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1. Introduction

The simulation by the FE method of inflatable fabric structures,
when a pressure load is applied and an implicit scheme is used, can
lead to severe instabilities due to the lack of stiffness in the fabric.
For instance, in certain cases the basic Newton–Raphson algorithm
cannot achieve a final convergence due to the swapping between
several stable states. Explicit time schemes overcome this difficulty,
but they need a huge number of time steps to obtain a realistic
stable final shape. This occurs when using natural damping.

This is an usual issue in civil engineering (some examples are:
geotechnical problems [1], prestressed coated fabric membranes
[2], architectural structures [3], and space inflatable structures
[4]), and there have been several solutions proposed [5–9] by
using dynamic relaxation methods.

The classic form of the dynamic relaxation (see for example [10]
or [11]) mainly is to use an artificial viscosity to damp the move-
ment, and to search for the critical damping value (see [12] for a
comprehensive review). However, among the existing dynamic
relaxation methods, we are interested in a different method; the
: þ33 297874572.
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one proposed by Barnes [13]. It has been initially applied to the
calculation of prestressed cable structures and further extended by
Han and Lee [5] to be used with triangular elements and a linear
elastic behavior. This method combines a kinetic damping (reset-
ting the speed to zero at each kinetic energy peak), often used in
form-finding, and an optimization of the mass matrix (proposed by
Han and Lee).

One application of the method is thin fabric structures loaded
by pressure, which are notably unstable during loading due to the
lack of flexion stiffness. The static final form does not have to
depend on the inertial forces that act during the transient
evolution. Considering this, the right value of the mass is
supposed to have no influence on its static final form. In order
to quickly reach the stable deformed state, we must first adapt
the mass matrix and then use kinetic damping. Kinetic damping
has been successfully employed by several authors (one example
is [15]). A correct choice of the mass matrix leads to an optimal
convergence of the dynamic relaxation method.

In this paper, we will present two main formulations. Firstly, we
propose an extension of that Barnes–Han–Lee method. Secondly,
we propose a general expression based on the works of Barnes for
the mass matrix calculus. The basis of this second expression has
already been proposed in previous papers (see Underwood [16] or
Barnes [13]), but to our knowledge, no systematic studies have



been done concerning its applications for simulation of the infla-
tion of unstable structures. Both formulations can be used with any
reversible behavior, any type of membrane element and also solid
elements. We show, with numerical examples, their correct opera-
tion even when dealing with complex mesh shapes or 3D elements.
Our methods aim to find one solution when one or more solutions
exist (there can be several stable final shapes).

The reminder of this paper is broken into three main parts. In
Section 2, we first explain the dynamic relaxation method that
our work is based on. We then present two methods for the
formulation of the mass matrix. We propose an initial method
based on the formulation of Han and Lee and also propose an
alternate method based on a different formulation of the mass
matrix. In Section 3, we show several numerical case studies and
results of application of our proposals after implementing them in
the software Herezhþþ [17]. Finally, in Section 4, we briefly
discuss our conclusions.
2. Dynamic relaxation method

2.1. Presentation of the method

The problem that we need to solve, after discretization
by FE, is

½M� €XþRðX, _X Þ ¼ 0 ð1Þ

where [M] is the diagonal mass matrix; X, _X , €X are respectively
the position, velocity and acceleration of the nodes and RðX, _X Þ is
the residual of internal and external forces in function of the
position and velocity of nodes. The term ½M� €X represents the
generalized expression of the acceleration forces.

The method used to solve the problem in time is based on the
explicit centered finite differences method (CFD).

When a structure is steady and immobile, its kinetic energy is
equal to zero and acceleration forces are null. In order to quickly
reach this state, a kinetic damping is used. The kinetic damping
method consists in resetting velocity to zero at each kinetic
energy peak. This simple procedure has generally been found to
be stable and allowing a fast convergence [13]. When there is no
external energy acting, there is just internal elastic energy to
evolve toward the steady-state position.

The calculation of equilibrium is always made in the final
configuration, using the Cauchy’s stress tensor.

In the case of a Hooke’s elastic law of behavior, Cauchy’s tensor
is associated with Almansi’s deformation measure. The deforma-
tion is calculated from the variation of the coordinates of the
metric tensor associated to the material coordinates of the point
in the reference element (a comprehensive example of this
calculus has been presented in [21]). Then, the stress tensor is
obtained by means of the formulae

Spheric part :
trðsÞ

3
¼ K trðeÞ ð2Þ

Deviatoric part : devðsÞ ¼ 2G devðeÞ ð3Þ

In the case of the more complex material behavior:
Hart–Smith, that we use in one of our numerical examples, the
tensor of left Cauchy–Green B is determined, using again the
coordinates of the metric tensor. Its invariants are then used to
define the potential and its different variations, needed for the
calculation of Cauchy’s stress tensor [21].

For both of these behaviors, only the initial and final states are
taken into account.

Since acceleration forces depend on the mass (see equation to
solve above), the dynamic relaxation method proposed by Barnes
[13] uses an arbitrary mass term in order to improve the kinetic
2

damping while keeping the numerical stability. In the previous
studies, Barnes proposes a lumped mass matrix where the
elements mi in the diagonal are

½mi� ¼ l
Dt2

2
½ki� ð4Þ

where mi is the mass matrix at node i; ki represents the diagonal
component of the stiffness matrix in the principal direction; Dt is
arbitrarily chosen as 1; and l is a convergence parameter which is
constant for the whole structure. The optimum mass matrix is
calculated by adjusting the parameter l.

In the shape-finding process of membrane structures, due to
the large variations of the structures, Barnes [14] proposed to
choose the largest stiffness term for the calculation of mass term:

mxi ¼myi ¼mzi ¼ l
Dt2

2
kimax ð5Þ

and Han and Lee [5] stated, for CST (constant stress triangle)
elements, that the stress ki at node i with m members can be
approximated as

kimax ¼
X

e

h

4Se
0

E

1�n2
þsxþsyþsxy

� �
ð6Þ

where h is the thickness of the element e; Se
0 is the initial surface

of the element e; and sx,sy,sxy are the components of the stress
tensor in an orthonormal basis associated to the surface element.
E and n are the coefficients of the isotropic elastic Hooke’s
behavior law.

The time step is arbitrary, and for simplicity, its value in the
formula (4) has been chosen as 1. The consequence is that this time
step does not appear directly in the time-advance algorithm, but it
does in the loading, boundary conditions and material’s behavior.

In Ref. [18], the authors propose to suppress the surface term
Se

0 in order to obtain mass dimensions in Eq. (4). They show,
particularly, that in this case the optimal value of the coefficient l
is more stable, what is advantageous when it has to be defined.
The expression becomes then

kimax ¼
X

e

h

4

E

1�n2
þsxþsyþsxy

� �
ð7Þ

In this work, we propose two ways to generalize the previous
approaches, which we define in the two following subsections.

2.2. Proposal 1: extension of the formulation of Barnes–Han–Lee

Here we propose an extension of the previous formulation, on
the one side to other type of elements and on the other side to
other material’s behavior. The aim is therefore to study the
feasibility of this extension. Let us consider the following expres-
sion, which would replace Han–Lee’s [5]:

kimax ¼
X

e

le
4

aKþbmþg Is
3
þ
y
2
smises

� �
ð8Þ

Looking at the expression (6), the term E=ð1�n2Þ can be
considered as controlling the shape changing or the element
volume changing. It could be replaced by a linear combination
of the average compressibility modulus K and shear modulus m,
available for all elastic and hyperelastic laws: aKþbm.

Initially, parameters a and b can be chosen as a¼ b¼ 1, what
leads to a magnitude almost equal to the initial formulae’s one
(with the condition of a not very high compressibility).
For example, if n¼ 0:3, we get: aKþbn� 1:21E, while with
Han–Lee’s formulae (6) we obtain: E=ð1�n2Þ � 1:1E.

Concerning the second part of the Eq. (6) proposed by
Han–Lee, the term sxþsyþsxy can be considered as representing
the stress state in the material (cumulating the spheric and



deviatoric parts). For our proposal, and in order to extent the use of
the formulae to other geometries than triangular elements, we
replace this term by an invariants’ combination: gðIs=3Þþðy=2Þsmises,
where Is ¼ sk

k is the trace of the Cauchy stress tensor and smises is the
Mises stress. They represent respectively the intensity of the sphe-
rical and the deviatoric parts of the stress tensor. These two
quantities are tensor invariants so they could be calculated for any
type of element.

Therefore, the coefficient 1=3 is added so �Is=3 represents the
spherical pressure, and the coefficient 0.5 is added so 0:5smises

represents the amount of shear.
The parameters a, b, g and y in the expression (8) permit to

control the influence of each entity. And finally, le represents a
geometrical characteristic length, suitable for 2D elements (thick-
ness) and for 3D elements (cubic root of the volume).

Notice the presence of the stress terms, what implies that the
mass matrix has to be updated all along the calculation.

2.3. Proposal 2: second formulation for the mass matrix

The second proposal refers to the theoretical elements
proposed by the early work of Underwood [16] by using the
theorem of Gerschgorin which permits to obtain an upper bound
to the eigenvalue ‘‘i’’ of the stiffness matrix ‘‘K’’ of the system:

rir
X

j

9Kij9 ð9Þ

The mass matrix is then built to satisfy the stability condition
with a unitary time step

mi ¼
l
2

MAX3
k ¼ 1ðr3ði�1ÞþkÞ ð10Þ

Unlike the physical masses, we can expect a variation of the
mass matrix built this way during the calculation. Given that on
the one side we choose the maximum value over the three axes
(loop over k in (10)) and on the other side the stiffness of the
initial material behavior is generally more important than during
deformation, it has been proved in our simulations that the mass
matrix calculated at the beginning was enough to ‘‘guide’’ the
whole simulation, i.e. the update of the mass matrix along the
calculation of our simulations did not provoke any time gainings.

The method presents as a disadvantage that it needs at least
the calculation of one stiffness matrix, what implies the need of
being able to calculate the tangent behavior. Generally, at the
beginning of the loading process, the evolution is mainly elastic,
so a priori the stiffness belonging to the tangent behavior should
be enough if we consider that the material tends to soften.

In order to make the calculations converge as fast as possible, the
idea is to be as close as possible to the critical time step. However,
being too close to the critical time step can eventually provoke
instabilities and divergence. In the dynamic relaxation method
formulae, the time step Dt is usually arbitrarily fixed to 1. However,
the presence of the parameter l can be considered as a factor of this
fixed time step. Its optimum value cannot be determined a priori (we
observed that it depends on the mesh geometry, elements size, etc.).
However, the relation (9) and the formulae (2.4) of Ref. [16] lead to a
minimum theoretical value of l for the second proposal: lZ0:5.

The range of values to find the optimum value of l is different
for each one of our proposals, being this range much smaller in
the case of the second proposal (around 0.5–0.7 for the proposal
2 vs. 5–15 for the proposal 1).

2.4. Incremental scheme and convergence criterion

In the case of an incremental law of behavior, a priori not totally
reversible, when the loading leads to big deformation–stress final
3

states, the final-form-finding procedure in one step is not correct
anymore. The final state depends indeed on the loading path which
in the case of DR can be very different to the real path. A solution is
to use an incremental loading procedure. Assuming that incre-
ments are small enough, the procedure then guarantees a succes-
sion of points of static physical equilibrium that allows to be close
to the real response of the structure during the loading.

The convergence criterion in the steady state must comply
with two points. In one part, the structure must be in mechanical
equilibrium, what we represent as a norm of the residual of the
static generalized forces – internal and external – inferior to an
instruction’s value. In other part, in the case where the kinematic
boundary conditions block the global solid movements, we
impose the final kinetic energy to be also inferior to an instruction
value, what also guarantees the equilibrium in the case where the
generated stresses are very low. In the practical, these conditions
are applied under a relative form according to

Max
JResidualJ1
JReactionsJ1

,
Kinetic energy

Internal energy

� �
re ð11Þ

where e is the convergence criterion (the mentioned instruction
value).
3. Numerical case studies

In this section, we will perform numerical case studies on the
formulae (8) and (10). We use the Cþþ academic finite elements
software Herezhþþ [17], and for the meshing and postprocessing,
we use the software Gmsh [19].

The numerical case studies in the section are described below:
�
 Firstly, we show how we can adapt the parameters of the first
of our proposed formulae to obtain an equivalent calculation
to Han and Lee’s formulation. We also compare it to our
second formulae using the classical test of inflation of a
rectangular cushion.

�
 Based on the same numerical test, we show that both of

our proposed formulae work with complex meshes, with
different geometries, with different element types and differ-
ent interpolations.

�
 We demonstrate our proposed formulae working with meshes

composed of 3D elements, using an inflate test of a rectangular
cushion and a traction test of a partially perforated plate.

�
 Finally, we explore how the formulae works when using a

complex law of behavior.
3.1. Equivalence between the formulation of Han and Lee and our

proposals

The objective in this section is to verify the equivalent calculation
between the method proposed by Hann and Lee, (6), modified by
Troufflard [18] and our formulae (8) and (10). Notice that consider-
ing the term sxy in the formulae (6) is problematic, because it
depends on the coordinates on which it is calculated. In our work, in
order to suppress this dependance, we propose to be situated in a
stress eigenvector frame, which leads, considering the plain stress
hypothesis, to sxy ¼ 0, sxþsy ¼ trðsÞ and g¼ 3 in (6).

The solution permitting to determine the terms a and b is not
unique. We keep

a¼ 3ð1�2nÞ
2ð1�n2Þ

, b¼
1

1�n being K ¼
E

3ð1�2nÞ , m¼ E

2ð1þnÞ
ð12Þ



Table 1
Notation.

T: triangular

elements

R: rectangular elements

L: linear

interpolation

Q: quadratic

interpolation

1: mesh of 25�25 2: mesh of 50�50

Fig. 2. Inflated squared cushion: representation of 1/8 of the cushion, displace-

ment isovalues.

Table 2
Inflation of 1/8 of cushion in just one loading step, for different meshes.

Mesh Proposal 1 Proposal 2

lopt Iterations Time (s) lopt Iterations Time (s)

TL1 (2028 dof) 10 546 14.1 0.6 565 13.8

TL2 (7803 dof) 10 923 101.5 0.7 1081 111.8

TQ1 (7803 dof) 13 1128 118.4 0.6 1185 119.8

TQ2 (30 603 dof) 14 2158 943.3 0.7 2358 970.1

RL1 (2028 dof) 6 422 23.7 0.5 423 22.6

RL2 (7803 dof) 6 671 150.4 0.6 841 183.9

RQ1 (7803 dof) 10 1015 159.8 0.5 970 148.8

RQ2 (30 603 dof) 9 1688 1085.6 0.5 1889 1552.1
In this case, relations (6) and (8) are identical, what shows that
our first proposal includes the former Han–Lee’s proposal.

The calculation is carried out in linear elasticity, E¼125 MPa
and n¼ 0:41, which are coherent with the parameters of behavior
of a usual thin fabric. Concerning the expression (10), we use for
this example a value of l¼ 0:6 (we will discuss about this
parameter afterwards).

The first numerical test is a classical one, which has already
been studied, for example, in Ref. [6], the inflation of a rectangular
shaped cushion. It consists in two membranes joined at their
periphery, with dimensions 500 mm�500 mm�0.27 mm. Due
to the symmetries, just 1/8 of the cushion is studied. The
cushion is loaded with an instantaneous internal pressure of
0.015 MPa. The mesh is constituted of a ruled triangular division,
25� 25-625 elements.

Finally, the convergence criterion (11) is set to: e¼ 1:e�3.
The evolution of kinetic energy in function of the iteration

number, Fig. 1, shows clearly the kinetic damping points
(i.e. speeds reset to 0). Globally, the evolution for both proposals
is very close. Entering into detail, notice that the first maximum of
kinetic energy occurs a bit later in the case of the second proposal,
but on the other hand, the decrease’s gradient seems to be bigger
for this second proposal. We can also notice the regular diminu-
tion of the norm of static residual, quite similar for both methods,
with an important diminution at each kinetic damp.

3.2. Membranes: complex meshes

The aim of the second application is to validate our two
proposals in the case of more complex meshes. So we study 2D
meshes, with triangular and quadrangular elements, and with
linear and quadratic interpolations. Also, two different qualities of
mesh are considered: a grid of 25�25 elements and another one
of 50�50. The geometry and the material behavior are identical
to the first application, in the previous section. For the first
proposal, we use the parameters a¼ 0:9022557, b¼ 0:9022557,
g¼ 1,y¼ 1.

For the different tested samples, we use the notation indicated
in Table 1. Thus, as an example, the notation RL1 means: test
made with a mesh with 25�25 rectangular elements, and using
linear interpolation.

The Fig. 2 shows an example of inflated membrane. There, we
can observe that the method permits also to capture eventual
wrinkles, local instabilities which can appear during the inflation.
We would like to remark that it is not the aim of this work to
obtain the best precision for the wrinkles. It is evident that, the
smaller the mesh is, the more we gain in wrinkles’ precision. But
as told, the aim of this work is to obtain one among all the
Fig. 1. Inflation of squared cushion. Evolution of kinetic energy and residual of static e
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possible solutions for the steady inflated state; we cannot assure
that the obtained wrinkles would have the same shape and would
be placed in exactly the same position than in reality. To assure
that, further studies must be made.

For each geometry, the Table 2 shows the obtained results
with an optimum l. Calculations are made in an Apple computer
(Processor: 2�2.93 GHz Quad-Core Intel Xeon, Memory: 16 Go
1066 MHz DDR3) with just one processor.

Firstly, it can be observed that convergence is reached in all
the cases. Particularly, the quadratic interpolation does not
induce a particular difficulty.
quilibrium in function of the number of iterations, for each one of the proposals.



The number of needed iterations is slightly higher with the
second proposal, but the associated calculation times stay
however smaller or equivalent, due to the fact that the stiffness
matrix is not recalculated at each iteration, unlike the proposal 1.

The range of variation of the parameter l, even if it is smaller
than in the original method of Barnes–Han–Lee, (6), it is still quite
large for the proposal 1. This point is important, because it
imposes preliminary tests in the case of a full new mesh in order
to determine the optimum value for l. In the case of the proposal
2, a value of 0.6 or 0.7 ensures a convergence near the optimal one
in all the studied cases.

The increasing number of iterations seems to be proportional
to the square root of the number of dof, i.e. the quality of
the mesh.

3.3. Circular mesh

The third application concerns the inflation of a circular
cushion, with a diameter or 400 mm, where the mesh, Fig. 3,
includes both triangular and quadrilateral linear elements. The
other material, geometric, etc., characteristics are identical to the
squared cushion’s ones, and also the methods.

Table 3 shows that the number of necessary iterations for
convergence is coherent with those obtained for squared geome-
tries. The mix of elements does not seem to alter the convergence.
The proposal 2 is here more interesting, because even with the
same previously used value of l¼ 0:6, which is not the optimum,
we obtain a very good convergence.

We can also observe the presence of wrinkles in the solution.
Analogously to a classic explicit dynamic scheme, considering
these instabilities does not seem to create a problem. However,
the process does not allow to control the choice of the bifurcated
solution.

3.4. Meshes with 3D elements

We consider now the case of 3D elements. Two different types
of simulations are studied: a squared plate under a transversal
Fig. 3. Inflated circular cushion: displacement isovalues.

Table 3
Inflation of a half of a circular cushion, with a mix of linear triangular and

quadrangular elements.

Mesh Proposal 1 Proposal 2

lopt Iterations Time (s) Iterations Time (s)

Circular 10 2096 1068.3 lopt¼0.4 1322 616.745

17 856 dof l¼0.6 1703 792.6

5

load (pressure), and a partially perforated plate (just called
perforated plate in the rest of the paper for simplicity) under a
load in the plane. The thickness of both plates is 5 mm.

The first case represents the version in 3D elements of the
inflation previously studied, with also, in this case, a certain
rigidity to flexion of the plate. In fact, to obtain similar deforma-
tions, we use now a pressure of 0.08 MPa. While in the first case
the deformation–stress fields are quite homogeneous in the plane
(not in the thickness), and the displacements are important, in the
second case, the presence of the partial hole originates an
important field gradient in the plane, and displacements are
comparatively smaller. Both classic interpolations, linear and
quadratic are used, and also two types of element: hexahedral
and pentahedral. Both proposals give similar results, but just the
proposal 2 is shown here, with l¼ 0:7.

Table 4 shows that in all cases the calculation converges, even
if it is for large deformations in the plane (Fig. 5) or if it is for large
transversal displacements including flexion (Fig. 4). In the case of
quadratic hexahedra, the studied case consists in a complete
interpolation with 27 nodes and 27 integration points. A priori,
this choice permits to avoid the locking in flexion, and despite the
fact of having just one element in the thickness, the behavior in
flexion is a priori correctly approximated. Obviously, this is not
the case for the mesh of linear hexahedra, where it would be
necessary to correctly approach the behavior in flexion, to include
a higher number of elements in thickness (just one used here),
and at least a selective integration to avoid the locking. However,
we present both types of interpolation to show, on the one side,
that the algorithm converges in both cases, and on the other part,
that the calculation times are coherent between them and with
the previously obtained results.

For the case of the 3D inflation, considering the ratio of dof
between the two meshes (linear and quadratic) is 5.46, and the
ratio of integration points is 3.38 (¼27/8), we obtain a global ratio
of around 5.46�3.38¼18.45. If we compare this ratio with the
ratio of calculation times, 24.7, we can observe that, even if they
are not equal, we are in the same order of magnitude.

Concerning the traction tests on the perforated plate, the
elements are pentahedra and the global ratio between dof and
between quadratic and linear pentahedra’s integration points is
Table 4
Tests with 3D elements: meshes and results.

Case Element type Elements Dof Iterations Time (s)

Inflation Linear hexahedra 100 726 914 21.8

Inflation Quadr. hexahedra (27 pt) 100 3969 2687 520.2

Traction Linear pentahedra 2239 7200 1550 177.2

Traction Quadr. pentahedra (6 pt) 2239 31 428 4140 2410

Fig. 4. 1/4 of 3D plate under pressure, result in one step: isovalues of Mises stress

(in MPa).



around 13 (4.37 for the dof and 3 for the integration points), while
the ratio of calculation times is around 13.5. Thus, here also we
observe coherent ratios.
Fig. 5. Perforated plate, result in one step: Mises stress isovalues.

Fig. 6. Number of iterations vs loading step, for the second proposal, and l¼ 0:7.

Fig. 7. Incremental inflation of a cushion, repre

Fig. 8. Incremental inflation of a cushion, repre
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3.5. Incremental calculations

In order to be able to use the method in the case of an
incremental law of behavior, we introduced an incremental
version of the proposals 1 and 2. Actually, the dynamic relaxation
method is used here to find the steady state at the end of each
loading step. The method is thus analogous to a classic iterative
one, with the difference that it does not need the determination of
a tangent evolution; but in return it needs a larger number of
iterations.

The different types of simulation 2D and 3D previously
presented are studied considering 10 loading steps (increments).
As an example, we present results for the proposal 2. We observe
that the method works out for all kind of elements. Fig. 6 presents
the evolution of the number of iterations versus the number of
increment (loading step). We observe coherent numbers with the
one-step calculation. Notice that the number of iterations – quite
constant – is less stable with the quadratic than with the linear
elements.

Figs. 7 and 8 present the different steps of loading constituting
the result of the intermediate pseudo-steady states resulting of
the multi-step loading (to improve the clarity of the figures, not
all the increments are shown).
3.6. Complex law of behavior

The last part of the study is exploratory. It consists in obser-
ving the influence of a complex law of behavior, preferably,
incremental. For that, we consider the inflation of a squared
membrane, meshed with 3D quadratic hexahedral elements. The
geometric dimensions are 250 mm�250 mm�6 mm, the mesh
is constituted of a grid of 10�10�1 and the used l is 3 (bigger
than before, to be sure to overcome nonlinearities). The loading is
quasi-static, so the speed effects are negligible. The material is
considered an elastomer Vitton where the law is modeled by
sentation of 1/8 of the cushion, 2D mesh.

sentation of 1/8 of the cushion, 3D mesh.



Table 5
Inflation of an elastomeric plate: needed iterations per loading step.

Mesh l Inc 1 Inc 2 Inc 3 Inc 4 Inc 5

3969 dof 3 32 020 8470 6540 4730 2830

Inc 6 Inc 7 Inc 8 Inc 9 Inc 10
2910 970 2590 910 690
assembling an additive hyperelastic stress and a stress hysteresis.
For more details of the law, see [20]. Just notice that the
hyperelastic part is based on the model of Hart–Smith:
K¼2700 MPa and the deviatoric part coefficients: C1¼0.067,
C2¼0.402, C3¼3.05. The hysteretical behavior is purely deviato-
ric and incremental and can be seen as an infinite and continuous
assembly of couples: a spring and a frictional element in parallel.
During a shear test, the slope at the origin is t=g¼ 4:59 MPa and
the saturation stress is tmax ¼ 0:27 MPa.

The calculation converges despite the complex behavior. We
observe in Table 5 a number of iterations much higher for the first
increment, and then a big regular decreasing of the number of
iterations, in opposition to the case of linear elasticity. The reason
is that the weak initial stiffness of the material leads to a very big
displacement at the first increment. Then, the material rigidifies
and the displacements per increment decrease importantly. The
observed evolution of the number of necessary iterations in
function of the loading step is therefore logical.
4. Conclusions and discussion

We presented two proposed formulae to extend Barnes–Han–
Lee’s dynamic relaxation method with kinetic damping. Barnes–
Han–Lee’s method was limited to the particular case of linear
triangular elements and elastic behavior. Our proposed formulae
allow for applications beyond the original limitations. This is our
main contribution.

Furthermore, we have numerically demonstrated several other
advantages of our formulae. We showed our proposals are
effective for 2D and 3D elements, with linear and quadratic
interpolation. We showed the formulae are compatible with an
incremental formulation, which minimizes the influence of the
loading path. Our exploratory work showed that the second
proposal works with a complex incremental law of behavior.

We present dynamic relaxation with kinetic damping, using
the incremental formulation, as an useful alternative to the classic
Newton’s method in the cases where instabilities are found.

This work covered structural instabilities. In future work, the
study will continue with material instabilities.
7

Acknowledgments

This work is financed by Région Bretagne, and in collaboration
with the Navimo Society. We thank both of them for their support
and collaboration that made it possible.

References

[1] Dang HK, Meguid MA. Evaluating the performance of an explicit dynamic
relaxation technique in analyzing non-linear geotechnical engineering pro-
blems. Computers and Geotechnics 2009;37:125–31.

[2] Douthe C, Baverel O, Caron JF. Form-finding of a grid shell in composite
materials. Journal of the International Association for Shell and Spatial
Structures: IASS 2006;47(150).

[3] Lewis WJ. Tension Structures, Form and Behavior. T. Telford; 2003.
[4] Thomas J, Wielgosz C. Deflections of highly inflated fabric tubes. Thin-Walled

Structures 2004;42:1049–66.
[5] Han SE, Lee KS. A study of the stabilizing process of unstable structures by

dynamic relaxation method. Computers and Structures 2003;81:1677–88.
[6] Wu TY, Ting EC. Large deflection analysis of 3D membrane structures by a

4-node quadrilateral intrinsic element. Thin-Walled Structures 2008;46:
261–75.

[7] Ramesh G, Krishnamoorthy C. Geometrically non-linear analysis of plates an
shallow shells by dynamic relaxation. Computer Methods in Applied
Mechanics and Engineering 1995;123:15–23.

[8] Russell C. Deployment simulations of inflatable tensegrity structures. Inter-
national Journal of Space Structures 2008;23:63–77.

[9] Wood R. A simple technique for controlling element distortion in dynamic
relaxation form-finding of tension membranes. Computers and Structures
2003;80:2115–20.

[10] Hallquist JO. LS-DYNA theoretical manual. Livermore Software Technology
Corporation; 1998.

[11] Joldes GR, Wittek AKM. Computation of intra-operative brain shift using
dynamic relaxation. Computer Methods in Applied Mechanics and Engineer-
ing 2009;198:3313–20.

[12] Rezaiee-Pajand M, Alamatian J. The dynamic relaxation method using new
formulation for fictitious mass and damping. Structural Engineering and
Mechanics 2010;34(1):109–33.

[13] Barnes MR. Form-finding and analysis of prestressed nets and membranes.
Computers and Structures 1988;20(3):685–95.

[14] Barnes MR. Form finding and analysis of tension structures by dynamic
relaxation. International Journal of Space Structures 1999;14:89–104.

[15] Ali NBH, Rhode-Barbarigos L, Smith IFC. Analysis of clustered tensegrity
structures using a modified dynamic relaxation algorithm. Solids and
Structures 2011(48):637–47.

[16] Underwood P. Dynamic relaxation: a review. In: Belytschko T, Hughes TJR,
editors. Computational methods for transient analysis, vol. 1; 1983.
p. 245–65.

[17] Rio G. Herezhþþ: FEM software for large transformations in solids. Labor-
atoire d’ingénierie des matériaux de Bretagne (UEB-UBS); dépôt APP (Agence
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