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Interferometric Observables
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Interferometric Observables

Instantaneous output of an interferometer
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instantaneous output = complex visibility:

Vj1,j2 (λ, t) = g?j1 (λ, t) gj2 (λ, t) Îλ(bj1,j2 (t)/λ)

with:
gj(λ, t) = instantaneous complex amplitude
transmission for jth telescope;
Îλ(ν) = angular Fourier transform of the
specific brightness distribution Iλ(α) of the
observed object in angular direction α;
projected baseline:

bj1,j2 (t) = r j2 (t)− r j1 (t)

r j(t) = position of jth telescope projected on
a plane perpendicular to the line of sight;
λ = wavelength;
t = time;
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Interferometric Observables

Easy case: image reconstruction ∼ deconvolution

At any observed frequency, νk = bj1,j2 (tm)/λ`, the data is given by:

zk = ĥk Îλ` (νk) + noise

with the transfer function (the Fourier transform of the dirty beam):

ĥk = g?j1 (λ`, tm) gj2 (λ`, tm)
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when the complex visibilities and the complex throughput are available:

image reconstruction ∼ deconvolution

many missing values (very sparse data)
⇒ other constraints (priors) than the data are required
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Interferometric Observables

The effects of turbulence

Because of the atmospheric turbulence, averaging during an exposure yields:

〈Vj1,j2 (λ, t)〉m =
〈

g?j1 (λ, t) gj2 (λ, t) Îλ(νj1,j2 (λ, t))
〉

m

〈. . .〉m means averaging
during mth exposure

≈ 〈gj1 (λ, t)〉?m︸ ︷︷ ︸
≈ 0

〈gj2 (λ, t)〉m︸ ︷︷ ︸
≈ 0

Îλ(bj1,j2,m/λ)

with: bj1,j2,m
def= 〈r j2 (t)〉m − 〈r j1 (t)〉m the mean baseline during

the exposure

⇒ we need to integrate observables which are insensitive to phase delay errors:
powerspectrum

〈|Vj1,j2 (λ, t)|2〉m ≈ 〈|gj1 (λ, t)|2〉m 〈|gj2 (λ, t)|2〉m︸ ︷︷ ︸
> 0

|̂Iλ(bj1,j2,m/λ) |2

bispectrum

〈Vj1,j2 (λ, t) Vj2,j3 (λ, t) Vj3,j1 (λ, t)〉m ≈ 〈|gj1 (λ, t)|2〉m 〈|gj2 (λ, t)|2〉m 〈|gj3 (λ, t)|2〉m︸ ︷︷ ︸
> 0

Îλ(bj1,j2,m/λ) Îλ(bj2,j3,m/λ) Îλ(bj3,j1,m/λ)
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Interferometric Observables

Issues in image reconstruction from optical interferometry data
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1 sparsity of the data
(holes in the spatial frequency coverage I)
⇒ additional prior needed

2 non-linear data

powerspectrum ∝ |Îλ(νk) |2

bispectrum ∝ Îλ(νk1 ) Îλ(νk2 ) Î ?λ (νk1 + νk2 )

3 calibration of the effective transfer functions
4 missing Fourier phases

powerspectrum provides no phase
phase closure (the phase of the bispectrum)
only provide 1 phase out of 3
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Inverse Approach

Inverse Approach
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Inverse Approach

Inverse approach for image reconstruction

Inverse approach provides a very general framework to describe most (if not all) image
reconstruction algorithms (le Besnerais et al. 2008; Thiébaut 2009; Thiébaut and
Giovannelli 2010).

The recipes involves:
1 a direct model: model of the brightness distribution and its Fourier transform;
2 a criterion to determine a unique and stable solution;
3 an optimization strategy to find the solution.
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Inverse Approach

Image and complex visibilities models

Image model
The specific brightness distribution in angular direction α is approximated by:

Iλ(α) ≈
∑

n
bn(α) xn

F.T.7−→ Îλ(ν) ≈
∑

n
b̂n(ν) xn

with {bn : R2 7→ R}N
n=1 a basis of functions and x ∈ RN the image parameters.

Complex visibility model
For any sampled spatial frequency νk = bj1,j2,m/λ the model complex visibility writes:

Îλ(νk) ≈ yk =
∑

n
b̂n(νk) xn =

∑
n

Hk,n xn

with Hk,n = b̂n(νk), in matrix notation:

y = H · x

with y ∈ CK and H ∈ CK×N is a sub-sampled Fourier transform operator.
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Inverse Approach

Image constraints

Image reconstruction is a compromise between various constraints (Thiébaut 2009).

Data constraints
The image must be compatible with the data z (powerspectrum, bispectrum, etc.):

fdata(H·x) def= − log pdf(z|H·x) + c ≤ η

with pdf(z|H·x) the likelihood of the data given the model and η > 0.

Even with η = 0, this is insufficient to define a unique (and stable) solution, we need
additional a priori constraints:

Strict priors
e.g. the image must be non-negative
and normalized

∀n, xn ≥ 0 and
∑

n
xn = 1

⇐⇒ x ∈ X (the feasible set)

Loose priors
e.g. the image must be simple or
smooth

min
x∈X

fprior(x)
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Inverse Approach

Inverse problem formulation

We want to follow the priors as far as possible providing the image remains compatible
with the data:

x+ = arg min
x∈X

fprior(x) s.t. fdata(H · x) ≤ η

which can be solved via the Lagrangian:

L(x; `) = fprior(x) + ` fdata(H · x)

with ` ≥ 0 the Lagrange multiplier for the inequality constraint fdata(H · x) ≤ η. The
inequality constraint must be active, hence ` > 0 and, taking µ = 1/`, leads to solve:

Maximum a posteriori solution
x(µ) = arg min

x∈X
f (x;µ)

with: f (x;µ) = fdata(H · x)︸ ︷︷ ︸
likelihood

+ µ fprior(x)︸ ︷︷ ︸
regularization

where µ > 0 is tuned so as to match fdata(H · x+) = η with x+ = x(µ+) and µ+ the
optimal regularization weight.
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Likelihood of the Data

Likelihood of the Data
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Likelihood of the Data

Likelihood of the data

should be based on the noise statistics of the data:

fdata(H·x) def= − log pdf(z|H·x) + c

can be very complicated (non-convex, phase wrapping, etc.)
various approximations have been proposed (e.g., Meimon et al. 2005a)
in general this does not amounts to least-squares (even weighted ones!)

Real complex data Approximate cost function

e

e

Re

Im

local convex
approximation

global convex
approximation

true criterion
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Regularization

Regularization
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Regularization

Which are the best regularization methods?

Practical comparison of regularization methods:
a study made by S. Renard, É. Thiébaut and F. Malbet (to appear in Astron. &
Astrophys., 2011);
about 1000 simulations:

10 different objects;
11 different regularizations;
3 different (u, v) coverages: poor (31 freq.), medium (88 freq.), and rich (245
freq.);
3 different signal-to-noise ratii (SNR): high (1%), medium (5%), and low
(10%);

assumptions: complex visibilities available
=⇒ convex constrained non-linear optimization problem;
algorithm: MiRA (Thiébaut, 2008, 2009);
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Regularization
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Regularization

Various regularizations

We consider the following regularizations:
1. Quadratic smoothness:

fprior(x) = ‖x − S · x‖2

where S is a smoothing operator (by finite differences).

2-3. Compactness (le Besnerais et al. 2008):

fprior(x) =
∑

n
wprior

n x2
n

with wprior
n = ‖θn‖β and β = 2 or 3 yields spectral smoothness.

4-5. Non-linear smoothness:

fprior(x) =
∑

n

√
‖∇xn‖2 + ε2

where ‖∇xn‖2 is the squared magnitude of the spatial gradient in the image at nth
pixel and ε→ 0 yields total variation (Strong and Chan 2003) while ε > 0 yields
edge-preserving smoothness (Charbonnier et al. 1997).
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Regularization

Various regularizations (continued)

6-8. Separable norms (`p):

fprior(x) =
∑

n

(
x2

n + ε2)p/2 ≈
∑

n
|xn |p

where ε > 0 and p = 1.5, 2, and 3. Note that p = 1 is what is advocated in
compress sensing (Candes et al. 2006) while p = 2 corresponds to regular
Tikhonov regularization.

9-11. Maximum entropy methods (Narayan and Nityananda 1986):

fprior(x) = −
∑

n
h(xn ; x̄n).

Here the prior is to assume that the image is drawn toward a prior model x̄
according to a non quadratic potential h, called the entropy :

MEM-sqrt: h(x; x̄) =
√

x ;
MEM-log: h(x; x̄) = log(x) ;
MEM-prior: h(x; x̄) = x − x̄ − x log (x/x̄) .
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Regularization

Tuning the regularization level

We choose the regularization level µ+ by minimizing the mean squared error (MSE) of
the reconstruction versus the true image:

µ+ = arg min
µ>0

∥∥x(µ)− xtrue∥∥
2

where
x(µ) def= arg min

x∈X
{fdata(H · x) + µ fprior(x)}
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Regularization

Is the MSE+ a good figure of merit?

all objects
peaky objects
smooth objects

For a given object, MSE+ is the MSE
divided by the best MSE achieved for that
object.

The distribution of MSE+ has 2 spikes
corresponding to good and bad
reconstructions.
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Regularization

And the winner is...

Cumulative Performance Rank Image Reconstructions
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Based on cumulative rank, TV and compactness are the most successful.

However the best prior depend on the particular case (object type, SNR and coverage).
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Optimization Strategy

Optimization Strategy
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Optimization Strategy

Image reconstruction = optimization problem

Assuming µ+ = 1, image reconstruction amounts to solve:

min
x∈X
{fprior(x) + fdata(H · x)}︸ ︷︷ ︸

f (x)

For optical interferometric data, the joint criterion f (x) is:
highly non-linear (means non-quadratic);
depending on a very large number of parameters (the image pixels);
multimodal =⇒ in principle, needs global optimization or a good starting point
followed by continuous optimization;

Proposed methods:
matching-pursuit: CLEAN (Fomalont 1973; Högbom 1974), the building-blocks
method (Hofmann and Weigelt 1993)
self-calibration: Wisard (Meimon et al. 2005b);
direct optimization: BSMEM (Baron and Young 2008), MiRA (Thiébaut 2008);
global optimization: MACIM (Markov Chain Imager, Ireland et al. 2008);
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Optimization Strategy

Self-calibration

Self-calibration (Readhead and Wilkinson 1978; Schwab 1980; Cornwell and Wilkinson
1981) proposed to solve for missing calibration of the transfer function or missing Fourier
phases.

Self-calibration algorithm
Choose an initial image x [0] and repeat the following steps for k = 0, 1, . . . until
convergence:

1 self-calibration step:

y[k+1] = arg min
y

fdata(y) s.t. y ≈ H · x [k]

2 image reconstruction step (deconvolution):

x [k+1] = arg min
x∈X

fprior(x) s.t. H · x ≈ y[k+1]

Issues:
What is the meaning of ≈ (depends on the algorithm)?
How to consistently tune the balance between prior and data?
Not rigorously equivalent to minimizing a given criterion.
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Optimization Strategy

Augmented Lagrangian approach

Solving the image reconstruction problem by direct minimization of the criterion, i.e.

min
x∈X
{fprior(x) + fdata(H · x)}

is exactly the same as solving the constrained problem:

min
x∈X,y

{fprior(x) + fdata(y)} s.t. H · x = y

where the model complex visibilities y = H · x have been explicitly introduced as
auxiliary variables.

The augmented Lagrangian (Boyd et al. 2010) is a practical algorithm to solve this
constrained problem:

LA(x, y,u;β) = fprior(x) + fdata(y)− uT · [H · x − y] + β

2 ‖H · x − y‖2 ,

with u the Lagrange multipliers related to the constraints H · x = y and β > 0 the
weight of the quadratic penalty to reinforce the constraints.

Advantages: explicit update formula for the Lagrange multipliers, strong convergence
properties for β large enough (no needs for β →∞), etc.
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Optimization Strategy

Augmented Lagrangian approach (continued)

LA(x, y,u;β) = fprior(x) + fdata(y)− uT · [H · x − y] + β

2 ‖H · x − y‖2

Augmented Lagrangian algorithm (in our case)
Start with initial multipliers u[0] and β[0] > 0 and repeat the following steps for
k = 0, 1, . . . until convergence:

1 improve the variables:

{x, y}[k+1] ≈ arg min
x∈X,y

LA
(
x, y,u[k];β[k])

2 update the multipliers:

u[k+1] = u[k] + β
(
y[k+1] −H · x [k+1])

β[k+1] = β[k]

or strengthen the constraints:

u[k+1] = u[k]

β[k+1] = γ β[k] (with γ > 1)

Step 1 can be implemented thanks to alternating minimization, e.g.:
x+ = arg min

x∈X
LA(x, y,u;β) followed by y+ = arg min

y
LA(x+, y,u;β)
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Optimization Strategy

Image reconstruction step in augmented Lagrangian approach

The augmented Lagrangian can be rewritten as:

LA(x, y,u;β) = fprior(x) + fdata(y)− uT · [H · x − y] + β

2 ‖H · x − y‖2 ,

= fprior(x) + fdata(y) + β

2 ‖H · x − y − u/β‖2 − 1
2β ‖u‖

2 .

Improving x given the other variables writes:

x+ = arg min
x∈X

LA(x, y,u;β)

= arg min
x∈X

{
fprior(x) + β

2 ‖H · x − v‖2
}

with v = y + u/β .

which is the analogous of image reconstruction given pseudo-complex visibilities
v = y + u/β with white noise of variance ∝ β−1/2 (unlike self-calibration which would
try to fit y).
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Optimization Strategy

Calibration step in augmented Lagrangian approach

Recalling that the augmented Lagrangian can be rewritten as:

LA(x, y,u;β) = fprior(x) + fdata(y) + β

2 ‖H · x − y − u/β‖2 − 1
2β ‖u‖

2 ,

improving y given the other variables writes:

y+ = arg min
y
LA(x, y,u;β)

= arg min
y

{
fdata(y) + β

2 ‖y −w‖2
}

with w = H · x − u/β .

which is similar to the self-calibration step in self-calibration methods except that the
complex visibilities y are enforced to fit the actual data and the shifted model complex
visibilities w = H · x − u/β and not just H · x.
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Optimization Strategy

Conclusions about optimization strategy

direct optimization is more consistent (the given criterion is minimized) and much
faster and stable than self-calibration for finding missing Fourier phases (as in
Wisard, Meimon et al. 2005b) or missing parameters in the OTF:

imposing u = 0 for the Lagrange multipliers yields the same method as
self-calibration;
exactly matching H · x = y requires β →∞ which worsen the condition
number of the problem and, thus slow down convergence;
direct optimization is more consistent (the given criterion is minimized) and
much faster and stable;;

direct optimization with `1 regularization (to impose sparsity) is superior to
matching pursuit (Marsh and Richardson 1987) for imposing the sparsity in the
CLEAN (Fomalont 1973; Högbom 1974) and building-blocks (Hofmann and Weigelt
1993) methods;
the most successful algorithms – e.g. BSMEM (Baron and Young 2008) and MiRA
(Thiébaut 2008) – use direct optimization;
global optimization is however required, e.g. attempt by the Markov Chain Imager
(MACIM) algorithm (Ireland et al. 2008);
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Summary and perspectives

general inverse problem framework suitable to describe most methods;
optimization

difficulties: non-linearity, lots of variables (as many as pixels), constraints
(non-negativity), etc.
direct optimization of the criterion is more consistent and probably more efficient
global optimization is required

a priori constraints:
regularization: TV and compactness appear to be the most effective (`2 − `1 probably
a better compromise for astronomical images)

the future: multi-spectral data
spectral regularization (Soulez et al. 2008)
much more parameters to fit, computational cost will be a big issue

(le Bouquin et al. 2009)
other links: medical tomography, compressive sensing, etc.
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