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Abstract.

This paper presents a method to identify material parameters of a Hyperelasto-

Visco-Hysteresis (HVH) model and its application for the simulation of a fluoro-

elastomer behaviour. This 3D-phenomenological model is based on the additive

decomposition of three stress components. Each of these constitutive stresses is related

to a physical phenomenon that occurs during mechanical loading: a hyperelastic

equilibrium stress response, an irreversible pure hysteresis stress contribution and a

rate-dependent viscoelastic stress behaviour.

In order to independently identify these parts of the model, an experimental

campaign, including multi-step relaxation in traction and compression tests and

simple relaxation in tension and compression tests, is used. The hysteretic and

hyperelastic contributions are identified considering only the state at the end of the

relaxation periods of the multi-step relaxation tests. The viscoelastic response is

analytically calculated with the simple relaxation test. As an advantage, the developed

identification scheme gives the possibility to discriminate all the stress components of

the model. Finally, the numerical simulation of a seal in relaxation is carried out

to verify the capability of the proposed HVH model by reproducing the mechanical

response of the studied material.

PACS numbers: 83.80.Wx,83.60.La,83.85.St,02.70.Dh,46.15.-x,46.35.+z
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1. Introduction

Elastomeric rubbers are substantially used in engineering applications, notably in the

automotive industry for sealant materials, engine mounts, bushes and tires... Thus,

the accurate prediction of their mechanical behaviour under operational conditions is

paramount to the industry.

The mechanical behaviour of these materials is dominated by a nonlinear strain

rate-dependent response. Futhermore, under cyclic loading, these materials also exhibit

other inelastic behaviours, such as the Mullins effect [1] and hysteresis phenomena

[2]. These nonlinear elastic behaviours are classically modelled using either a physical

description of molecular network theories [3, 4, 5, 6] or phenomenological approaches

[7, 8, 9]. The strain energy expression obtained from a molecular theory is often complex

and material specific. However, some new micro-mechanical models seem promising (i.e.

[10, 11]). With the phenomenological approach, material is treated as a continuum body

and a strain energy density is postulated, usually in terms of the deformation invariants,

generally strain or stretch invariants [12]. Descriptions of many of the models proposed

can be found in [13, 14, 15, 16, 12, 17, 18].

In mechanical engineering, one of the main challenges for the constitutive

relationships, is the development of a simple material parameter identification method.

Indeed, the behaviour model, as well as the identified material parameters, must

correlate well with the experimental results for any given stress state, must provide

stable results for all types of loading, and must be applicable to a wide range of materials

[19, 12]. However, for elastomers, several material parameters are usually required to

reflect the nonlinearity in the stress-strain response, the strain-rate dependent response,

etc.

In a previous study [20], several experimental tests were carried out to verify the

strain-rate dependent response, the tension and compression behaviours during cyclic

loading, as well as the relaxation behaviour for loading in tension and compression

of a fluoro-elastomer Viton material. An original phenomenological model, called

Hyperelasto-Visco-Hysteresis (HVH), has also been used to simulate this complex

behaviour. This model, written in 3D and implemented in an in-house code

HEREZH++ [21], is based on the superimposition of three stress components which

correspond to linear viscoelastic, hyperelastic and pure hysteresis behaviour. It takes

the phenomena of viscosity, possible compressibility and hysteresis into account. The

viscosity is described with two linear Maxwell elements which seem sufficient for an

adequate representation of the viscoelastic behaviour. The stress tensor deviatoric

part of the hysteretic contribution simulates the rate-independent irreversibility of

the mechanical behaviour. Contrary to previous studies based on the same model

[22, 23, 24, 25, 26, 27], hyperelastic contribution is simulated with the Hart-Smith

strain energy density function, which depends only on strain invariants. The Hart-Smith

hyperelastic potential is thought to provide good correlation between the experimental

and simulation results [28, 29]. Furthermore, this potential is extended to take the
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influence of compressibility on rubber materials into account.

In the aforementioned study, an optimisation procedure was also done to minimise

the experimental data and prediction of the tests by a full numerical resolution. A least-

square method implemented in the SiDoLo code [30, 31] and linked to HEREZH++

was used. The applied method consists in using all experimental tests indiscriminately

to identify the material parameters of each contribution. Unfortunately, the error

function generally does not lead to a single optimised solution. For example, the

best solution, both in tension and compression tests, involves a negligible hysteresis

contribution, whereas the hyperelastic contribution is the most important. One of the

main conclusions of this work is that better identification of the material parameters is

necessary.

The aim of this paper is to propose a new identification method of the HVH

model parameters using a fluoro elastomer. New cyclic tension and compression

tests interrupted by relaxation steps (multi-step relaxation tests) are performed to

characterise different behaviours, such as hyperelasticity, hysteresis and viscosity. The

original identification method is carried out in two different stages with a minimal use

of the numerical inverse procedure. The first stage consists in the identification of

hyperelastic and hysteretic contributions. Thus, the multi-step relaxation tests are used

considering only the state at the end of the relaxation periods, the equilibrium hysteresis

state [32]. In the second stage, the viscous parameters are determined from relaxation

in tension and compression tests. An analytical identification is used to obtain the two

characteristic times of both Maxwell elements. The main advantage of this method is

that, using only this multi-step relaxation test, hyperelasticity, hysteresis and viscos-

ity contributions are discriminated, which results on the substantially easy and simple

identification process of the material parameters.

To verify the pertinence of the obtained material parameters, experimental tests

that were not used for the identification, are simulated. A good performance of the

proposed model is shown by a comparative analysis between the predictive solution and

experimental data. Moreover, despite the fact that material parameters are identified

from only the first cycle of experimental tests, the simulation of cyclic loading tests

show that some aspects of the Mullins effect can be predicted. Finally, an o-ring seal

is modelled in relaxation in using the HVH model and the results are compared to

experimental data and discussed.

2. Material and experimental conditions

Experimental tests including cyclic tension, cyclic compression and relaxation tests,

are achieved in similar conditions that are described in [20]. These tests were carried

out on a Viton (a fluoro-polymer) elastomer. This material is commonly called ”FKM

elastomer” according to the D1418 ASTM norm. This fluoro-elastomer is mainly used

for sealing operations, over a wide range of temperatures and pressures, under a given

compression in groove. Thus, such seals undergo relaxation phenomena. Therefore, in
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this study, we particularly focus on the first cycle of loading in compression and tension.

However, only minor adaptation of the identification procedure is required to simulate

the steady state behaviour of rubber material after cyclic loading tests.

2.1. Cyclic tests interrupted by relaxation steps

Multi-step relaxation tests were carried out at room temperature with a strain rate of

3.3 × 10−3 s−1 corresponding to a crosshead speed of 5 mm/min. This strain rate is

defined as ε̇ = ∆̇l/l0 with ∆l = l − l0 which denotes the variation of the initial length

of the specimen in compression or in tension tests. Cyclic tests are carried out up to

30% and 50% of the deformation, respectively, in compression (figure 1) and in tension

(figure 2). The imposed displacement was interrupted by several hold times at constant

strains of 10, 20 and 30% in compression and 10, 20, 30, 40 and 50% in tension, both

during the loading and the unloading, as can be seen in figures 1 to 2. The obtained re-

sults are shown in terms of first Piola-Kirchhoff stress (PK1 stress or engineering stress)

versus stretch.
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Figure 1. Cyclic compression tests interrupted by relaxation steps. (a) Stress-stretch

response. (b) Stress-time response.
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Figure 2. Cyclic tension tests interrupted by relaxation steps. (a) Stress-stretch

response. (b) Stress-time response.
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These figures clearly show that the stress decreases during the relaxation segments

in loading, and that the stress increases during the relaxation segments in unloading

(which correlates well with results that can be found in the literature [26, 33, 34, 35,

36, 37, 38]). At the end of these relaxation periods, termination points of the hold

times correspond to time equilibrium states, called equilibrium hysteresis by Lion [34].

According to several authors, this behaviour may be attributed to an irreversible slip

process between fillers in the rubber microstructures [39, 40], which is the resulting

phenomenon of rubber-filler bonds breaking [37, 41, 42]. The difference between the

equilibrium stress and the total stress is the overstress of the viscous part of the stress.

Figure 2(a) shows stress-stretch curves of cyclic tension interrupted by relaxation

times during 900s and 4500s. Except for large stretch, due to the reduction of the

maximun stress after each relaxation step, the same equilibrium state appears in both

cases. For the 900s relaxation time, the hysteresis area is 0.45 MPa, while it is 0.41

MPa for the 4500s relaxation time which leads to a difference of 8% between these two

conditions. We, therefore, consider that a 900s relaxation time is sufficiently long to

reach the equilibrium state and to obtain the non-viscous hysteresis part of the material

behaviour.

Figures 1(a) and 2(a) also show the corresponding compression and tension

monotonous behaviours, respectively. The multiple step stress relaxation curves follow

the monotonous tests. As can be seen, the mechanical behaviour of the Viton is not

modified by relaxation processes at this strain rate. This suggests that relaxation

processes do not alter the internal structure of the studied elastomer during loading.

Such results correlate with those found in the literature on the polymer Adiprene-L100

[43].

2.2. Influence of the strain rate on compression tests

Figure 3 shows the same previous tests (with a relaxation time of 900 s), but with

different values of the strain rate. Similar termination points of the hold times are

observed for all strain rates, which means that the equilibrium states do not seem to be

influenced by the strain rate.

3. Hyperelasto-Visco-Hysteresis model

3.1. General motivation

From a macroscopical point of view, the mechanical response of Viton, presented in

Section 2, exhibits three main phases, namely a reversible elastic phase which occurs

at the onset of the loading, a strain rate dependent phase which can be described

in terms of the viscosity, and an irreversible plastic phase (hysteresis response) which

occurs during the loading-unloading cycles. The Hyperelasto-Visco-Hysteresis model

discerns these physical phenomena and superimposes them so as to reasonably predict

the global macroscopic behaviour of the studied material. This approach assumes a

Accepted Manuscript



A simplified methodology to identify material parameters of a HVH model 6

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
K

1
[M

P
a]

Stretch [-]

10−3
s
−1

3.33 × 10−3
s
−1

10−2
s
−1

Figure 3. Cyclic compression stress-stretch curves for several strain rates.

superimposition of stress contributions instead of strain ones. Such an assumption

has already been adopted by several authors for rubbers and polymeric materials

[38, 44, 45, 46, 47].

According to the HVH rheological diagram presented in figure 4, a given applied

stress is the sum of several stress components, each one is related to a physical

phenomenon that occurs during mechanical loading. The global applied stress to the

material is, therefore, the sum of the hyperelastic σe, viscoelastic σv and pure hysteretic

σh stress components as follows:

σ = σe + σv + σh (1)

where σe, σv and σh are defined by a specific constitutive equation.

Some classical viscoelastic models reasonably reproduce hysteresis phenomena, but

the HVH model distinguishes the viscoelastic and the non-viscous hysteretic behaviour.

The pure hysteresis component σh models the rate-independent irreversibilities of the

mechanical behaviour. It is a function of the current strain ε and of its history between

a reference and the current states. The viscoelastic stress component σv is a function of

the strain rate ε̇ and its integration. A generalised Maxwell model is used to simulate

this stress contribution. The nonlinear elasticity σe is represented by a hyperelastic

constitutive equation depending on the strain invariants.

Figure 4 illustrates the HVH rheological model in a one-dimensional schema, in

which each stress component is presented by a set of rheological branches. The HVH

mechanical behaviour is also qualitatively illustrated in figure 5 with the proportion of

each component σe, σv and σh and with total stress σ. This figure shows that the result

of the stress superimposition presents the typical shape of this fluoro-elastomer stress-

strain cycles with relaxation periods. Figure 5(c) exhibits the effect of the hysteretic

stress component σh, which makes points b, d, h and j different at the end of ab, cd, gh

and ij relaxation periods. In the case of viscoelastic behaviour, these ends of relaxation

periods are coincident (figure 5(b)).

To implement this constitutive law in a numerical schema, a 3D finite deformation
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Figure 4. HVH model in one-dimensional case with viscous, hyperelastic and
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Figure 5. Cyclic behaviour of the three stress components of the HVH model in the

cyclic compression test interrupted by relaxation steps on the fluoro-elastomer.

framework has been developed in a finite element software, called HEREZH++ [21].

An Eulerian formulation, the Cauchy stress tensor σ, the Almansi strain tensor ε and

the Jaumann time derivative of the stress are chosen for this purpose [48, 49]. The

consistent of this model with the second law of thermodynamic has been verified by G.

Blès [50].

Accepted Manuscript



A simplified methodology to identify material parameters of a HVH model 8

3.2. Hysteresis

For the hysteresis response, rheological models containing elastic and slip elements are

considered as derived from a general pure hysteresis model [51]. It represents the non-

viscous hysteresis part of the mechanical behaviour during cyclic tests.

It is important to notice that the hysteresis contribution is taken into account

according to an incremental evolution like an elasto-plastic classical formulation. The

originality of this evolution is to have a dependancy of several reference states named

discrete memory states (like inversion and crossing states) which are representative of

the loading history. These several states are managed by an inversion point algorithm.

These explanations of state management in the case of the simulation of the uniax-

ial tensile test can be found in [52, 53]. The hysteresis model is then adapted to the

simulation of the cyclic loading condition.

We assume that the material is isotropic and that the hysteresis contribution is

only deviatoric. Thus, the deviatoric part of the Cauchy stress tensor corresponds to

the hysteresis contribution Sh. This stress deviatoric tensor is obtained through time

integration (Jaumann time derivative) of the following incremental constitutive relation:

Ṡh = 2 µh D̄ + β . φ
(

∆t
rSh, D̄

)

. ∆t
rSh (2)

In this relation:

• µh represents the shear Lamé coefficient;

• D̄ denotes the deviatoric strain rate tensor;

• ∆t
rSh describes the evolution of the deviatoric part of the hysteretic stress tensor

between a reference state r and current state t. At the beginning of the loading,

the reference state is the initial state, i.e. r = 0. For other paths, the reference

point is the previous inversion state as long as no crossing point has been detected

(more information on the management of these reference states can be found in

[26, 52, 53]);

• β =
−2µh

(ω′Q0)np(Q∆sh
)2−np

where:

Q∆sh
=
√

tr (∆t
rSh : ∆t

rSh) is relative to the intensity of ∆t
rSh;

• φ
(

∆t
rSh, D̄

)

= tr
(

∆t
rSh.D̄

)

−
(Q∆sh

)2

2µh

.
ω̇′

ω′
denotes the non-reversible intrinsic

dissipated rate function;

• parameter ω
′

= ω cos(j) denotes the Masing similarity function. Along the first

loading path, ω
′

is equal to 1 and the reference state is the initial state. In the

case of other paths, ω
′

is equal to 2 cos(j) where j denotes the angle between the

directions of the stress tensor, expressed in the deviatoric plane (i.e. in the classical

polar orientation of the tensor, before and after the last reference point);

• np is Prager’s parameter, which is chosen to change the shape of the function in

the transition shape. Explanations of this parameter can also be found in [26].
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The parameters of the hysteretic stress component Sh are coefficient µh, yield

hysteresis Q0 and Prager’s parameter np.

The inversion point and crossing point are managed with the previously defined

intrinsic dissipation rate function φ
(

∆t
rSh, D̄

)

. This value is related to a volume element

and must always be positive. Thus, at the reference state φ = 0 and the state at time t

is an inversion point when function φ becomes negative.

3.3. Hyperelasticity

The isotropic hyperelastic response of rubber-like materials is commonly described by

the use of an arbitrary strain energy density function W depending only on strain

invariants [54, 7, 55, 9, 17]. Several hyperelastic potentials have been tested and the

Hart-Smith’s model seemed to better describe the hyperelastic part of the studied ma-

terial. This potential enables a good approximation of the sharp upturn at large strains

because its strain-hardening response is taken into account by an exponential function

[55, 29]. The deviatoric part of this model is given by the following equation:

Wd = C1

∫ J1

3

exp
[

C3(J1 − 3)2
]

dJ1 + C2 log

(

J2

3

)

(3)

where C1, C2 and C3 are the material parameters. This potential depends on strain

invariants: J1 = I1.I
−1/3
3 and J2 = I2.I

−2/3
3 with I1 and I2 written in terms of the left

Cauchy-Green tensor B :

I1(B ) = tr (B ) ; I2(B ) =
1

2

[

(tr (B ))2
− tr

(

B
2
)]

(4)

This model has been extended for compressible materials. To take this compressibility

into account, an additive decomposition of hyperelastic potential in the deviatoric and

volumetric parts is used [56]:

W = Wd(J1, J2) + Wv(I3) (5)

in which the volumetric part is expressed under the form:

Wv(I3) =
K

2
(V − 1)2 (6)

where K is the bulk modulus and J3 = I3 = V 2 with V stands for the relative change

of volume.

Contrary to a classical hyperelastic evolution, with the HVH model, the

representation of stress component σe during a cycle of loading-unloading leads to a loop

(figure 5(a)). This phenomenon is due to the assumption of the additive decomposition

of stress given by Eq. (1) and that component σh in the loading direction describes

a cycle during a loading-unloading path (figure 5(c)). So, due to the deviatoric form

of the hysteresis, in the transverse direction, the σh component also describes a cycle

while the global transverse stress has to remain equal to zero. That induces a cycle on

the transverse component of σe and finally also along the loading direction, due to the
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small compressibility of the material. It is this inelastic evolution which prevents full

elastic recovery of the component σe.

The main parameters of the stress component σe are bulk modulus K, and

parameters C1, C2 and C3.

3.4. Viscosity

The generalised Maxwell model reasonably describes the viscoelastic behaviour of

elastomers, as it gradually tends to an equilibrium elastic state during a long relaxation

test (e.g. [57, 58, 59, 60]).

The viscoelastic Maxwell model used in the HVH model is given only by its devia-

toric parts. Considering one Maxwell element composed of an elastic stiffness E and a

viscous dissipative coefficient η, this deviatoric part is written as:

Ṡv

2µv

+
Sv

η
= D̄ (7)

where µv =
E

2(1 + ν)
with ν is the Poisson coefficient which is only used to simulate the

3D behaviour.

As for relaxation, at a given deformation ε0 (or stretch λ0) from time t0, in the one

dimensional case, the generalised Maxwell model predicts that the viscous total stress

σv(t) will be the sum of stresses in each single Maxwell element (figures 4 and 8) and

stress σv(t) tends to σ∞ when t tends to ∞ (e.g. [58, 61, 37]):

σv(t) =
n
∑

j=1

σ0j exp

(

−
(t − t0)

τj

)

+ σ∞ ∀t ≥ t0 (8)

with τj =
ηj

Ej

as the relaxation times. Ej and ηj are adjustable parameters corresponding

to the elastic stiffness and viscous dissipitative coefficient of each jth Maxwell element,

respectively.

Stress σ∞ corresponds to the hyperelastic and hysteretic stress contributions of

other branches:

σ∞ = σe + σh (9)

This stress response obtained at the end of the relaxation can be considered as the

equilibrium stress response.

4. Material parameter identification of the HVH model

The viscous σv, hyperelastic σe and hysteretic stress σh contributions are represented

in figures 6(a) and 6(b) for compression and tension tests at a given stretch λ0, based on

the experimental results shown in figures 1 and 2, respectively. As mentioned above, the

equilibrium state σ∞ can be obtained by connecting all the asymptotic converged stress

values at the end of the relaxation periods of each corresponding strain (or stretch)
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level, according to the description of this state previously described by Lion [34]. With

the hypothesis that the viscous stress σv is completely saturated at the end of these

hold times, σ∞ which is composed of hysteresis stress contribution σh and hyperelastic

stress contribution σe follows the red curve in these figures.
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Figure 6. Estimated viscous, hyperelastic and hysteresis behaviours. (a)

Compression test. (b) Tension test.

4.1. Hyperelastic and hysteresis contributions

With this assumption of stress decomposition, it is relatively easy to identify material

parameters of hyperelastic σe and hysteresis σh contributions. Inverse analysis software

package SiDoLo [30, 31] and the finite element software program HEREZH++ [21] are

used for this purpose. Experimental boundary and loading conditions are simulated

with HEREZH++ on a single hexahedral finite element to reproduce the assumed

homogenous state at the center of the specimen. An interface between SiDoLo

and HEREZH++ allows for an optimisation of material parameters through a trial

prediction-error iterative procedure [27]. Thus, only a few iterations are necessary

because a starting solution is first predicted with parameters initially obtained by

manual trials. This starting solution is as close as possible to the optimised solution.

The experimental database for the identification of the hyperelastic and hysteresis

contributions includes the tests presented in the previous section, with only the points

at the ends of the relaxation periods both in compression and tension loadings. The

obtained material parameter values are reported in Table 1. The value of bulk modulus

K, identified with an oedometric compression test, is equal to 2700 MPa.

Figure 7 shows the comparison between experimental equilibrium responses and

model predictions. Contrary to the results reported in the previous work [20], the

identified material parameters show that the hysteretic contribution is not negligible.

However, the main contribution in the stress-stretch response is still controlled by the

hyperelastic part.

It is also important to notice that the stress-stretch curves are not similar in tension

and compression loadings. At a given stretch, stress level recorded in compression test

is higher than that obtained in tension, suggesting the strong influence of compression
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Hyperelastic Hysteretic

C1 = 0.4 MPa np = 0.38

C2 = 0.09 MPa µh = 0.58 MPa

C3 = 0.21 Q0 = 0.09 MPa

error = 0.0534

Table 1. Hyperelastic and hysteretic parameters identified in tension and compression

tests (K=2700 MPa).
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Figure 7. Comparison between experimental data and identification procedure for

the hyperelastic and hysteretic contributions in tension and compression tests (only

the points at the ends of the relaxation periods are presented).

loading on the material mechanical behaviour. Thus, as compression and tension data

are considered together, the material parameters, presented in table 1, are a compromise

of these two behaviours. Table 2 gives parameters identified from only compression

experimental data. The comparison between the parameters presented in tables 1 and

2 shows only a difference in parameter C3, which is probably related to the stiffening in

stress-stretch evolution in the case of tensile test.

Hyperelastic Hysteretic

C1 = 0.4 MPa np = 0.32

C2 = 0.08 MPa µh = 0.55 MPa

C3 = 0.09 Q0 = 0.1 MPa

error = 0.0219

Table 2. Hyperelastic and hysteretic parameters identified in compression only

(K=2700 MPa).
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The identification procedure is based on the minimization of an error function with

a gradient type algorithm. This function is defined in the least square sense. The error

function value at the end of the inverse analysis procedure is also presented in tables

1 and 2. A comparison between the error functions of two kinds of parameters shows

that the fitted curves conform well to the stress-stretch data over a single mode of

deformation (e.g. compression).

4.2. Viscosity

The viscous part is represented by the generalised Maxwell model that is shown in figure

4 and given by Eq. (7). To estimate the stiffness and viscosity parameters, Ej and ηj,

combination with the number j of Maxwell elements, we apply the following procedure‡

(figure 8(a)).

First, in the one dimensional case, let us focus on a single Maxwell model:

dσ

dt
= E1

(

D −
σ

η1

)

(10)

with D, the strain rate. During the relaxation phase, after time t = t0 in which σ = σ01

(the stress at the end of the loading phase) and D = 0, the time integration of Eq. (10)

gives:

σ(t) = σ01 exp

(

−
(t − t0)

τ1

)

∀t ≥ t0 (11)

In this case, ∀t ≥ t0, if we suppose that σ01 = 1 and τ1 =
η1

E1

= 1, after time t

greater than 4τ1, we have: σ(t) = exp(−4) ≃ 0.02 which shows that only 2% of the first

Maxwell element has an influence on the relaxation response. This suggests that we

can choose between every relaxation time, a time: tj ≥ 4τj to describe the relaxation

tests in tension and compression. Figure 8(b) gives a schematic representation of this

assumption during a relaxation response. In this figure, a displacement in both time

and stress has been taken into account and only the viscous part σv is considered.

During the loading phase (between time t = 0 and t0), the time integration of Eq.

(10) gives:

σ(t) = E1τ1 D

(

1 − exp

(

−
t

τ1

))

∀ 0 ≤ t ≤ t0 (12)

According to Eq. (8), for n Maxwell elements, this expression can be extended by:

σ(t) = D

(

n
∑

j=1

Ejτj

(

1 − exp

(

−
t

τj

))

)

(13)

Giving the stiffness and the viscosity of each jth Maxwell element:

Ej =
σj(t0)

D τj

(

1 − exp

(

−
t0
τj

)) and ηj = τj.Ej (14)

‡ In the following procedure, σ represents the viscous part σv
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Figure 8. (a) The stress-stretch and stress-time relaxation test in tension. (b)

Determination of the characteristic relaxation times τj in the displaced stress-time

curve.

The values of σj(t0) correspond to the stress of each Maxwell element during the loading

phase. They can be determined graphically from relaxation tests in compression and

tension.

For example, in figure 8(b), two Maxwell elements have been used in a relaxation

test in tension. With assumption t1 ≥ 4τ1, the relaxation times give:

• first Maxwell element: t0 = 0s, τ1 = 10.25s and σ01 = 0.114 MPa;

• second Maxwell element: t1 = 50s, τ2 = 176.92s and σ02 = 0.191 MPa.

According to Eq. (8), assuming that only the second Maxwell element takes place
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for time t ≥ t1, we have:

σ(t) = σ02 exp

(

−
(t − t1)

τ2

)

(15)

In this case, during the loading phase:

σ2(t0) = σ02 exp

(

t1
τ2

)

= 0.152 MPa

σ1(t0) = σ01 − σ2(t0) = 3.9 × 10−2 MPa

To obtain a single set of material parameters, both valid in relaxation tests in

tension and compression, an average value of relaxation time τ̄j is chosen. With these

values, using τ̄j instead of τj and ηj = τ̄j.Ej in Eq. (14), the viscous parameter of two

Maxwell elements are presented in table 3. In all simulations, the Poisson coefficients,

necessary for 3D formulation, is arbitrarily selected as: ν1 = ν2 = 0.45.

First Maxwell element Second Maxwell element

E1 = 2.25 MPa E2 = 0.88 MPa

η1 = 28.8 MPa.s−1 η2 = 158. MPa.s−1

Table 3. The two Maxwell parameters determined analytically with an average value

of relaxation times in compression and tension.

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 200 400 600 800

P
K

1
[M

P
a]

Times [s]

Experiment
Analytic identification

(b)

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 200 400 600 800

P
K

1
[M

P
a]

Times [s]

Experiment
Analytic identification

Figure 9. Comparison between experimental data and analytical identification in the

displaced stress-time curve. (a) Relaxation-tension test. (b) Relaxation-compression

test.

The results of the viscous parameter identification are presented in figures 9(a) and

9(b), in relaxation tests in tension and compression, respectively. As in figure 8(b), a

displacement in both time and stress is applied in these figures.

As for hyperelastic and hysteretic parameter identification (section 4.1), using only

relaxation test in compression, the obtained analytical viscous parameters are presented

in table 4. Comparison with the parameters of table 3 shows that only the first Young’s

modulus E1 and the second viscous parameters η2 are different. However, similar values
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are obtained for other parameters, thus showing how little influence loading has in

tension or in compression on the viscous response of this material.

First Maxwell element Second Maxwell element

E1 = 1.55 MPa E2 = 0.75 MPa

η1 = 23.85 MPa.s−1 η2 = 139. MPa.s−1

Table 4. Both Maxwell parameters determined analytically with relaxation time in

compression only.
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Figure 10. Comparison between experimental and model prediction for the cyclic

compression test interrupted by relaxation steps. (a) Stress-stretch response. (b)

Stress-time response.
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Figure 11. Comparison between experimental and model prediction for the cyclic

tension test interrupted by relaxation steps. (a) Stress-stretch response. (b) Stress-

time response.

Finally, using the hyperelastic and hysteretic parameters of table 1 and the viscous

parameters of table 3, comparisons between experimental and model predictions for the
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cyclic compression and tension tests interrupted by relaxation steps, are presented in

figures 10 and 11. A better description of these experimental tests is obtained with the

procedure herein adopted than with the previous identification using a global inverse

numerical method [20]. This procedure is also easier and faster to carry out. Moreover,

it discerns all the specific physical phenomena that occur during the mechanical loading

of the rubber material.

5. Validation

To verify the pertinence of the HVH model under various loading conditions, based on

the parameters herein identified, simulations of experimental tests reported in [20] are

performed.

5.1. Complex loadings

The numerical simulations of the complex loading test are carried out in HEREZH++

program. Experimental boundary conditions are reproduced in a single hexahedral

element by imposing experimental loading.

Firstly, the numerical results of relaxation in compression and tension are compared

with experimental data in figures 12(a) and 12(b), respectively.
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Figure 12. Comparison between experimental and numerical prediction in relaxation

test (a) In compression. (b) In tension.

The single cycle of loading-unloading in compression and tension tests and

the successive cyclic compression and tension tests are also numerically simulated.

Comparisons with experiments are shown in figures 13(a) to 13(b), respectively. Rather

good correlation can be observed with some discrepancy in the unloading step for the

compression test. Finally, figures 14(a) to 14(b) show that the HVH model gives a

reasonable prediction of Mullins’ effect, although this is not its initial purpose. This

effect is taken into account without introducing any damage parameter.
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Figure 13. Comparison between experimental and numerical prediction in single

cyclic test. (a) In compression. (b) In tension.
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Figure 14. Comparison between experimental and numerical prediction in successive

cyclic test. (a) In compression. (b) In tension.

5.2. Industrial o-ring seal under relaxation test

To illustrate the response of the HVH model in the case of an industrial application,

an experimental device has been developed to apply a relaxation test on an o-ring seal

of Viton rubber. This seal is used to prevent leaking in an oil filter. The square cross-

section o-ring is put in a groove and squeezed by a piston of a universal testing machine

Instron 4505. Experimental and numerical studies are based on the configuration shown

in figure 15 where a cross-sectional view of the model is shown.

During the first step of this test, the piston squeezes the outside diameter of the

seal with a strain rate similar to that of previous experimental tests to reproduce the

as-installed configuration. Then, a relaxation loading is imposed during 900s and the

evolution of the stress is recorded as a function of time. Experimental measurements of

the force under the piston have been conducted and repeated three times to verify the

reproducibility of the results.

Numerical simulations of this test have been carried out with the FE code
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Figure 15. Geometry of the relaxation test on a seal (in mm).

Figure 16. Deformed mesh at the end of relaxation step

ABAQUS, combined with in-house code, HEREZH++, according to the software

interface presented in [62]. The HEREZH++ code computes the mechanical behaviour

of material in each Gauss point of elements and the software interface ensures

communication between ABAQUS and HEREZH++ via the user-defined mechanical

material behaviour (Umat). A 3D numerical analysis, with 48 linear eight-node

elements, modelling a sector of one degree is achieved with symmetric boundary

conditions (figure 16). The piston (top surface) and the groove are considered to be

infinitely rigid. Friction between these surfaces and the seal is assumed to be negligible

because an oil lubricant is used in actual conditions.

Comparison between numerical results and experimental data is shown in figure 17

in terms of stress as a function of time. Numerical simulations are performed with two

kinds of material parameters: firstly, with the parameters obtained from compression

and tensile tests (tables 1 and 3) and then with the parameters obtained from

compression tests (tables 2 and 4). Good correlation can be observed between numerical

predictions and the experiments. This correlation is better when considering material

parameters extracted from only compression tests which suggests that compression

loading is a predominent state of the simulated o-ring seal.
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Figure 17. Comparison between experimental data and numerical simulation of an

o-ring seal under relaxation test.

6. Conclusion

The determination of behaviour law material parameters is far from being trivial. In

this paper, a new identification method is proposed to determine material parameters

of an original phenomenological model, named Hyperelasto-Visco-Hysteresis. This

model should be able to take several effects into account, which is typical in the

case of rubber materials, like strong nonlinearities, hysteresis effects and strain rate-

dependent responses. Using the multi-step relaxation tests in tension and compression,

the hyperelastic and hysteretic stress contributions of this model are directly estimated.

With the simple relaxation tests, the viscous parameters of all Maxwell elements,

corresponding to the viscosity stress response, are analytically identified. The main

advantage of this method is that, using only a single test, the different responses such as

the hyperelasticity, hysteresis and viscosity are discriminated. Accordingly, material

parameter identification is substantially easier. Moreover, with this identification

procedure can be applied to other polymer materials, if the hyperelastic stress

contribution is adequately chosen. With the identified material parameters of the

studied fluoro-elastomer, the simulation of tension and compression cyclic tests

correspond well with experimental results. Finally, the simulation of a seal under

relaxation shows the suitability of the presented constitutive model for practical

applications.
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