕm −ωmt j,

can be considered as independent (uniformly distributed modulo 2π) ran-

dom variables for any relevant sequence of times t j and wave indices m,

viz. not only at a single time (this is imposed by the very distribution of

parameters ϕm) but as if their values were “refreshed” repeatedly. The bold-

ness of such an assumption, akin to the propagation of molecular chaos in

gas theory [Kac56, Kac59], fueled the debate on the validity of the quasi-

linear approximation (as a preamble to the further debate focusing on the
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self-consistent problem, where wave amplitudes and phases evolve under

particle feedback) [CEV90, IXW93, LaPe99].

Mathematically, the “repeated random phase approximation” is valid, un-

der a few more technical conditions [PaKo74], in the limit ε → 0 after a

time rescaling, τ = ε2t, when the field E is mixing, in the sense that the

process E(., t) is adapted to a family of σ -algebras F t
s , 0 ≤ s ≤ t ≤ ∞, with

F
t1
s1
⊆F

t2
s2

for 0 ≤ s2 ≤ s1 ≤ t1 ≤ t2 ≤ ∞, with a probability measure P such

that the rate function

(8) ρ(t) := sup
s≥0

sup
A∈F ∞

s+t ,B∈F s
0

|P(A|B)−P(A)|

satisfies the condition
∫ ∞

0

√

ρ(t)dt < ∞. Typical examples of such mixing

processes E are ergodic Markov processes on a compact space [PaKo74],

but time-periodic fields as discussed e.g. in Refs [CEV90, BeEs98a, ElEs03,

ElPa10] fail to meet the mixing condition.

The use of an adjoint formulation instead of trajectories is generally mo-

tivated by the traditional viewpoint of kinetic theory, interested in following

many particles (in which case, including the self-consistent dynamics where

the evolution of E depends on f , measures provide a natural description, see

e.g. ch. I.5 in [Sp91]), by the fact that the Vlasov and diffusion equations

are linear for f , and by the familiar description of Markov processes in

terms of their generator. Yet a single physical realization of the wave field

E acts on a particle distribution quite differently from the way an ensem-

ble of independent realizations would act on a single particle [BeEs98b].

The decorrelation assumption is crucial in claiming that the ensemble may

describe a single experiment with many particles. Besides, if the Markov

assumption fails, the single-time distribution function f (x,v, t|x0,v0, t0) may

fail to describe properly the joint n-time distribution F(x1,v1, t1 . . .xn,vn, tn).
Therefore we revisit the derivation of quasilinear equations from a particle

viewpoint, and possibly reach a Markov description in an appropriate limit.

1.3. Hamiltonian dynamics approach. This dynamics-based program was

significantly advanced by Bénisti and Escande [BeEs97, BeEs98a], who

proved the validity of the velocity diffusion picture for the dynamics de-

fined by hamiltonian

(9) H =
p2

2m
+A

M

∑
m=−M

cos(q−mt +ϕm)

in the limit M3/2 ≫ A /m→ ∞, when phases ϕm are independent and uni-

formly distributed in [0,2π ]. Their derivation relies on the strong chaos (as

s→∞) in particle dynamics associated with the limit, and on the fact that, at

a time t, only waves with a phase velocity such that |vϕ − p(t)/m|. ∆vb act
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strongly (nonperturbatively) on the particle. Waves beyond the “resonance

box half-width” ∆vb ∼ 5(A /m)2/3 can be eliminated from the dynamics

(their overall statistical effect is exponentially small in |vϕ − p/m|/∆vb) by

a canonical transformation, so that the velocity process is Markov on scales

wider than the resonance box. On the other hand, for shorter time scales,

the particle velocity needs a time of the order of unity to sample correla-

tions associated with the discreteness of the frequency spectrum, so that it

is chaotic and wanders so much that it eventually moves to another reso-

nance box. Moreover, for short time scales, they show how to relax the

assumption that all phases are independent to the requirement that any two

phases influence negligibly the particle motion [BeEs97, BeEs98a, ElEs03].

This argument was complemented by the observation that the short-time

quasilinear approximation holds for times 0 < t . D−1/3 lns, and that the

Markov approximation holds for times t & D−1/3 [EsEl02, ElEs03] (D−1/3

is also related to the Lyapunov time scale for the divergence of microscopic

trajectories in a typical wave field [ElEs03]), so that the quasilinear approx-

imation holds for all times in the dense spectrum limit s → ∞.

For technical simplicity, the hamiltonian model (9) involves three re-

strictions with respect to the original dynamics (1)-(2) : all amplitudes are

equal, all wavevectors are equal, and all phase velocities are equally spaced.

Bénisti and Escande [BeEs98a] sketch how their arguments can be extended

to lift these restrictions. The hamiltonian (9) also stresses the spectrum dis-

creteness time scale, as ∆vϕ = 1, which can generate correlations over long

times [BeEs97, BeEs98b].

1.4. Position of this work. In the present work we extend the approach

initiated in [El07, ElPa10] and revisit the Bénisti–Escande result with the

language of probability theory. We express the wave field as a sum of N →
∞ independent components per unit frequency interval, so that the overlap

parameter s diverges in the limit N →∞. We first prove in Theorem 3.4 that,

in the resulting dense wave spectrum limit s → ∞, the wave field acting on

a particle for 0 ≤ t ≤ 2π converges in law to the field associated with a

“white noise”. This enables us to derive Proposition 4.2 and Theorem 4.3

on particle motion.

Proposition 4.2 shows that, for M → ∞, for fixed wave power spectral

density with N → ∞ so that s → ∞, the velocity of a single particle in

the wave field converges in law to a Wiener process over the time inter-

val [0,2π ]. While Bénisti and Escande emphasize a hamiltonian dynamical

system approach, we focus on the velocity and express our limit theorem as

a convergence in distribution result, following essentially from central limit

averages on the wave field. The convergence in distribution was clearly

understood in [BeEs97, BeEs98a], in particular through the statement that
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the influence of waves outside a resonance box is only perturbative on the

statistical properties of the dynamics (p. 914 in [BeEs98a]). The focus on v

is also central to the arguments in [ElEs03] which involve the characteristic

function Φ(γ, t) := E exp(iγ(v(t)− v(0))).
We also pay attention to the behaviour of an arbitrary number N of par-

ticles moving in the same wave field. Their evolutions are not independent

processes for finite A , so that the diffusion equation (6) does not describe

the evolution of the empirical distribution N −1 ∑N
ℓ=1 δ (v− pℓ/m) ; this was

stressed in [BeEs98b]. However, our main result, Theorem 4.3, proves that,

in the limit s → ∞, particles do diffuse independently, even in the same

wave field2 – in agreement with the view that they generally are in different

resonance boxes. Thereby we extend to a broad class of wave fields the

conclusion of [ElPa10], which assumed a wave field generated by Wiener

processes (viz. the fields obtained in the dense spectrum limit). This result

provides some support to the traditional view that a single realization may,

in some cases, be approximated by an ensemble.

This paper is organized as follows. We state our assumptions on the

wave field in section 2. These enable a fast proof of the convergence of

elementary processes associated with the wave field in section 3. Thanks

to Ref. [ElPa10] and the continuous mapping theorem [Kal01], the con-

vergence of the N -particle velocity process to the diffusion limit follows

immediately in section 4. We stress the interpretation of our techniques and

results in section 5. We conclude with a discussion of open issues.

2. WAVE FIELD ASSUMPTIONS

A random variable (r.v.) α is symmetric [Kah85, Kal01] if α and −α
have identical distributions. Then Eαk = 0 for odd k if the expectation

exists.

ASSUMPTIONS 2.1 (S2, S4). Given M ∈ N = {0,1,2, . . .} and N ∈ N0 =
{1,2, . . .}, consider (2M+1)N complex random variables αm,n =Am,n eiϕm,n .

We say that the αm,n’s meet assumptions (S2) if

(1) they are independent and symmetric,

(2) EA2
m,n = 1,

(3) supm,n EA4
m,n ≤C4 for some C4 > 1.

We say that they meet assumptions (S4) if, moreover, the r.v. α2
m,n is also

symmetric.

2The contrast between this conclusion and Bénisti–Escande’s [BeEs98b] might be at-

tributed to the asymptotic nature of our result, as s → ∞. We do not provide estimates for

the “convergence rate” of the empirical distribution to its Fokker-Planck limit.
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The additional condition for (S4) may be called “four-symmetry” for the

r.v. α . Examples are (i) the r.v. ei(c+Kπ/2), with fixed c and P(K = k) = 1/4

for k ∈ {1,2,3,4}, (ii) an isotropic complex r.v., viz. α =Aeiϕ such that ϕ is

uniform on [0,2π ] (which corresponds to a Steinhaus sequence ϕm,n/(2π)
[Kah85]) and independent from A, and in particular (iii) a standard normal

complex r.v. (isotropic, with exponentially distributed A2).

REMARK 2.2. The third condition in (S2) is unnecessarily stringent (though

being met for many physical cases), and could be relaxed to a Lindeberg-

type condition.

Occasionally we identify R2 with C to minimize the amount of notations.

We denote by B the standard brownian motion in C(R+,R) and by W the

standard brownian motion in C(R+,C), so that B,
√

2ℜW and
√

2ℑW are

independent and identically distributed (i.i.d.).

3. CONVERGENCE OF THE CONTROLLING WAVE PROCESSES

Given N real parameters σn ∈ [0,1] (1 ≤ n ≤ N), we first introduce the N

complex-valued processes, for 1 ≤ n ≤ N,

(10) uM
n (t) =

1√
2π

∫ t

0

M

∑
m=−M

αm,n e−i(m+σn)s ds

for t ∈R. By construction, uM
n is analytic for any finite n,M, and eiσnt duM

n /dt

is a family (1 ≤ n ≤ N) of independent 2π-periodic complex processes. In

the limit M → ∞, the processes uM
n lose their smoothness (as, typically, their

Fourier coefficients decay slowly), but Proposition 3.2 shows that they al-

most surely (a.s.) admit a Hölder continuous limit un.

Specifically, we characterize the smoothness of a function y ∈ C(R,C)
by its modulus of continuity [Kah85, Kal01],

(11) ωy :]0,∞[→ [0,∞] : h 7→ ωy(h) = sup
|t−t ′|≤h

|y(t ′)− y(t)| .

Our first objective is a gaussian convergence theorem, in the limit N →∞,

for the complex-valued process UN = N−1/2 ∑n un. Let

(12) UM
N (t) =

1√
N

N

∑
n=1

uM
n (t)

for t ∈R. Note that if the σn’s do not vanish and the αm,n are i.i.d., processes

un are not i.i.d., but they remain independent with closely related moments.

For g ∈C1([0,2π ],C), let

(13) ĝm,n = (2π)−1/2
∫ 2π

0
g(t)e−i(m+σn)t dt .
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We also introduce the N complex-valued processes, for 1 ≤ n ≤ N,

(14) yM
n (t) =

1√
2π

∫ t

0

M

∑
m=−M

αm,n e−ims ds

for t ∈ R. In case the αm,n are i.i.d., the processes yM
n are i.i.d. for given M.

PROPOSITION 3.1. Let σ ∈ R. If y ∈C(R,C) has a modulus of continuity

ωy, and u ∈ C(R,C) is defined by u(t) =
∫ t

0 e−iσs dy(s) for t ∈ R, then its

modulus of continuity satisfies ωu(h)≤ (1+ |σ |h)ωy(h) for h ≥ 0.

Proof First note that, for any t, t ′ ∈ R,

eiσt ′(u(t ′)−u(t)) =
∫ t ′

t
e−iσ(s−t ′) dy(s)

= y(t ′)− y(t)+
∫ t ′

t
(e−iσ(s−t ′)−1)dy(s)

= y(t ′)− y(t)+
[

(e−iσ(s−t ′)−1)(y(s)− y(t))
]t ′

t

+

∫ t ′

t
(y(s)− y(t))iσ e−iσ(s−t ′) ds(15)

by integration by parts. The middle term in the right hand side of (15)

vanishes, and we estimate the sum using triangle inequality for t ≤ t ′,
(16)

|u(t ′)−u(t)|= |eiσt ′(u(t ′)−u(t))| ≤ |y(t ′)− y(t)|+
∫ t ′

t
|y(s)− y(t)||σ |ds

from which the claim follows by definition of the moduli of continuity. �

For 0 < β ≤ 1 and p ∈ N, we denote by Cp,β (R,C) the class of continu-

ous complex-valued functions of a real variable, with p continuous deriva-

tives, such that their p-th derivative is Hölder continuous with exponent β .

PROPOSITION 3.2. Let uM
n and yM

n be defined by (10) and (14) under as-

sumptions (S2). For any 0 < β < 1/2, and for any n, the sequences yM
n and

uM
n converge a.s. in C0,β (R,C) as M → ∞.

Proof The y statement results immediately from Theorem 3, Sec. 7.4 in

[Kah85], as we compute the sums s2
j =∑2 j+1−1

m=2 j m−2EA2
m,n ≈

[

m−1
]2 j+1−1/2

2 j−1/2
≈

2− j+1/2, using the fact that EA2
m,n = 1.

The u statement then follows from Proposition 3.1. �

PROPOSITION 3.3. Let uM
n and yM

n be defined by (10) and (14) under as-

sumptions (S2). For any g ∈ C1([0,2π ],R), consider the complex random

variables (g,uM
n ) :=

∫ 2π
0 g(t)duM

n (t).
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(i) For any M, E (g,uM
n )= 0, E (g,uM

n )2 =∑M
m=−M ĝ2

m,nEα2
m,n and E |(g,uM

n )|2 =
∑M

m=−M ĝ∗m,nĝm,n. Moreover, supn,M E |(g,uM
n )|4 ≤ (2+C4)‖g‖4

2.

(ii) Assume further that the αm,n’s are four-symmetric. Then as M → ∞,

the complex r.v.’s (g,uM
n ) converge a.s. to a r.v. (g,un) such that E(g,un) =

0, E (g,un)
2 = 0, E |(g,un)|2 =

∫ 2π
0 g2(t)dt, and supn E |(g,un)|4 ≤ (2+

C4)‖g‖4
2.

Proof Calculations are straightforward as the given test function g is con-

tinuous and [0,2π ] is compact :

E (g,uM
n ) =

1√
2π

∫ 2π

0
g(t)

M

∑
m=−M

Eαm,n e−i(m+σn)t dt = 0 ,(17)

E(g,uM
n )2 =

1

2π

∫ 2π

0

∫ 2π

0
g(t)g(s)

M

∑
m=−M

Eα2
m,n e−i(m+σn)(t+s) dt ds

=
M

∑
m=−M

Eα2
m,nĝ2

m,n ,(18)

E |(g,uM
n )|2 =

1

2π

∫ 2π

0

∫ 2π

0
g(t)g(s)

M

∑
m=−M

EA2
m,n e−im(t−s) dt ds

=
M

∑
m=−M

EA2
m,n|ĝm,n|2 .(19)

Given that EA2
m,n = 1, the latter expression yields3 by Parseval’s identity

(20) E |(g,uM
n )|2 ≤

∞

∑
m=−∞

|ĝm,n|2 =
∫ 2π

0
g2(t)dt = ‖g‖2

2

with equality in the limit M → ∞. Finally,

E |(g,uM
n )|4 = E ∑

m1,m2,m3,m4

αm1,nαm2,nα∗
m3,n

α∗
m4,n

ĝm1,nĝm2,nĝ∗m3,n
ĝ∗m4,n

= ∑
m

EA4
m,n|ĝm,n|4 +2 ∑

m1 6=m2

EA2
m1,n

EA2
m2,n

|ĝm1,n|2 |ĝm2,n|2

≤ (C4 +2) ‖g‖4
2 ,(21)

3As pointed out by a referee, this argument reduces to Bessel’s inequality, when one

views uM
n as a sum of 2M + 1 basis functions, in the Hilbert space (whose elements are

stochastic processes u) with scalar product (u,v) = E
∫ 2π

0 u∗(s)v(s)ds. Our assumptions

on the r.v.’s αm,n ensure orthonormality of our basis.
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where the first equality follows from the definition of Fourier coefficients

ĝm,n, the second equality from the known first two moments of α , and the

final inequality from the bound C4 on EA4. �
Now we can prove our main claim,

THEOREM 3.4. Under assumption (S4), the process UM
N defined by (12)

converges in distribution to the brownian motion in C([0,2π ],C) as N → ∞
and M → ∞.

Proof First, consider the process UN = limM→∞UM
N in C0,β (R,C) for any

0< β < 1/2. The convergence is a.s. since UM
N is a finite linear combination

of the processes uM
n . Given any g ∈C1([0,2π ],R), we show below that the

r.v. ZN := (g,UN) converges in distribution to a normal r.v. Z = X + iY with

EZ = 0, EX2 = EY 2 = 1
2
‖g‖2

2, E(XY ) = 0. As C1 is dense in L2, the same

holds true for g ∈ L2([0,2π ],R), which will imply that the limit (g,U) is the

Wiener integral [Nu06].

The first two moments of Z follow easily from the fact that the r.v.’s

ζn = ξn + iηn := (g,un) are independent. Proposition 3.3 states that Eξn =
Eηn = 0, E(2ξnηn) = ℑE (g,un)

2 = 0 and E(ξ 2
n −η2

n ) = ℜE (g,un)
2 = 0.

Besides, E (ξ 2
n +η2

n ) = E |(g,un)|2 = ‖g‖2
2.

The fourth moment condition implies the Lindeberg condition on the se-

quence ζn (alternatively, one may adapt the standard proof of the central

limit theorem via the characteristic function), so that N−1/2 ∑N
n=1 ζn con-

verges in distribution to a normal complex random variable, by the gaussian

convergence theorem (e.g. Theorem 5.12 in [Kal01]). �

REMARK 3.5. Our statement holds for arbitrary choice of coefficients σn,

essentially thanks to the fact that, for any σ , functions (2π)−1/2 ei(m+σ)t

form an orthonormal basis of L2([0,2π ],C). In the special case where the

αm,n are already normal, each un is already a Wiener process.

REMARK 3.6. In the case where all σn = 0, the processes un(t)− t
2π un(2π)

define 2π-periodic functions in C0,β (R,C) ; their restrictions to [0,2π ] con-

verge to the brownian bridge (see [Kal01], ch. 13) and the N−1/2 ∑n αm,n

converge to i.i.d. normal r.v.’s.

Bénisti and Escande [Ben95, BeEs97, BeEs98a] consider the case where

αm,n is uniformly distributed on the unit circle, and work with N = 1. Our

statements do not formally apply to such a case. But they let their wave

amplitude A → ∞, so that s → ∞ and ∆vb → ∞. To keep finite velocity and

amplitude scales, we reformulate their case by relabeling the waves with

integer-valued index m′ = mN +n, letting σn = n/N, and rescaling time as

t ′ = t/N, so that m′t ′ = (m+σn)t. To address finite t ′ scales (of interest to
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them), we need to extend our previous statements to arbitrarily large time ;

the following statement is a first step in this direction.

PROPOSITION 3.7. Under assumption (S4), assume further that σn = n/N.

Then the process UM
N defined by (12) converges in distribution to the brow-

nian motion in C(R,C) as N → ∞ and M → ∞.

Proof It suffices to prove convergence over an arbitrarily long time interval

[0,2πK], with K ∈ N0. To extend the previous theorem to K > 1, consider

first a subsequence N = N′K with N′ → ∞. Then let s = Ks′ and decompose

n = n′+ kN′ with 1 ≤ n′ ≤ N′ and 0 ≤ k ≤ K −1. Note that

UM
N (t) = N−1/2

N′K

∑
n=1

1√
2π

∫ t/K

0
∑
m

αm,n e
−i(mK+k+ n′

N′ )s
′
K ds′(22)

=

√

K

N′

N′

∑
n′=1

1√
2π

∫ t/K

0
∑
m

K−1

∑
k=0

αm,n e
−i(mK+k+ n′

N′ )s
′
K ds′(23)

where the latter expression is equivalent to a process
√

KUMK
N′ (t/K), up to

the K − 1 terms for which MK < mK + k ≤ MK +K − 1. These K − 1

terms do not spoil the limit as their contribution vanishes a.s. for N′ → ∞,

while by Theorem 3.4 the process
√

KUMK
N′ (t/K) converges in distribution

to
√

KW (t/K), which is distributed as W (t).

Now, if N =N′K+k with 1≤ k<K, the difference UM
N −(1+k/N)−1/2UM

N′K
converges a.s. to zero as N′ → ∞, while limN′→∞(1+ k/N)−1/2 = 1, so that

the sequence UM
N converges like the subsequence UM

N′K . �

REMARK 3.8. In rough paths terms (see e.g. [Lej09], sec. 8.4, and [FrVi06]

for definitions and notations), Theorem 3.4 corresponds to the natural ex-

tension or lift UN (with U1
N =UN) converging in distribution to the geomet-

ric enhanced brownian motion in C0,β ([0,2π ],G2(C)) for 1/3 < β < 1/2.

4. PARTICLE MOTION

We now turn to the solution of differential equations with control UM
N ,

viz. to the motion of particles in the wave field associated with the uM
n ’s.

Since the latter functions are C1, integration against them must be inter-

preted so that the limit differentials dℜU , dℑU are the Stratonovich ones

[WoZa65, Do77, Su78]. This is satisfactory for the physicists applying e.g.

diffusion models, but our result goes further : this formulation opens the

way to analysing almost every single realization of the underlying noise,

which need not be gaussian.
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Specifically, the motion of a particle in the prescribed field of electrostatic

waves is described by the system

dqM
N =

A

m

pM
N dt ,(24)

dpM
N = N−1/2

N

∑
n=1

M

∑
m=−M

Am,n sin(qM
N (t)− (m+σn)t +ϕm,n)dt ,(25)

= sin(qM
N (t))dℜUM

N (t)+ cos(qM
N (t))dℑUM

N (t) ,(26)

qM
N (0) = q0 , pM

N (0) = p0 ,(27)

where A is an overall amplitude scale (incorporating e) for the waves and

m is the particle mass. We rescaled the particle momentum p by this overall

amplitude to construct an appropriate limit below.

REMARK 4.1. In the special case where σn = 0 for all n, the N-averaging

generates gaussian coefficients for the Fourier wave components for each

m. In the case where σn = n/N, the wave field has period 2πN, but its

sampling over the shorter interval [0,2π ] prevents the observer in the limit

N → ∞ from distinguishing it from an actual white noise.

The previous section implies that, in the limit M → ∞,N → ∞, the equa-

tions of motion may be interpreted as

dQ =
A

m

Pdt ,(28)

dP = sin(Q(t))◦ dℜU(t)+ cos(Q(t))◦ dℑU(t) ,(29)

Q(0) = q0 , P(0) = p0 ,(30)

where ◦d denotes the Stratonovich differential [WoZa65].

PROPOSITION 4.2. In the limit M → ∞,N → ∞, the process (qM
N , pM

N ), de-

fined by (24)-(25)-(27) under assumption (S4) with (q0, p0)∈R
2, converges

in law to (Q,P), where

Q(t) = q0 +
A

m

(

p0t +
∫ t

0
B(s)ds

)

,(31)

P(t) = p0 +B(t) ,(32)

with B the standard one-dimensional Wiener process in C([0,2π ],R).

Proof Theorem 3.4 ensures that the limit U is a standard complex Wiener

process. Then, for the system (28)-(29)-(30) the mapping C([0,2π ],C)→
C([0,2π ],R2) : U 7→ (P,Q) is continuous for the topology of uniform con-

vergence [Do77, Su78], and the continuous mapping theorem [Kal01] trans-

fers the convergence in distribution from the control U to the particle evo-

lution (P,Q).
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The proof then follows Ref. [ElPa10]. First note that the Stratonovich

solution defined by (28)-(29)-(30) with the Wiener process (ℜU(t),ℑU(t))
coincides with the Itô solution because the vector fields sin(q)∂p and cos(q)∂p

commute. Finally, since cos2 q+ sin2 q = 1, the process defined by dP =
sinQ dℜU(t)+cosQ dℑU(t) is distributed as the Wiener process in C([0,2π ],R).

�
Now we turn to the limit A /m → ∞. In this limit, we know that the

velocity components of the motions of N particles also converge jointly in

distribution to N independent Wiener processes. The previous results then

imply

THEOREM 4.3. Given N initial data (qℓ0, pℓ0) in R2 (1 ≤ ℓ≤N ), such that

1− cos(qℓ0 − qℓ
′

0 )+ c|pℓ0 − pℓ
′

0 |
2
> 0 pairwise for some c > 0, consider the

resulting solutions to (24)-(25)-(27). Then given any K > 0, for A /m →
∞, N → ∞, M → ∞, the N -dimensional process pM

N converges to an N -

dimensional Wiener process, and convergence is in law in C([0,2πK],RN )
with the topology of uniform convergence.

This follows immediately from Theorem 3.1 in [ElPa10], using the brow-

nian limit U and the continuous mapping theorem as in the proof of Propo-

sition 4.2 just given.

5. INTERPRETATION OF THE RESULTS

Our formulation of the limit theorem is rather formal, and our proof strat-

egy differs from the more usual ones in the physics literature.

This paper starts by reducing “noisy wave fields” to “white” ones in the

dense spectrum limit, using a central limit theorem in the “wave field space”

of functions UM
N , as shown in sec. 3. Considering functions u and U is a way

to get a handle on the limit process driving the particle motion, while it is

harder to define directly the limit in terms of the noise “du/dt”. The dense

spectrum limit is instrumental here to provide the many independent terms

in the sum defining the wave field.

The resulting wave field entails the brownian limit for the velocity of

a single particle for 0 ≤ t ≤ 2π [ElPa10]. This single particle statement

makes no reference to any velocity distribution function : we take a “tra-

jectory” viewpoint on stochastic processes, and state a “diffusion process”

limit rather than a “Fick equation” limit.

The diffusion picture for N particles also follows from our previous

proof [ElPa10] that, if the wave field is a “periodic white noise”, then par-

ticles released in the resulting force field are independent in the A → ∞
limit. This independence between particles results from the fact that parti-

cle velocities are a continuous martingale (viz., given the wave field history
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and their own, their velocity increments have vanishing conditional expec-

tation), from the fact that a martingale is completely characterized by its

quadratic variation process (which eliminates the need for considering more

than two particles jointly), and from the ergodicity of the random evolution

of the relative velocity of any pair of particles. Estimates in [ElPa10] are

rather technical, and one may wish to revisit them to provide explicit rates

of convergence.

Our order of limits is important : first we take the dense spectrum limit

s→ ∞, then we let A →∞, and finally we consider N ≥ 1 and K ≥ 1, for a

single realization of the wave field. Our convergence is in distribution with

respect to the wave field random data.

In contrast, usual arguments for the Fokker-Planck limit invoke a loss of

memory for the particle motion, directly in terms of particle velocity. The

gaussianity of the velocity distribution at a time t (given a Dirac at time

0) is then seen as resulting from a central limit theorem with a sum over

(time-)successive independent increments. The quantity of interest (see e.g.

eq. (9.32) in [HaWa04]) is often the (wave field) ensemble-averaged veloc-

ity distribution function rather than the empirical distribution driven by a

single wavefield.

6. PERSPECTIVES

We proved that the motion of N particles in the field of random waves

approaches a velocity-diffusion process in the dense spectrum limit. Our

probabilistic proof highlights a central limit behaviour, while the Bénisti-

Escande proof stresses the elimination of correlations by appropriate changes

of variables. In comparison with the latter proof, as well as with other

derivations of the quasilinear limit, we show that uniformity of phases is un-

necessarily strong an assumption : four-symmetry (viz. phase distribution

invariant modulo π/2) is sufficient. We also show that the wave amplitudes

need satisfy only rather mild assumptions.

Our proof uses the specific dispersion relation of Bénisti and Escande,

km = k for all waves, and the regular spacing of phase velocities as σn =
n/N. The first assumption enables the decomposition ∑m sin(q− ωmt +
ϕm) =C(t)sinq+S(t)cosq with coefficients C and S independent of q, and

the second one permitted to use the large body of knowledge on random

Fourier series. Relaxing these assumptions is physically desirable and will

be considered in future work.

In contrast with most earlier works in the plasma physics community,

our formulation focuses on full particle trajectories, rather than one-particle

distribution functions. In particular, the joint convergence theorem 4.3 sup-

ports the familiar picture that the evolution of the empirical distribution
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N −1 ∑N
ℓ=1 δ (v− pℓ/m) a.s. approaches the solution of the diffusion equa-

tion ∂t f − ∂vD∂v f = 0 for large N : this law of large numbers, and fluc-

tuations around it, require a further limit (N → ∞) to be discussed in the

light of Itô’s arguments [Ito83]. In substance, our Theorem 4.3 establishes

for velocities what Lebowitz and Spohn [LeSp83] called Assumption C on

the motion of particles in position space in order to derive Fick’s law for

self-diffusion.

Another extension, in the case σn = n/N, would be to allow K = κN with

a fixed κ in Theorem 4.3, for it would validate the diffusion picture for times

beyond the discretization time τdisc := 2π/(k∆vϕ) = 2πN viz. the time scale

after which the wave Fourier spectrum shows its discreteness. While some

physical applications of the dense spectrum limit may be viewed as rejecting

τdisc to infinity, the mathematical issue is interesting because of evidence

that the diffusion description applies to the single-particle evolution over

long times [BeEs97, EsEl03, El10].
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APPENDIX

In Ref. [ElPa10] we introduced the auxiliary process (Xt,Yt), describing

the relative position and velocity of two particles evolving in the same wave

field. This process solves

dXt = Yt dt , X0 = x ,(33)

dYt = sin(Xt)dBt , Y0 = y ,(34)

in the state space E = T×R \ {(0,0),(π ,0)}, where T = R/(2πZ) and Bt

is the standard brownian motion in C(R+,R). We proved there in Proposi-

tion 5.1 that, for any (x,y) ∈ E, this process a.s. does not reach the points

{(0,0),(π ,0)} in finite time. The proof in Ref. [ElPa10] does not identify

points modulo 2π for their x component ; one can streamline it as follows.

PROPOSITION .1. For any (x,y) ∈ E, inf{t > 0 : sin2(Xt)+Y 2
t = 0}=+∞

a.s., and inf{θ > 0 : limsupt→θ−(sin2(Xt)+Y 2
t ) = +∞}=+∞ a.s.

Proof Let Rt = sin2(Xt)+Y 2
t and define Zt = logRt . Denote by τ either of

these stopping times, corresponding respectively to Zt →−∞ and Zt →+∞.
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Then Itô calculus on [0,τ[ yields

dsin2 Xt = (2sinXt cosXt)Yt dt ,(35)

dY 2
t = 2Yt sin(Xt)dBt + sin2(Xt)dt ,(36)

dZt =
2Yt sin(Xt)cos(Xt)+ sin2(Xt)

Rt

dt −2
Y 2

t sin2(Xt)

R2
t

dt

+2
Yt sin(Xt)

Rt
dBt .(37)

Noting that 2|ab|≤ a2+b2 and that |cosx| ≤ 1 yields the estimates Y 2
t sin2(Xt)≤

R2
t /4 and 2Yt sin(Xt)cos(Xt)+ sin2(Xt) ≥ −Rt , so that on the time interval

[0,τ[

(38) Zt ≥ Z0 −
3t

2
+

∫ t

0
ϕs dBs

where |ϕs| ≤ 1. This ensures that Zt is bounded from below on any finite

time interval since Bt is bounded. Hence inf{t > 0 : Rt = 0}=+∞ a.s.

Similar upper estimates imply

(39) Zt ≤ Z0 +2t +
∫ t

0
ϕs dBs

ensuring that Zt is bounded from above on any finite time interval. Hence

inf{θ > 0 : limsupt→θ− Rt =+∞}=+∞ a.s. �
The second claim of the present statement does not supersede Lemma 5.4

of Ref. [ElPa10], which proves that Yt does a.s. not diverge as t → ∞. The

present statement only proves that (Xt,Yt) remains in E for all t > 0 a.s.
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thèse de doctorat, université de Provence, Marseille, 1995.

[BeEs97] Bénisti, D., and Escande, D.F., Origin of diffusion in Hamiltonian dynamics,

Phys. Plasmas 4 (1997) 1576–1581.

[BeEs98a] Bénisti, D., and Escande, D.F., Finite range of large perturbations in Hamil-

tonian dynamics, J. Stat. Phys. 92 (1998) 909–972.

[BeEs98b] Bénisti, D., and Escande, D.F., Nonstandard diffusion properties of the stan-

dard map, Phys. Rev. Lett. 80 (1998) 4871–4874.

[Bo62a] Bourret, R.C., Propagation of randomly perturbed fields, Can. J. Phys. 40

(1962) 782–790.

[Bo62b] Bourret, R.C., Stochastically perturbed fields, with applications to wave propa-

gation in random media, Nuovo Cimento 26 (1962) 1–31.

[Bo65] Bourret, R.C., Ficton theory of dynamical systems with noisy parameters, Can.

J. Phys. 43 (1965) 619–639.

[BrFr74] Brissaud, A., and Frisch, U., Solving linear stochastic differential equations, J.

Math. Phys. 15 (1974) 524–534.



18 YVES ELSKENS

[CEV90] Cary, J.R., Escande, D.F., and Verga, A.D., Non quasilinear diffusion far from

the chaotic threshold, Phys. Rev. Lett. 65 (1990) 3132–3135.

[Do77] Doss, H., Liens entre équations différentielles stochastiques et ordinaires, Ann.
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Stricker), Lect. Notes Math. 1979, Springer, Berlin, Heidelberg, 2009.

[Nu06] Nualart, D., The Malliavin calculus and related topics, 2nd ed., Springer,

Berlin, 2006.

[PaKo74] Papanicolaou, G.C., and Kohler, W., Asymptotic theory of mixing stochastic

ordinary differential equations, Commmu. Pure Appl. Math. 27 (1974) 641–

668.

[RoFi61] Romanov, Yu.A., and Filippov, G.F., The interaction of fast electron beams with

longitudinal plasma waves, J. Eksp. Theoret. Phys. USSR 40 (1961) 123–132,

Sov. Phys. JETP 13 (1961) 87–92.

[Sp91] Spohn, H., Large scale dynamics of interacting particles, Springer, Berlin,

1991.

[St66] Sturrock, P., Stochastic acceleration, Phys. Rev. 141 (1966) 186–191.

[Su78] Sussman, H.J., On the gap between deterministic and stochastic ordinary dif-

ferential equations, Ann. Prob. 6 (1978) 19–41.

[ThBe73] Thomson, J.J., and Benford, G., Green’s function for markovian systems, J.

Math. Phys. 14 (1973) 531–536.

[TsDM91] Tsunoda, S.I., Doveil, F., and Malmberg, J.H., Experimental test of quasilinear

theory, Phys. Fluids B3 (1991) 2747–2757.

[VE97] Vanden Eijnden, E., Some remarks on the quasilinear treatment of the stochastic

acceleration problem, Phys. Plasmas 4 (1997) 1486–1488.

[VVS61] Vedenov, A.A., Velikhov, E.P., and Sagdeev, R.Z., Nonlinear oscillations of

rarified plasma, Nuclear Fusion 1 (1961) 82–100 ; English abstract, ibid. 145.

[VVS62] Vedenov, A.A., Velikhov, E.P., and Sagdeev, R.Z., Quasilinear theory of plasma

oscillations, Nuclear Fusion Suppl. 2 (1962) 465–475.

[WoZa65] Wong, E., and Zakai, M., On the convergence of ordinary integrals to stochastic

integrals, Ann. Math. Statist. 36 (1965) 1560–1564.

EQUIPE TURBULENCE PLASMA, CASE 321, PIIM, UMR 7345 CNRS, AIX-MARSEILLE
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