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Abstract

In human crowds as well as in many animal societies, local interactions among individuals often give rise to self-organized
collective organizations that offer functional benefits to the group. For instance, flows of pedestrians moving in opposite
directions spontaneously segregate into lanes of uniform walking directions. This phenomenon is often referred to as a
smart collective pattern, as it increases the traffic efficiency with no need of external control. However, the functional
benefits of this emergent organization have never been experimentally measured, and the underlying behavioral
mechanisms are poorly understood. In this work, we have studied this phenomenon under controlled laboratory conditions.
We found that the traffic segregation exhibits structural instabilities characterized by the alternation of organized and
disorganized states, where the lifetime of well-organized clusters of pedestrians follow a stretched exponential relaxation
process. Further analysis show that the inter-pedestrian variability of comfortable walking speeds is a key variable at the
origin of the observed traffic perturbations. We show that the collective benefit of the emerging pattern is maximized when
all pedestrians walk at the average speed of the group. In practice, however, local interactions between slow- and fast-
walking pedestrians trigger global breakdowns of organization, which reduce the collective and the individual payoff
provided by the traffic segregation. This work is a step ahead toward the understanding of traffic self-organization in
crowds, which turns out to be modulated by complex behavioral mechanisms that do not always maximize the group’s
benefits. The quantitative understanding of crowd behaviors opens the way for designing bottom-up management
strategies bound to promote the emergence of efficient collective behaviors in crowds.
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Introduction

In many biological and social systems, such as fish schools, ant

colonies, or human crowds, repeated local interactions among

individuals support the emergence of a variety of collective

patterns of motion [1–4]. Under certain conditions, the emerging

organization allows the group to solve efficiently coordination

problems without centralized planning or external control. In

human crowds, such functional patterns of motion have been

identified many times in the past, such as the alternating flows at a

bottleneck [5], the formation of trails [6], or the walking

configuration of social groups [7]. Remarkably, nobody orches-

trates these phenomena and pedestrians do not actively seek these

emerging collective organizations. Instead, individuals behave

according to their own motivations, but local interactions generate

functional organizations at the scale of the crowd. Therefore, these

phenomena are often considered as prime examples of collective

intelligence, sometimes called ‘‘the wisdom of crowds’’ [8–10].

One of the well-known example of such functional self-

organization in crowds is the formation of lanes in bidirectional

flows [11–13]: When two flows of pedestrians are moving in

opposite directions in a crowded street, people spontaneously share

the available space by forming a ‘‘pedestrian highway’’, where

individuals walking in opposite direction segregate into lanes. This

self-organized pattern of motion enhances the traffic flow by

reducing frictional effects, local accelerations, energy consump-

tions and walking delays [14].

According to previous modeling works, the formation of lanes

goes along with a sudden transition from disorder (where

individuals are randomly distributed) to order (where opposite

flows are segregated) [3]. Similar transitions from disorder to order

have been observed in a wide variety of complex systems

composed of locally interacting agents, in physical [15,16],

biological [2,17–19] and social systems [10,20,21]. In human

crowds, however, little is known about this phenomenon. From an

empirical and quantitative point of view, the features of the

spontaneous traffic organization remain scarcely documented, and

the behavioral mechanisms underlying this phenomenon are

hardly understood. In fact, it is poorly known how the transition

operates, how the traffic organization evolves in time, and how

much this collective organization benefits to the group. In this

work, we have investigated the dynamics of lane formation under

laboratory conditions, and studied the benefits provided by this

traffic organization at the individual and crowd levels. To study

the formation of lanes under experimental conditions, one major

issue arising from past works is to handle the participants’ inflow
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without interfering with the phenomenon [13,22]. In fact, in a

straight corridor, the starting positions of pedestrians regularly

introduced from both ends strongly influence the resulting traffic

organization, which is detrimental to the relevance of the

measurements. To avoid this drawback, we have used a ring-

shaped corridor that provides periodic boundary conditions

[18,23]. In this way, observing the phenomenon without

perturbations induced by the experimental procedure becomes

possible. To observe the emergence and the temporal dynamics of

lane formation, N participants were randomly distributed in the

ring-shaped corridor. A walking direction was randomly attributed

to each of them, in such a way that N/2 participants walked

clockwise and N/2 anti-clockwise. At the starting signal,

participants started to walk in their attributed direction, allowing

us to observe and characterize the emergence of traffic

organization. A total of 11 replications were analyzed, with

N = 60, 50 and 30 participants (3, 2 and 6 replications,

respectively).

In the following, we present our experimental results and show

that the complex dynamics of traffic self-organization is based on

simple behavioral mechanisms, where interactions between

pedestrians walking faster and slower than the average trigger

local perturbations that rapidly change into global traffic

instabilities. While lane formation can be theoretically very

efficient and functional, we show that, in practice, inter-individual

variability undermines the overall benefits of the collective

organization.

Results

Experimental results
Our experimental results reveal a rapid transition from disorder

to order during the first moments of the experiment, where

initially randomly located pedestrians self-organize into lanes of

opposite walking direction (Fig. 1). However, the ordered state

displays instabilities, where the flow segregation vanishes after a

certain time lap and reappears again later and so on. In order to

characterize this unstable dynamics, we have elaborated a

clustering method to identify groups of pedestrians walking in

lanes [24] (see Materials and Methods). For this, we assume that a

pedestrian j belongs to the same cluster as a pedestrian i if during a

time period t, j passes at a distance smaller than d from the

position of i at time t (see the sketch Fig. 2). It appears that the

number of clusters decreases rapidly after the beginning of the

experiment, but displays alternating phases of order (i.e. five

clusters or less) and disorder (i.e. ten clusters or more) (Fig. 3). To

get a quantitative estimation of the traffic instability, we have

measured the lifetime distribution of the clusters, where a cluster is

considered as ‘dead’ when its composition changes by at least one

individual. Fig. 4A shows the probability pi(t) for a cluster i to be

alive t seconds after it appeared. As it can be seen, pi decays very

fast during the first 10 seconds of a cluster lifetime. Yet, some

clusters remain stable for 30 seconds or more. Fig. 4B–C show

that pi(t) decays slower than an exponential and faster than a

power law. Fig. 4D shows that pi(t) can be fitted empirically to a

stretched exponential relaxation law [25,26]: pi(t)~e(atkzb),

where a and b are the relaxation parameters, and k is the

relaxation exponent. The lifetime t0 of a cluster can then be

estimated by measuring the time after which a cluster has 95%

chances to be changed by solving the equation pi(t0)~1{0:95.

Here, a numerical calculation gives t0 = 12.7(+0.1), 8.4(+0.2)

and 7.8(+0.2) seconds for N = 30, 50 and 60 pedestrians,

respectively.

Having characterized the typical time scale of the traffic

instabilities, we will now investigate the origin of this dynamics:

What are the behavioral mechanisms underlying these instabili-

ties? Further analysis of our data reveals important density

fluctuations in the experimental corridor, where highly crowded

zones and almost empty zones can be observed at the same

moment of time in different areas of the corridor (see Video S3).

Fig. 5A shows empirically measured density maps, representing

the local density value r(h,t) for all times t and in all directions h,

as defined in the Materials and Methods section. The density maps

illustrate the spontaneous emergence of density gaps and density

peaks that propagate along the corridor. Moreover, we have

measured in a similar way the local radial speed vn(h,t) of traffic

organization, which measures the lateral movements of pedestri-

ans (see Materials and Methods for a formal definition). In other

words, vn(h,t) increases when pedestrians tend to move away from

their lane, while it is close to zero when they walk one behind

another. As shown in Fig. 5B, the place and time where the largest

values of vn(h,t) occur coincide with the emergence of density

gaps. In fact, Fig. 5C shows that the local radial speed is negatively

correlated with the local density (a correlation test yields a p-

value,0.01 with a correlation coefficient c = 0.3, for all replica-

tions with N = 60 pedestrians, and after removing the first

10 seconds of the experiments). What is the origin of these density

fluctuations, and why are they correlated with important lateral

movements? First, density gaps can be interpreted as a

consequence of the variability in the comfortable walking speed:

as pedestrians do not walk exactly at the same speed, those moving

faster catch up with those walking slower, leaving an empty zone

in front of the slow walkers. Second, the occurrence of lateral

movements around the density gap can be explained in a similar

way: pedestrians who are willing to walk faster than others make

use of density gaps to overtake the slow walkers in front of them.

By doing so, faster pedestrians move away from their lane, and

meet the opposite flow head-on a few seconds later. This initial

perturbation often triggers a complex sequence of avoidance

maneuvers that results in the observed global instabilities.

Therefore, we hypothesize that traffic instabilities result from the

pedestrians walking speed variability, where people walking slowly

Author Summary

A crowd of pedestrians is a complex system that exhibits a
rich variety of self-organized collective behaviours. For
instance, when two flows of people are walking in
opposite directions in a crowded street, pedestrians
spontaneously share the available space by forming lanes
of uniform walking directions. This ‘‘pedestrian highway’’ is
a typical example of self-organized functional pattern, as it
increases the traffic efficiency with no need of external
control. In this work, we have conducted a series of
laboratory experiments to determine the behavioral
mechanisms underlying this pattern. In contrast to
previous theoretical predictions, we found that the traffic
organization actually alternates in time between well-
organized and disorganized states. Our results demon-
strate that this unstable dynamics is due to interactions
between people walking faster and slower than the
average speed of the crowd. While the traffic efficiency is
maximized when everybody walks at the same speed,
crowd heterogeneity reduces the collective benefits
provided by the traffic segregation. This work is a step
ahead in understanding the mechanisms of crowd self-
organization, and opens the way for the elaboration of
management strategies bound to promote smart collec-
tive behaviors.

Self-Organized Walking Patterns in Human Crowds
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Figure 1. Illustration of the unstable dynamics observed under experimental conditions for one replication with N = 60 pedestrians.
Starting from a random initial state, the flows of pedestrians segregate after a short transition time (approximately 10 seconds in this replication).
However, this ordered state turns to disorder after a certain period of time, before order emerges again later at the end of the experiment. (A) The
upper figures are snapshots from the laboratory experiment, where people have been colored in red or blue according to their direction of motion.
Blue pedestrians turn clockwise and red anti-clockwise. (B) The output of the tracking system with the same color-coding. (C) The average radial
position ri of all pedestrians i moving in the same direction, where the same color-coding is used. Rint and Rext denote the internal and the external
walls of the ring-shaped corridor. The alternation of mixed and segregated phases is visible. The transparent areas show the standard deviation of the
mean value.
doi:10.1371/journal.pcbi.1002442.g001

Figure 2. Illustration of the clustering method. (A) Two pedestrians i and j belong to the same cluster if one follows the other. (B) The
pedestrian j follows pedestrian i, if j moves closer than a distance d from the position of pedestrian i at time t, during a time period of t seconds. Here,
t = 1 s and d = 0.6 m are two clustering parameters.
doi:10.1371/journal.pcbi.1002442.g002

Self-Organized Walking Patterns in Human Crowds
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unintentionally create density gaps, and those walking fast make use

of these gaps to overtake their neighbors, triggering a chain

reaction that results in the observed traffic instabilities.

Computer simulations
In order to validate this hypothesis and better understand the

system dynamics, we have conducted a series of computer

simulations under the same experimental conditions. To investi-

gate the effects of the inter-individual variability of walking speeds,

the comfortable speed v0
i of simulated pedestrians is randomly

chosen at the beginning of each simulation according to a

Gaussian distribution with mean �vv0 = 1.2 m/s and standard

deviation s that varies from 0 (i.e. homogenous crowd) to 0.3

(i.e. large inter-individual differences). These values were chosen

consistently with our experimental results, where the control tests

indicate that the participants comfortable walking speeds are

normally distributed with mean �vv0 = 1.2 m/s and standard

deviation s0 = 0.16 (Kolmogorov-Smirnov test: p-value = 0.73)

(Fig. 6). Three examples of the dynamics observed during

computer simulations are shown in Fig. 7.

By applying the clustering method defined above, we found that

the clusters lifetime of simulated pedestrians also follow a stretched

exponential relaxation law (Fig. 4.D). In particular, the relaxation

exponents found in simulation are in good agreement with the

experimentally determined ones. Furthermore, the simulation

results indicate that the characteristic timescale of order phases

decreases with increasing speed variability s (Fig. 8.A). Therefore,

this supports our hypothesis that speed variability is responsible for

the observed traffic instabilities. Interestingly, this unstable

dynamics is very likely to reduce the overall benefits of lane

formation. Therefore, we used the model to measure the collective

and the individual benefits of the flow segregation with increasing

heterogeneity in the crowd. For this, we measured the collective

payoff b of the traffic organization by comparing the actual traffic

flow of pedestrians to the average value measured when the N

pedestrians move in the same direction: b~( Qzj jz Q{j j)=Q0,

where Qz, and Q{ are the average flow of pedestrians moving in

clockwise direction, anti-clockwise direction in the bidirectional

situation, and Q0 is the average flow in unidirectional situation at

the same density level. Therefore, b~1 when pedestrians reach a

collective organization that minimize the friction effects due to the

opposite flows, providing the same traffic quality as a unidirec-

tional situation. While a homogeneous crowd maximizes the

collective payoff by forming stable lanes, the occurrence of traffic

instabilities for higher values of s notably reduces the quality of the

traffic flow (Fig. 8.B). We also measured the individual payoff of a

pedestrian i: Pi~(vi
:e0

i )=v0
i , which reflects how much the

pedestrian approaches its desired speed v0
i and desired direction

Figure 3. (A) Illustration of the evolution of the number of clusters for three replications with N = 30, 50 and 60 pedestrians. The
clustering method is described in the Materials and Methods section and illustrated Fig. 2. During the first ten seconds, the initial transition from
disorder to order is visible. Then, the number of clusters oscillates between well-organized (five clusters or less), and disorganized states (ten clusters
or more). (B) The corresponding segregation dynamics for the same three replications.
doi:10.1371/journal.pcbi.1002442.g003

Self-Organized Walking Patterns in Human Crowds
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e0
i . As shown Fig. 8.C, pedestrians who try to walk faster than the

average have the lowest individual payoff, while those walking

slower have the highest level of satisfaction. However, their

combined effects have an important influence on the overall

dynamics. In fact, even pedestrians who ‘‘cooperate’’ (i.e. those

who have a desired speed close to the average) are increasingly less

satisfied as the crowd becomes more heterogeneous, due to the

strongest traffic instabilities induced by those who do not

cooperate.

Discussion

The spontaneous traffic organization of pedestrian flows is a

functional self-organized collective pattern in human crowds,

where people spontaneously share the available space by forming

lanes of uniform walking direction. Based on experimental

measurements, we found that this phenomenon exhibits

structural instabilities, where mixed and well-segregated phases

alternate in time. Our study demonstrates that speed variability

among individuals is a key element underlying the observed

traffic perturbations. Previous modeling work have suggested a

similar relation between traffic stability and the fluctuations or

the heterogeneity of the system, but these results were based on

numerical simulations only [27,28]. In particular, our data

allowed us to unravel the precise mechanisms underlying the

emergence of traffic perturbations: people walking slower create

density gaps, while those walking faster make use of these gaps to

overtake other pedestrians in front of them. These specific local

interactions finally result in large-scale traffic breakdowns, and

the spontaneous self-organization ends up in a sub-optimal state.

Therefore, the collective payoff of the group is undermined

because pedestrians try to increase their individual level of

satisfaction. Indeed, it is known that walking at the comfortable

walking speed provides individual metabolic-related benefits

[29]. But even pedestrians who cooperate by walking at the

average group speed are increasingly less satisfied as other

individuals deviating from the average speed are numerous. This

incompatibility between individuals’ satisfaction and crowd

payoff is typical of many social dilemmas where self-interest

conflicts with group interest [30,31].

Nevertheless, the functional benefit of traffic segregation is

maximized in homogeneous crowds. Only diversity reduces the

efficiency of the spatial self-organization. Many other decentral-

ized systems facing coordination problems display the same trend.

In car traffic, the variability among drivers’ behaviors also lead to

disturbing collective patterns, such as stop-and-go waves and

large-scale traffic jams [9,32,33]. In other biological systems such

as animal swarms, goal oriented collective motion is also disturbed

by the presence of inter-individual variability [18,34]. Remark-

ably, when facing other kinds of tasks, inter-individual variability

may have the opposite effect and promote the emergence of

efficient behaviors [35–37]. In collective decision-making prob-

lems, heterogeneity favors the discovery of new solutions and

prevents the group from staying stuck in suboptimal behaviors

[38,39]. Therefore, it seems that group diversity can either

promote or disturb collective intelligence depending on the nature

of the task.

Among the rich variety of self-organized collective behaviors

observed in human crowds, not all of them offer functional benefits

to the group. While some phenomena like traffic segregation, or

alternating flows at bottlenecks provide decentralized solutions to

deal with congestion situations, other collective behaviors such as

stop-and-go waves or crowd turbulence lead to serious traffic

perturbation that may have life-threatening effects [40]. There-

Figure 4. Empirical distribution of the clusters lifetime. (A) The probability p(t) for a cluster to remain unchanged after a time period of t
seconds. (B) log(p) versus t does not yield a straight line, showing that p(t) decays slower than an exponential. (C) log(p) versus log(t) is a curve,
showing that p(t) decays faster than a power-law. (D) A straight line is found for log(p) versus tk with k = 0.4, demonstrating that the lifetime of
pedestrian clusters follows a stretched exponential relaxation law: pi(t)~e(atkzb), where the relaxation exponent k depends on the number of
pedestrians N. The insets indicate simulation results, where the same distribution law is found. Empirical data and computer simulations yield the
same relaxation exponents k = 0.6, 0.5, and 0.5 for N = 30, 50 and 60 respectively.
doi:10.1371/journal.pcbi.1002442.g004

Self-Organized Walking Patterns in Human Crowds
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fore, understanding the mechanisms underlying these collective

behaviors would open the way for the design of bottom-up

management strategies bound to promote smart collective

behaviors and minimize the risks during mass events. Our results

already suggest real-life applications to enhance traffic efficiency

and walking comfort in crowded walkways. For instance, dividing

the pavement into a ‘‘fast lane’’ and a ‘‘slow lane’’ would reduce

the overall speed variability in the crowd, and therefore avoid the

emergence of traffic breakdowns. This appears to be particularly

suited to crowded pedestrian walkways in large cities, where local

commuters often meet up with foreign tourists. In the future,

insights about pedestrian crowds may also serve as a basis for the

Figure 5. Correlation between local radial speed and density gaps. (A) Local density maps r(h,t) for three representative replications with
N = 30, 50 and 60 pedestrians. The emergence and the propagation of density peaks (red) and density gaps (blue) are visible. (B) Local radial speed
vn(h,t) for the same three replications, showing the lateral movements of pedestrians. The largest values occur mostly around density gaps. (C)
Average local density as a function of local radial speed, for all replications with N = 30, 50 and 60 pedestrians. The largest values of vn(h,t) occur
where the local density level is low, that is, around density gaps. This correlation is less visible for N = 30, probably due to the lower global density
level.
doi:10.1371/journal.pcbi.1002442.g005

Figure 6. Characterization of the walking behaviour during the control test. (A) The average walking speed of all participants as they were
walking alone in the experimental corridor. The grey area indicates the standard deviation of the mean. The dashed lines are the limits of the
measurement zone, where the pedestrians are assumed to have reached their comfortable walking speed. (B) The comfortable walking speeds are
normally distributed with mean �vv0 = 1.2 m/s and standard deviation s0 = 0.16 (a Kolmogorov-Smirnov test yields a p-value of 0.73).
doi:10.1371/journal.pcbi.1002442.g006

Self-Organized Walking Patterns in Human Crowds
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investigation of other kinds of crowds, such as groups of web users,

traders at stock market, or consumers [21,26,30,31].

Materials and Methods

Experimental design
Controlled experiments were conducted in May 2009 at the

INRIA in Rennes, France. The goal was to observe the emergence

of spontaneous traffic organization in bidirectional flows of

walking pedestrians. A total of 119 participants took part in the

study, which conformed to the Declaration of Helsinki. They were

naı̈ve to the purpose of our experiments, and gave written and

informed consent to the experimental procedure. None had

known pathology that would affect their locomotion. Experiments

were conducted in a ring-shaped corridor with inner radius

Rin = 2 m and outer radius Rout = 4.5 m, providing a total surface

of 51.05 m2 (see Fig. 1) built in a larger experimental room. As a

control experiment, each participant was first instructed to walk

alone in the experimental corridor (see Fig. 6). Then, we studied

the effect of pedestrian density on the emergence of collective

patterns of motion. Experimental trials were made with N = 30, 50

and 60 pedestrians, corresponding to a global density level of 0.59,

0.98 and 1.18 p/m2, respectively. A total of 3, 2 and 6 replications

were reconstructed and analyzed for N = 60, 50 and 30

participants, respectively. At the beginning of each trial, N

participants were randomly distributed in the experimental

corridor, and a walking direction was randomly attributed to

each of them, in such a way that N/2 participants walked

clockwise and N/2 anti-clockwise. At the starting signal,

participants were asked to walk in their attributed direction as if

they were moving alone in a street, and were not allowed to talk to

each other (see Video S1). Each replication lasted for 60 seconds.

The motion of each participant was recorded by means of an

optoelectronic motion capture system (VICON MX-40, Oxford

Metrics, UK). Participants were equipped with a white T-shirt and

4 reflexive markers, one on the forehead, one on the left acromion,

and two on the right acromion to easily distinguish the left

shoulder from right one. Markers motion was reconstructed using

Vicon IQ software. The location of each participant was finally

described as the center of mass of the 4 markers projected onto the

horizontal plane (see Video S2).

Clustering method
Two pedestrians belong to the same cluster at a given moment

of time if one of them is following the other. We assume that a

pedestrian j is following another pedestrian i at time t, if the

trajectory of j in the time segment ½ t tzt � passes at a distance

smaller than d from the location of pedestrian i at time t. This

definition of the clustering method is illustrated in Fig. 2. The

distance threshold was set to d~0:7m and the time window length

was set to t~1s. In the supporting information it is shown that the

parameter values do not significantly affect the clustering outcome,

as long as these lie in a reasonable interval (see Text S1, Fig. S1
and Fig. S2).

Simulation model
Simulations were performed by means of the previously

published heuristics-based model for pedestrian behavior [3].

The model describes the adaptation of the actual velocity v!i of

pedestrian i at time t by the acceleration equation d v!i=dt~
( v!des{ v!i)=t, where t is the relaxation time of 0.5 seconds, and

the vector v!des is the desired velocity pointing in direction ades

and has the norm vdesk k~vdes. The desired direction ades is given

by minimizing the distance d(a) to the destination:

Figure 7. Illustration of the dynamics observed during computer simulations. (A) As speed variability increases from s = 0 to s = 0.3, the
model predicts an increasingly unstable segregation dynamics. These instabilities go along with the emergence of increasingly sharp density gaps (B),
which leads to stronger and more frequent lateral movements (C). The time and place where lateral movements occur in (C) fit with the propagation
of density waves in (B) and explain the unstable dynamics observed in (A).
doi:10.1371/journal.pcbi.1002442.g007

Self-Organized Walking Patterns in Human Crowds
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d2(a)~d2
maxzf (a)2{2dmaxf (a)cos(a0{a),

where a0 is the direction of the destination point Oi and the

function f (a) is the distance to the first collision if pedestrian i

moved in direction a at his comfortable walking speed v0
i , taking

into account the other pedestrians’ walking speeds and body sizes.

For simplicity, we represent the pedestrian’s body by a circle of

radius Ri. If no collision is expected to occur in direction a, f (a) is

set to a default maximum value dmax, which represents the

‘‘horizon distance’’ of pedestrian i. The direction a is bounded by

the vision field of the pedestrian, which ranges to the left and to the

right by w degrees with respect to the looking direction H
!

i.

The desired velocity is given by the equation vdes(t)~
min(v0

i ,dh=t), where dh is the distance between pedestrian i and

the first obstacle in the desired direction ades at time t.

In cases of overcrowding, physical interactions between bodies

may occur, causing unintentional movements that are not

determined by the above heuristics. Therefore, in situations where

the pedestrian i would be in physical contacts with other

pedestrians, a repulsive force is used instead ~ffij~kg(RizRj{
dij)~nnij , where g(x) is zero if the pedestrians i and j do not touch each

other, and otherwise equals the argument x. n!ij is the normalized

vector pointing from pedestrian j to i, and dij is the distance

between the pedestrians’ centers of mass. The physical interaction

with a wall W is represented analogously by a contact force~ffiW ~
kg(Ri{diW )~nniW , where diW is the distance to the wall W and

Figure 8. Collective dynamics predicted in simulations. (A) Cluster lifetime t0 as a function of the standard deviation s of the comfortable
walking speed distribution, as predicted by numerical simulations. The decreasing curves demonstrate the relationship between inter-individual
variability and traffic instabilities. The width of the curves indicates the 95% confidence bounds of the lifetime estimation. (B) The collective payoff
provided by the lane organization, as a function of s. (C) The individual payoff of pedestrians averaged over all simulations for N = 30, N = 50, and
N = 60, grouped according to their desired walking speed. The black areas indicate the absence of value.
doi:10.1371/journal.pcbi.1002442.g008
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n!iW is the direction perpendicular to it. Here again, the contact

force with walls vanishes when the pedestrian does not touch the

wall. The resulting acceleration equation then reads

d v!i=dt~
X

j

f
!

ij=miz
X

W

f
!

iW=mi and is solved together with

the usual equation of motion d x!i=dt~ v!i, where x!i(t) denotes

the location of pedestrian i at time t.

In order to simulate the movement of a pedestrian turning in

the ring-shaped corridor, the destination point Oi is updated at

each simulation time step and located at a distance dO = 5 meters

away in the direction tangent to the ring radius. The value of dO

has been determined based on the control experiment results, by

varying dO from 3 m to 10 m and choosing the value that

minimizes the deviation between observed and predicted trajec-

tories. The simulation parameters are t = 0.5 s, w = 45u, dmax =

10 m, k = 103, Ri = 0.2 m.

Measurement functions
The local density r(h,t) at time t and in direction h is defined as

the average value of the local density r(~xx,t), for all points~xx of the

corridor located along the direction h (with a reasonable spatial

resolution). The local density is defined according to Ref. [40] as

r(~xx,t)~
P

j

f (djx), where djx is the distance between the center of

mass of pedestrian j and location ~xx, and f (d) is a Gaussian-based

weight function f (d)~ 1
pR2 exp ({d2=R2) with R = 0.7 a weight

parameter.

The local radial speed vn(h,t) is defined as the average radial

speed~nnj of all pedestrians j located between directions h1~h{Dh
and h2~hzDh at time t, where the parameter Dh is set to p=16.

The radial speed ~nnj is given by ~nnj~Drj=Dt, where rj is the radial

position of pedestrian j in the experimental step.

Supporting Information

Figure S1 Illustration of the outcome of the clustering technique

for a replication with N = 60 pedestrians, where a cluster number

has been automatically attributed to each individual. A well-

organized situation is shown on the left (4 clusters), and a

disorganized state is shown on the right (11 clusters). Blue

pedestrians turn clockwise and red pedestrians anti-clockwise.

(TIF)

Figure S2 Surface plot of the mean number of clusters detected

for 50 pedestrians experiments (A), and 60 pedestrians experi-

ments (B).

(TIF)

Text S1 Parametric sensitivity study for the clustering method.

(DOC)

Video S1 Video recording of an experiment with N = 60

pedestrians.

(MOV)

Video S2 The dataset for an experiment with N = 60 partici-

pants, as obtained after the tracking and data reconstruction

process.

(MOV)

Video S3 Illustration of the emerging density fluctuations, for an

experiment with N = 60 participants. The color-coding indicates

the local density value (1/m2).

(MOV)

Acknowledgments

We are grateful to the M2S research group at the Université de Rennes 2

for their help and expertise during the experiments, and in particular to

Armel Crétual, Richard Kulpa, Antoine Marin, and Anne-Hélène Olivier.

We thank J.Gautrais, D.Helbing, J.Gouello and the two anonymous

referees for inspiring comments on the work.

Author Contributions

Conceived and designed the experiments: M. Moussaid, J. Pettré, C.
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Moussaid, S. Lemercier, J. Pettré, C. Appert-Roland, G. Theraulaz.

Analyzed the data: M. Moussaid, E.G. Guillot. Contributed reagents/

materials/analysis tools: M. Moussaid, E.G. Guillot, M. Moreau, J.

Fehrenbach, O. Chabiron. Wrote the paper: M. Moussaid, J. Fehrenbach,
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16. Deseigne J, Dauchot O, Chaté H (2010) Collective motion of vibrated polar

disks. Phys Rev Lett 105: 098001.

17. Camazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, et al. (2001)

Self-Organization in Biological Systems. Princeton: Princeton University Press.

560 p.

18. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, et al. (2006) From

Disorder to Order in Marching Locusts. Science 312: 1402–1406.

19. Couzin I, Franks N (2003) Self-organized lane formation and optimized traffic

flow in army ants. Proc R Soc B 270: 139–146.
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25. Laherrèe J, Sornette D (1998) Stretched exponential distributions in Nature and

Economy: ‘Fat tails’ with characteristic scales. Eur Phys J B 2: 525–539.

26. Wu F, Huberman B (2007) Novelty and collective attention. Proc Natl Acad Sci

USA 104: 17599–17601.

27. Burstedde C, Kirchner A, Klauck K, Schadschneider A, Zittartz J (2002)

Cellular Automaton Approach to Pedestrian Dynamics - Applications. In:

Schreckenberg M, Sharma SD, eds. Pedestrian and Evacuation Dynamics. New

York: Springer. pp 87–98.

Self-Organized Walking Patterns in Human Crowds

PLoS Computational Biology | www.ploscompbiol.org 9 March 2012 | Volume 8 | Issue 3 | e1002442



28. Campanella M, Hoogendoorn S, Daamen W (2009) Effects of Heterogeneity on

Self-Organized Pedestrian Flows. Trans Res Rec 2124: 148–156.
29. Donelan JM, Kram R, Kuo AD (2001) Mechanical and metabolic determinants

of the preferred step width in human walking. Proc R Soc B 268: 1985–1992.

30. Glance N, Huberman B (1994) The Dynamics of Social Dilemmas. Sci Am 270:
76–81.

31. Olson M (1971) The Logic of Collective Action: Public Goods and the Theory of
Groups. Cambridge: Harvard University Press. 186 p.

32. Helbing D, Huberman B (1998) Coherent moving states in highway traffic.

Nature 396: 738–740.
33. Kerner B (2004) The Physics of Traffic: Empirical Freeway Pattern Features,

Engineering Applications, and Theory. New York: Springer. 706 p.
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