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1. Introduction

The study of flow stability is an exciting challenge as fluid flow exhibits a lot of bifurcation phenomena, such as steady or
Hopf bifurcations. The former generally leads to a loss of symmetry in the flow, whereas the latter designates the transition
between a steady to a time-periodic flow. In the present paper, we study the first kind of instability within the framework of
2D incompressible Navier–Stokes equations. More precisely, only numerical methods to detect and study such instabilities
are considered in this work. The objective of this paper is to define accurate and efficient methods to firstly compute bifur-
cation points and secondly follow the bifurcated nonlinear solutions. In fluid mechanics, to our knowledge, few numerical
methods exist to treat this kind of problem. Nevertheless, a lot of results (numerical or experimental) on these topics can
be found in the literature. For example, the stability of the flow in a channel with sudden expansion has been largely inves-
tigated (see, for example, [7–9]). For this example, the influence of the geometric parameters (the expansion ratio) on the
critical Reynolds numbers is studied. These critical Reynolds numbers are numerically determined either by computing
the eigenvalues of the tangent operator [7] or by perturbing a stationary solution and then verifying if this solution returns
to the original solution or not (see [8,10,11]). In this case, the perturbed problem is generally time-dependent and requires
some specific numerical algorithms to limit the computational times (see, for example, [11]). To determine bifurcation
points, one can also compute the eigenvalues of the linearized perturbed problems by using some specific and well-adapted
eigensolvers, such as the Arnoldi method (see, for example, [7]). In this reference, the authors also check the sign of the
determinant of the tangent operator to see if a turning or a bifurcation appears in the flow.
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Once the bifurcation points are determined, the computation of bifurcated nonlinear branches is generally realized with
the help of a predictor–corrector method [7], the most useful being the Newton–Raphson iterative scheme. An alternative of
these incremental-iterative methods is the Asymptotic-Numerical Method (ANM). ANM consists of the association of a per-
turbation technique and a spatial discretization method, generally the finite element method, and has been successfully ap-
plied in nonlinear solid mechanics [1] or in fluid mechanics [2,12]. The advantage of such a method is that it makes it
possible to determine analytical nonlinear solutions with computational CPU times lower than with the classical incremen-
tal-iterative method. On these nonlinear solutions, some bifurcation indicators have been introduced. Two types of bifurca-
tion can then be considered: stationary and Hopf bifurcation [3,13]. The detection of the two kinds of bifurcations is realized
by using the same numerical techniques. Nevertheless, as for the Hopf bifurcation, the computational time to detect accurate
values of critical Reynolds numbers is relatively significant, the bifurcation indicator is in this case coupled with a Newton
method to considerably decrease the computational cost (see [13]).

As for the steady solution, the indicator was first introduced for solid mechanics [4,6,15,16] and then for the Navier–
Stokes equations [3,5,17]. The bifurcation indicator, which is a scalar, results from a perturbation load applied to the steady
equations. Finding the bifurcation points then consists in determining where this indicator becomes null along the nonlinear
solution branches. In Refs. [4,6], in the case of nonlinear thin shell problems, the bifurcation indicator is computed along the
stationary solution using a perturbation method. The indicator is then explicitly known and this enables the easy computa-
tion of its roots and finally the bifurcation points. In fluid mechanics studies, this indicator is computed at each Reynolds
number and the detection of bifurcation points is realized by using a bisection method to find the critical Reynolds number
where the indicator becomes null [3,5]. In this work, as in solid mechanics applications, this indicator is computed via a per-
turbation method. The computation of bifurcation points is then automatically done by considering the zero of this scalar
function. When these bifurcation points are determined, the bifurcated branches are computed by using a numerical method
which is also based on the ANM. The branch switching method was firstly introduced within a solid mechanics framework
(see [4,6]) and is adapted in this study to the specificity of fluid mechanics problems.

Finally, in this paper we propose some numerical tools which help compute the fundamental solutions, the steady bifur-
cation point and the resulting nonlinear bifurcated branches. All these numerical developments are based on the ANM and
lead to the solutions without large computing CPU times. This is mostly due to the fact that, for all the computations, poly-
nomial approximations are replaced by equivalent rational fractions, the Padé approximants [18,19], which help consider-
ably increase the range of validity of asymptotic expansions.

The present paper is organized as follows. In Section 2, the steady Navier–Stokes equations are written in a well-adapted
form for the introduction of the asymptotic expansions. Section 3 is devoted to the stability analysis and notably to the intro-
duction of our steady bifurcation indicator. In the following section, the basis of the ANM are recalled and introduced in the
steady and perturbed problem. In Section 5, we give some details about the numerical algorithm used in this study to com-
pute accurate bifurcation points. Section 6 deals with the computation of the bifurcated nonlinear solutions. Next, in Section
7, the spatial discretization used in this work is presented. The discrete operators required for the computation of the fun-
damental solution, the bifurcation points and the bifurcated branches are also defined in this section. In the following part
(Section 8), all the previous developments are applied to classical numerical examples in fluid mechanics which exhibit stea-
dy bifurcations. These examples (flow in a sudden expansion or flow in a channel) permit us to show the efficiency and the
reliability of all the numerical methods introduced in this study.
2. Governing equations

The steady Navier–Stokes equations for a Newtonian and incompressible fluid are the following:
�mui;jj þ ujui;j þ 1
q p;i ¼ 0 in X

ui;i ¼ 0 in X

u ¼ kud on @uX

8><>: ð1Þ
where u and p are respectively the velocity and the pressure, ud is the imposed velocity on the boundary @uX and k is a con-
trol parameter which can be identified as the Reynolds number of the flow. The previous problem is written under the fol-
lowing operator form:
LðUÞ þ QðU;UÞ ¼ kF in X ð2Þ
where U is a mixed unknown vector (composed of the velocity and the pressure field). The right-hand side, kF, represents the
imposed velocity which is modified in the discretized step into a load vector. For the sake of simplicity, this transformation is
introduced into the previous equation which is written in a continuous frame. The linear operator L(U) represents the Laplacian
and the divergence operator of Eq. (1). The quadratic operator Q(U,U) designates the convective term of the steady
Navier–Stokes equations. Usually, the nonlinear problem (2) is solved by using an incremental iterative method, the most pop-
ular being the Newton–Raphson iteration scheme. Nevertheless, in this study, the Asymptotic Numerical Method, which has
proved its efficiency in solid mechanics problems [1] or in fluid mechanics [2], is preferred.
2



3. Linear stability analysis

Once the nonlinear solution is computed, its stability can be discussed. In this paper on steady bifurcation, which gener-
ally indicates a loss of symmetry in the flow, the stability analysis is studied by introducing a bifurcation indicator. This indi-
cator has already been introduced in fluid mechanics [3,5] and has been initially developed for solid mechanics problem
[4,6].

To make this paper self-contained, we firstly recall how this indicator is introduced. The steady Navier–Stokes solution,
denoted by Uk, is perturbed by a load vector lf where l is the intensity and f is a random vector. The consequence for the
flow is a fluctuation in the velocity, DU which is written:
U ¼ Uk þ DU ð3Þ
By considering the previous relation and the perturbation vector l f, the indicator l and the stationary solution can be com-
puted by the following nonlinear system of equations:
LðUkÞ þ QðUk;UkÞ ¼ kF

LðDUÞ þ QðDU;UkÞ þ QðUk;DUÞ ¼ lf

hDu� Du0;Du0i ¼ 0

8><>: ð4Þ
The first equation of the previous system represents the classical stationary Navier–Stokes equations (i.e. Eq. (2)) and the
second one is the linear stability equation. In the latter, the second order term in DU is neglected. As the number of un-
knowns is greater than the number of equations, a normalization condition is added to get a well posed problem. The sup-
plementary equation is the last one of the system (4). In this third equation, the initial perturbed vector, DU0, is a solution of
the perturbed problem where l is designated as equal to 1:
LtðDU0Þ ¼ f ð5Þ
The scalar l is our bifurcation indicator and determining a stationary bifurcation point consists in finding, for which Rey-
nolds number k, this scalar is null.

The previous system of equations is solved by using the Asymptotic Numerical Method [1,2]. The unknown X = (Uk,k, -
DU,l) is then sought as an integro-power series with respect to a perturbation parameter, ‘a’.

4. Asymptotic Numerical Method

The Asymptotic Numerical Method consists in searching for the unknowns of the nonlinear problem (4) in the form of a
truncated Taylor expansion from a known and regular solution X0 ¼ Uk

0; k0;DU0;l0

� �
:

X ¼
Xi¼P

i¼0

aiXi ð6Þ
where P is the truncated order of the asymptotic expansions. The perturbation parameter ‘a’ is defined as the projection of
the velocity increment (u � u0) on the tangent velocity u1:
a ¼ hu� u0;u1i ð7Þ
where the operator h�, �i indicates the Euclidian scalar product. The expansions are introduced into Eqs. (4) and (7) and by
equating like powers of ‘a’, we obtain a set of linear problems:

Order 1:
Lt Uk
1

� �
¼ k1F

hu1;u1i ¼ 1

LtðDU1Þ ¼ l1f � Q Uk
1;DU0

� �
þ Q DU0;U

k
1

� �n o
hDup;Du0i ¼ 0

8>>>>><>>>>>:
ð8Þ
Order p (with 2 6 p 6 P):
Lt Uk
p

� �
¼ kpF �

Pp�1

r¼1
Q Uk

r ;U
k
ðp�rÞ

� �
uk

p; u
k
1

D E
¼ 0

LtðDUpÞ ¼ lpf �
Pp
r¼1

Q Uk
r ;DUðp�rÞ

� �
þ Q DUðp�rÞ;U

k
r

� �n o
hDup;Du0i ¼ 0

8>>>>>>>>><>>>>>>>>>:
ð9Þ
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where Lt(�) is the tangent operator defined with Lt(�) = L(�) + Q(�,U0) + Q(U0, �). It should be noted that the previous linear prob-
lems (8) and (9) all have the same tangent operator and differ from their right-hand sides (which depend on the previous
computed vectors).

Thus the computation of the unknowns X = (Uk,k,DU,l) needs only one matrix triangulation and 2 ⁄ P backward and for-
ward substitutions, where P is the order of truncature of the polynomial approximations. Firstly, the quantities for the steady
Navier–Stokes equations are computed, which means (Uk

p; kp) and secondly the quantities to study the stability of the non-
linear solutions (DUp,lp). Indeed, as the right-hand side of the linear problem governing the stability of the system depends,
at the order p, on the vector Up, the latter has to be solved after the computation of the steady solution.

These asymptotic expansions are replaced by equivalent rational approximations, called Padé approximants [18–20]:
XPad�e;PðaÞ � X0 ¼
XP�1

k¼1

RðP�1�kÞðaÞ
Q ðP�1ÞðaÞ

akXk ð10Þ
where Rk and Qk are polynomials of degree k. As can be seen, the fractions in (10) all have the same denominator Qk. Rep-
resentation (10) has been initially tested and evaluated in [21,22] and is generally preferred to limit the number of roots of
the Padé’s denominator, which are called the ‘‘poles’’ of Padé approximants. The rational representation (10) has a range of
validity that is greater than the polynomial approximation (6) (generally twice as great) which is why this representation is
chosen. The range of validity of the rational representation is simply determined by the following expression [23]:
d ¼ kUPad�e;Pðamax Pad�eÞ � UPad�e; ðP � 1Þðamax Pad�eÞk
kUPad�e;Pðamax Pad�eÞ � U0k

ð11Þ
The previous expression leads to an evaluation of the maximum value of the path parameter amax Pad�e by requiring that the
difference between two rational solutions (10) at consecutive orders remains smaller at the end of the step than a chosen
parameter, d. Finally, by computing the maximum value of the path parameter amax Pad�e and by introducing it in relation
(10), one can compute a new starting point (U0,k0) for the asymptotic expansions (6). Thus, a supplementary analytic part
of the nonlinear solution can be computed. One quite simply has to define a continuation method which leads to the deter-
mination of the whole solution of the steady Navier–Stokes equation (1).

Finally, ANM needs two user parameters, the first one being the truncature order P and the second one is the small param-
eter d. The latter governs the accuracy of the computed nonlinear solutions. Usually, ANM needs no correction step at the end
of the step. Nevertheless, for some values of the chosen parameter d the accuracy of the solution obtained with ANM cannot
be satisfactory. It means that the computed residual is greater than a given accuracy. In such a case, very efficient and cheap-
er correctors can be used at the end computation (see [24] or [25]) to improve the quality of the ANM solution.

Once all the unknowns are computed at each order, the polynomial expansions are replaced by Padé approximants. In this
study, two Padé approximants are built, the first one for the couple of unknowns (Uk

p; kp) and the second one for the couple
(DUp,lp). Therefore according to formula (11), two values of the validity range of the Padé approximants are computed. The
first one based on the fundamental solution is denoted by ak

max Pad�e and the second one which is computed from the perturbed
vectors is denoted by al

max Pad�e. Finally, the smallest parameter ak
max Pad�e or al

max Pad�e is used to compute the new starting point
(U0,k0,DUO,l0). By choosing the smallest parameter, one ensures that both solutions (steady Navier–Stokes solutions and the
perturbed quantities) evolve in the same way and are always in the range of validity of each asymptotic expansion.

In the previous works [3,5], the bifurcation mode and indicator were not sought in the form of an asymptotic expansion.
The use of a perturbation method to compute the previous unknowns is a major feature compared to the previous works and
should give more accurate values of the bifurcation point.
5. Detection of bifurcation points

When using ANM to compute steady nonlinear solutions, one can distinguish several possibilities to detect bifurcation
points. The first and natural way is to use the bifurcation indicator. Indeed, as this indicator changes its sign when a bifur-
cation is encountered, an easy method is to numerically compute either the zero of the asymptotic expansions of the bifur-
cation indicator or the zero of the Padé approximants. Due to numerical instabilities, these zeros do not necessarily
correspond to bifurcation points. Thus, once these zeros are computed, one must verify whether or not they also correspond
to a steady solution by checking the accuracy, for example.

A second method to determine bifurcation points is to compute the indicator for several values of the path parameter
(between 0 and al

max Pad�e) and if the indicator changes its sign then the instability point should be precisely determined by
using, for example, a bisection method.

The third method comes from previous studies on ANM and more precisely on the analysis of the rational representation
(10). It has been established in Ref. [26] that a bifurcation point corresponds to a root of the denominator, the so-called Padé
poles, of the Padé approximants (10). Nevertheless, as Padé approximants have many poles (real or complex ones), one has to
check if these poles really correspond to bifurcation points. Investigation, for example, must be limited to real poles.

In this study, the bifurcation points are determined by mixing the first and third methods, which means that during the
whole computation (the steady solution and the indicator), the roots of the indicator and the poles of steady solutions are
4



computed. If both coincide then an instability point is found. Both previous conditions can be noted as satisfied by a bifur-
cation point and also by a turning point. In the latter case, one has to verify an additional condition which is:
dk
da

����
a¼ac

¼ 0 ð12Þ
where ac is the value of the path parameter a, which is a root of the indicator and also a pole of the steady solution.
The value of the path parameter, ac, is introduced into the definition of the Padé approximants (10) and permits one to

easily computes the fundamental solution and the bifurcation mode at the singular point, respectively denoted by Uk
c and

DUc and defined by:
Uk
cðPad�eÞ ¼ Uk

0 þ
PP�1

k¼1

Rk
ðP�1�kÞðacÞ
Qk
ðP�1ÞðacÞ

ak
c Uk

k

DUcðPad�eÞ ¼ DU0 þ
PP�1

k¼1

Rl
ðP�1�kÞðacÞ

Ql
ðP�1Þðac Þ

ak
cDUk

8>>><>>>: ð13Þ
where functions (Rk,Qk) and (Rl,Ql) are respectively the functions built from the fundamental or the perturbed solutions.
Finally, the numerical strategy used in this work to automatically compute the bifurcation points can be summarized by

the following:

1. Compute the unknowns X = (Uk,k,DU,l) with the linear systems (8) and (9).
2. Build the Padé approximants with expressions (10), one for the stationary solution (Uk(Padé),k(Padé)) and one for the sta-

bility analysis (DU(Padé),l(Padé)).
3. Determine the poles of the steady solution Uk(Padé), denoted by ap.
4. Compute the roots of the bifurcation indicator l(Padé)), denoted by ar.
5. If ap = ar, then the value ar indicates a singular point.

(a) If dk
da ja¼ar

–0 then ac = ar is a bifurcation point.
(b) Else ac = ar is a turning point, go to 1 for a new step of ANM.

In the following section, the proposed numerical method to compute the steady solutions emanating from the bifurcation
points is presented.

6. Computation of the bifurcated branches

Once the steady bifurcation point is precisely determined by the zero of the indicator l, we propose to compute the
resulting bifurcated branches. In this study, two methods are used to compute these bifurcating branches. The first one, de-
noted by ‘‘Classical ANM’’ in the following, is to simply use the ANM and more precisely by varying the value of the two
parameters (P,d). Indeed these parameters play the roles of perturbation parameters and permit one to follow, according
to their value, one bifurcated branch. By modifying their values, one can expect to follow all the post-bifurcation branches.
The previous method is not very efficient and not automatic, but it is very simple. Moreover, reference curves can be gotten
from it, which are then compared to the solutions obtained with the proposed algorithm.

The second method, denoted by ‘‘Proposed method’’ in the following, consists in determining exactly the bifurcated
branches. It corresponds to the algorithm proposed in Ref. [4] for solid mechanics problems. Nevertheless, as the Navier–
Stokes equations are non symmetric, some modifications have to be made for fluid mechanics problems. Hence, the bifur-
cation point, denoted by Uk

c ; kc;DUc
� �

is supposed to be known. From this singular point, the nonlinear solution is sought in
the form of an asymptotic expansion:
U ¼ Uk
c þ

Pi¼P

i¼1
aiUk

i

k ¼ kc þ
Pi¼P

i¼1
aiki

8>>><>>>: ð14Þ
The previous expressions are introduced in Eqs. (2) and (7) and by equating like powers of ‘a’, we obtain a set of linear prob-
lems. For an order of truncature equal to 1, the corresponding linear system is written:
Lc
t ðU

k
1Þ ¼ k1F

uc
1;u

c
1

� �
¼ 1

(
ð15Þ
where Lc
t ð�Þ represents the operator tangent computed at the bifurcation point Uk

c ; kc
� �

. As this operator is singular, the un-
known Uk

1 is sought as a linear combination of a multiple of the bifurcation mode, g1DUc where g1 is an unknown scalar, and
of a particular solution denoted by k1W, as explained in Ref. [4,27]. Hence, the vector Uk

1 is then defined by:
Uk
1 ¼ k1W þ g1DUc ð16Þ
5



Moreover, as a new unknown is introduced (i.e. W), the following orthogonality condition is added:
hW;DUci ¼ 0 ð17Þ
Expression (16) is introduced in Eq. (15) which becomes:
Lc
t ðWÞ ¼ F ð18Þ
As the latter equation is also singular, we will see in the discrete part of this paper (see Section 7) how the vector W can be
determined. The bifurcation mode satisfies the following relation:
Lc
t ðDUcÞ ¼ 0 ð19Þ
The two scalars, k1 and g1, are determined by projecting the linear problem obtained at the order 2 on the left eigenvector, U,
at the bifurcation point. The latter satisfies the following relation:
tULc
t ðYÞ ¼ 0 8Y 2 R3 and tUDUc ¼ 1 ð20Þ
As for the vector W, the computation of the left eigenvector U requires particular attention (see Section 7). To compute the
two scalars, the linear system to be solved at the order of truncature equal to 2 is written:
Lc
t Uk

2

� �
¼ k2F � Q Uk

1;U
k
1

� �
ð21Þ
By projecting the previous equation in the left eigenmode, /, and by using the relations (18) and (20), one obtains:
/;Q Uk
1;U

k
1

� �D E
¼ 0 ð22Þ
The definition of the vector Uk
1 (Eq. (16)) is introduced into the latter equation and the bifurcation equation is written:
k2
1dþ k1g1c þ g2

1b ¼ 0 ð23Þ
with the following definition of the constants:
b ¼ h/;QðDUc;DUc; Þi
c ¼ h/;QðW;DUcÞ þ QðDUc;WÞi
d ¼ h/;QðW ;WÞi

8><>: ð24Þ
Finally, the parameter k1 is simply determined by solving the quadratic equation (23):
k1;2
1 ¼ g1

�c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � db
p

d
ð25Þ
By introducing the expression of scalar k1 into the second equation of (15), two couples of values (k1,g1)1, 2 can be defined.
Finally, the computation of the two previous couples permits ones to define the two tangents at the bifurcation point.

As, we want to compute all the nonlinear solution branches emanating from bifurcation point Uk
c , all the other terms of

the asymptotic expansions (14) must be determined. Hence, the linear problem satisfied by the unknowns at the order of
truncature equal to p is written:
Lc
t Uk

p

� �
¼ kpF �

Pp�1

r¼1
Q Uk

r ;U
k
ðp�rÞ

� �
uk

p; u
k
1

D E
¼ 0

8>><>>: ð26Þ
As for the first order (Eq. (16)), the unknown, Uk
p, is sought under the following form:
Uk
p ¼ kpW þ gpDUc þ bUp ð27Þ
By introducing the relation (27) into linear problem (26) and by using relations (18) and (19), one obtains:
Lc
t
bUk

p

� �
¼ �

Xp�1

r¼1

Q Uk
r ;U

k
ðp�rÞ

� �
ð28Þ
The computation of bUk
p is realized with a specific procedure as explained in Section 7. The two unknowns (kp,gp) are deter-

mined by projecting problem (26) written at order p + 1 on the left eigenmode U. The second required equation is obtained
by using the path parameter definition (Eq. (7)). Finally, the two scalars (kp,gp) verify the following linear system of
equations:
U; eQ Uk
1;W

� �D E
hU; eQ ðDUc;WÞi

W;Uk
1

D E
DUc;U

k
1

D E
264

375 kp

gp

( )
¼

�g

� bUk
p;U

k
1

D E( )
ð29Þ
6



with the following definitions:
eQ ða; bÞ ¼ Qða; bÞ þ Qðb; aÞ

g ¼ U; eQ Uk
1;
bUk

p

� �D E
þ 1

2

Pp�1

J¼2
U; eQ Uk

J ;U
k
ðPþ1�JÞ

� �D E
8><>: ð30Þ
Finally, the previous equations make the computation of all the unknowns ðkp;gp;U
k
pÞ

1;2 possible. These two values of the
unknowns define two stationary bifurcated branches. By introducing these values into the asymptotic expansions (14) and
by giving a positive or a negative value of the path parameter ‘a’, 4 bifurcated branches can be built from the bifurcation
point ðUk

c ; kcÞ. As for the stationary and linear stability analysis, Padé approximants are built from these asymptotic expan-
sions and permit the range of validity of the polynomial expansions to be increased. In the following section, some precisions
are given on how all these quantities are numerically computed.

7. Discretization step

Spatial discretization of the previous equations are performed by using the classical finite element method. The chosen
finite element is a quadrilateral element, with 9 nodes for the velocity (bi-quadratic interpolation) and 3 for the pressure
(linear interpolation) [28]. The continuity equation is solved by using a penalty method [28]. For the sake of simplicity, dis-
crete and continuous quantities have the same names.

Concerning the stationary solution and the bifurcation indicator, the discrete problem to be solved at each order is
written:
Kt Uk
0

� �
� Uk

p ¼ kpF � FQ k Uk
k

� �
tuk

puk
1 ¼ 0

Kt Uk
0

� �
� DUp ¼ lpf � FQl Uk

p;U
k
k;DUk

� �
tDupDu0 ¼ 0

8>>>>>><>>>>>>:
ð31Þ
where KtðUk
0Þ is the tangent matrix. The right-hand side vectors (r.h.s.) FQ kðUk

kÞ and FQlðUk
p;U

k
k;DUkÞ depend on the previous

known solutions Uk
k and DUk (with 1 < k < p � 1) and also for the second r.h.s. on the fundamental solution at order p, Uk

p.
These r.h.s. correspond to the discretization of the second parts of the set of linear equation (9).

The previous linear systems lead to the computation of the fundamental solution and also to the quantities (l and DU)
required to study the stability of the flow. It should be noted that only a single matrix triangulation is needed to compute the
two asymptotic expansions. The number of linear systems to be solved to determine all the terms of the asymptotic expan-
sions (6) is equal to 2P, P being the order of truncature. These computations are classical and are explained in details, for the
stationary flow, in Ref. [2]. Finally all the discrete unknowns, Uk

p;DUp;lp

� �
, are computed. With these asymptotic expan-

sions, the corresponding Padé approximants are determined. By studying the roots or the poles of these rational functions
(as explained in Section 5) one can determine the singular points in the flow.

The numerical difficulty of the presented work comes from the computations of the quantities W, bUk
p and U at the bifur-

cation point. These vectors are solutions to a linear system whose matrix operator is singular. For example, for vector W, the
discrete system to be solved corresponding to Eq. (18) is:
Kc
t Uk

c

� �
W ¼ F ð32Þ
where Kc
t Uk

c

� �
is the singular tangent matrix computed at bifurcation point Uk

c (Eq. (14)). To compute vector W, the following
augmented system (see [4,6]) is introduced:
Kc
t Uk

c

� �
DUc

tDUc 0

" #
W

k


 �
¼

F

0


 �
ð33Þ
The previous linear system is regular and the unknown W can be computed by doing the triangulation of the matrix. The
computations of the vectors bUk

p at each order p is done with an augmented system which differs only with system (33) from
the r.h.s. Thus only a single matrix triangulation is needed to compute vectors W and bUk

p.
The calculus of the left eigenmode U requires the definition of a different augmented system than the one defined in (33).

Indeed, according to relations (20), this augmented system is written:
tKc
t Uk

c

� �
DUc

tDUc 0

" #
U

k


 �
¼

0
1


 �
ð34Þ
Finally the previous equations forward the computation of the stationary solutions and the bifurcation indicator (Eq. (31)) on
the one hand, and the quantities needed to follow the bifurcating nonlinear solution branches (Eqs. (33) and (34)) on the
other. Thus, two augmented matrix triangulations and P backward and forward substitutions are required to compute the
7
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Fig. 1. Configuration and boundary conditions for the flow in a sudden expansion.

Table 1
Comparison of the critical Reynolds numbers from the literature for the flow in a sudden expansion (Fig. 1). Exp. and Num. stand for, respectively, experimental
and numerical methods. For the latter the following acronyms (DNS), (EC) and (I), respectively mean direct numerical simulation, eigenvalue computation and
indicator of bifurcation.

Method 1st bif. 2nd bif. 3rd bif.

Cadou et al. [3] Num. (I) 214–215 – –
Allery et al. [5] Num. (I) 213.6 – –
Alleborn et al. [7] Num. (EC) 218 542 –
Battaglia et al. [8] Exp. & Num. (DNS) 217 – –
Drikakis [10] Num. (DNS) 216 – –
Battaglia et al. [30] Num. – 215.4 – –
Shapira et al. [31] Num. (EC) 212.2–216 – –
Wahba [32] Num. – 217.5 – –
Cherdron et al. [33] Exp. P185 – –

This study FB1 215.63 – –
FB2 – 537.40 –
FB3 – – 946.47
four bifurcated branches. The CPU time needed for a triangulation of the augmented matrix is nearly the same as the one
required for the computation of the fundamental branch. Indeed, the size of the augmented matrices is (ndof + 1) � (n-
dof + 1), whereas the size of the fundamental solution is ndof � ndof (ndof being the number of degrees of freedom of the
numerical example). In the following section, classical numerical tests in fluid mechanics are studied to assess the efficiency
and the applicability of the proposed numerical methods.
8. Numerical results

8.1. Numerical examples

In this section, three numerical tests exhibiting stationary bifurcation are evaluated with the proposed algorithms. The
first example is the flow in a sudden expansion. The geometric configuration and the boundary conditions are given in
Fig. 1. Here, we only consider the case with an expansion ratio E ¼ D

d equal to 2. Several authors have reported critical Rey-
nolds numbers of the flow for which the stationary bifurcation appears. These reference Reynolds numbers are reported in
Table 1. For this example, the Reynolds number is computed from the following relation: Rec ¼ umaxd

m . umax is the maximum of
the parabolic profile of velocity in the entrance of the channel. d represents the height of the channel entrance and m is the
kinetic viscosity. The second example is the flow in a channel (see Fig. 2) and is the same as the one studied in references
[9,29]. For this example, the aspect ratios, A, defined by A ¼ L

3h, is introduced. Two values of this aspect ratio are studied (A ¼ 7
3

and A ¼ 8
3). The critical Reynolds numbers obtained in references [9,29] are summarized in Table 2 and are defined by

Rec ¼ umaxh
2m where h is the height of the channel entrance. For all the numerical examples, the critical Reynolds numbers re-

ported in Tables 1 and 2 have been recalculated to be consistent with our definitions.
For the three examples, the finite element used is a quadrilateral element, with 9 nodes for the velocity (bi-quadratic

interpolation) and 3 for the pressure (linear interpolation) [28]. The corresponding number of degrees of freedom for each
example is given in Table 3.
8
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Fig. 2. Configuration and boundary conditions for the flow in a channel [9]. The aspect ratio A is defined by A ¼ L
3h.

Table 2
Comparison of the critical Reynolds numbers from the literature for the flow in a channel (Fig. 2). Num. stands for and numerical methods with the following
acronym (DNS) meaning direct numerical simulation.

Method 1st bif. 2nd bif.

A ¼ 7
3

Mizushima [9] Num. (DNS) 47.70 65.24
Patel and Drikakis [29] Num. (DNS) 45–47.4 65–70
This study FB1 48.74 –

FB2 – 65.13
BB11 – 65.11
BB12 – 65.15

A ¼ 8
3

Mizushima [9] Num. (DNS) 41.14 111
This study FB1 41.75 –

FB2 – 105.96
BB11 – 111.21a

BB12 – 111.21a

a A turning point is found for this Reynolds number.

Table 3
Meshes used for the numerical examples.

Name Description Number of dof

Example 1 Flow in a sudden expansion 5542
Example 2 Flow in a channel [9], A ¼ 8

3
22,242

Example 3 Flow in a channel [9], A ¼ 8
3

24,682
8.2. Bifurcation points

The first numerical results we present concern the bifurcation indicator.For the first example (Flow in a sudden expan-
sion, Fig. 1), where the first bifurcation is for a Reynolds number close to 215 (see Table 1), we begin the computations with
a Reynolds number equal to zero. In Fig. 3, the evolution of the bifurcation indicator is plotted versus the Reynolds number.
One can see in this figure that the indicator crosses the horizontal axis for a Reynolds number greater than 200 indicating
then that a steady bifurcation occurs. To determine precisely the critical Reynolds number, the Proposed method, which is
based on the poles of the steady solution and of the roots of the indicator is used. In Table 4, these critical Reynolds numbers
are reported for several values of the ANM parameters (P,d). P is the order of truncature of the polynomial expansions (6) and
d is the parameter governing the resulting accuracy of the ANM solutions.

In this table, the order of truncature changes from 10 to 30, whereas d varies from 10�4 to 10�8. From these computations,
the critical Reynolds number seems to be close to Rec � 215. Indeed, out of the 12 computations reported in Table 4 only 3
calculi give a critical Reynolds number not equal to 215. From these results, it seems to be preferable to use an accuracy
parameter d greater than 10�4 associated with an order of truncature greater than 15. In Ref. [4], the authors also obtain
the same conclusions: choosing an order of truncature greater than 20 and a small value of parameter d. The results reported
in Table 4 show that the Proposed method is reliable because 9 computations give nearly the same critical Reynolds number.

In this table, we also indicate for each calculus the ANM step for which the critical Reynolds number is determined.
Hence, one can estimate the CPU time required for the stability analysis with the Proposed method. The previous CPU time
is determined by adding the CPU times required for the matrices triangulation (one per step) and for the computation of the
solution of the 2 ⁄ P linear systems (Eq. (31)). The CPU time needed for a classical method to study the stability of the flow is
also indicated in Table 4. More precisely, the eigenvalues of the tangent stiffness matrix are computed for two values of the
Reynolds number with ARPACK [34]. By checking if an eigenvalue becomes null between these two values, the critical Rey-
nolds number can then be estimated. For this example and for a Reynolds number equal to 213, the smallest real eigenvalue
9
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Fig. 3. Bifurcation indicator versus the Reynolds number. Flow in a sudden expansion.

Table 4
Critical Reynolds numbers for the flow in a sudden expansion (Fig. 1) versus ANM parameters (P, d).

P d Rec1 ANM step CPU times (s)

Proposed Method 10 10�4 215.63 6 4.0
15 10�4 215.63 5 5.2
20 10�4 219.91 9 13
30 10�4 218.46 8 18.8
10 10�6 216.47 11 7.4
15 10�6 215.63 7 7.3
20 10�6 215.66 5 7.2
30 10�6 215.63 4 9.4
10 10�8 215.31 18 12.2
15 10�8 215.64 9 9.4
20 10�8 215.89 6 8.6
30 10�8 215.63 5 11.7

ARPACK [34] 11 10�4 213–217 – 260
is equal to �0.00012, whereas for Re = 217 the smallest eigenvalue is positive and equal to 7.7810�5. Therefore, a steady
bifurcation happens between these two Reynolds numbers. Thus, in Table 4, we indicate the CPU time (260 s) needed to
compute these eigenvalues for these two Reynolds numbers. This time is relatively great which can be explained by the fact
that the computation of more than 200 eigenvalues is necessary to determine the smallest real part values in the spectrum.
In comparison, the CPU time required with the Proposed method is very small (from 4 s to nearly 20 s). Nevertheless, the
solver ARPACK gives all the eigenvalues (the real and the complex ones) and makes it possible to see if another kind of bifur-
cation, for example Hopf bifurcation, happens. With the proposed algorithm, only steady bifurcation can be detected. For
Hopf bifurcation, numerical methods also based on the ANM are available [3,13,14].

Finally, as suggested in Ref. [4] and shown in previous results, the ANM parameters are fixed and equal to (P = 30,
d = 10�8). Even if with these values, the computational times are not the lowest (see Table 4), the performed numerical tests
show us that they lead to a very reliable algorithm in the detection of a bifurcation point. These parameters have been used
to study the stability of the two other examples (Flow in a channel with A ¼ 7

3 and A ¼ 8
3). For these examples and for the

considered meshes, the first steady bifurcation takes place for a Reynolds number equal to 48.74 and 41.75 respectively
10
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for A ¼ 7
3 and A ¼ 8

3 (see Table 2). These critical values are relatively close to the results of the literature. Once the critical Rey-
nolds numbers are found, we propose to determine and follow the bifurcated branches.
8.3. Computation of the bifurcated branches

The flow in a channel with an expansion ratio A = 7/3 is considered. To compute the steady bifurcated branches after the
bifurcation points, we propose two numerical methods. The first one is the Classical ANM. Actually, according to the values of
the ANM parameters (P and d), the numerical solution can switch to a bifucated branch or stay on the fundamental solution.
In fact, these parameters play the role of numerical perturbation or numerical default and help to automatically follow bifur-
cated branches. The same numerical algorithm has been used in Refs. [3,5] to compute steady bifurcated solutions and is
denoted by ‘‘Classical ANM’’ hereafter. The second method, denoted by ‘‘Proposed method’’, is the one presented in Section
6 and consists in exactly solving the nonlinear problem at the singular point. In Fig. 4, the bifurcated branches computed
with the Classical ANM are plotted for the flow in a channel (A = 7/3). These plots correspond to the velocity Uy of the point
P1 of Fig. 2. In Fig. 4, the following notation has been used. The fundamental solution is denoted by FBl where l indicates the
lth bifurcation. Whereas the bifurcation branches are called BBlm where m is equal to 1 for ‘positive’ velocity and equal to 2
for ‘negative’ velocity. The same notations are used for the other two examples. These nonlinear solutions are obtained in
Fig. 4 with Classical ANM by varying the values of the parameters (P,d). For example, to obtain the solutions FB1, FB2 and
BB11, the order of truncature P is equal to 20 and the parameter d is equal to 10�5. The nonlinear branch BB12 is obtained
with the following couple of values (P = 15, d = 10�7).

These nonlinear branches can also be determined with the proposed method: computations of the ‘exact’ nonlinear solu-
tions emanating from the bifurcation point with the method described in Section 6. Thus in Fig. 5, the solutions obtained
with the two methods are plotted close to the first bifurcation point (Rec1 = 48.74). The nonlinear branches computed with
the Proposed method are denoted by ‘branch 1’ and ‘branch 2’ in this figure. Only bifurcated branches obtained with the Pro-
posed method are plotted in this figure. The two other fundamental branches are not drawn. Moreover, branches 1 and 2 are
determined with only one step of the perturbation method. One can also remark that in Fig. 5, branch 1 and BB11 are not as
close to each other. In fact, as BB11 is obtained with ANM parameters which play the role of numerical perturbation, this
solution is not as accurate near the bifurcation point. A similar behavior is observed in buckling problems when a default
is introduced [16].
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Table 5
Comparison of the performances of the two methods to compute the nonlinear branches of Fig. 4. Flow in a channel [9], case A = 7/3. N1, N2 and N3 are
respectively the number of steps, the number of linear problems solved and the number of augmented matrix triangulated.

Method Branch P d N1 N2 N3 CPU (s)

Classical ANM FB1–FB2–BB11 20 10�5 30 600 –
BB12 15 10�7 20 300 –
Total 50 900 – 360

Proposed method FB1 30 10�8 4 2 � 120 2
FB2 30 10�8 4 2 � 120 2
BB11 30 10�8 5 2 � 150
BB12 30 10�8 6 2 � 180
Total 19 1260 4 354
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Fig. 7. Velocity Uy (Point P1 in Fig. 1) versus the Reynolds number. The different bifurcated branches are obtained with several couples of ANM paramaters,
Classical ANM. Flow in a sudden expansion.
By taking the final point in the branches 1 and 2 (and also in the 3rd branch which is the ‘positive’ fundamental solution)
as an initial point for a new computation with the Proposed method, one can compute another part of the solution and deter-
mine supplementary bifurcation points. These computations have been done for the three previous branches and a second
bifurcation point has been found for a Reynolds number equal to 65.11 (see Table 2). The same critical Reynolds number is
determined for the three computations and correspond well with the results found in the literature. In Fig. 6, the bifurcated
branches obtained at this second bifurcation point are plotted and compared with the solutions obtained with the Classical
ANM procedure. Finally, we compare, in Table 5, the performance of both methods to obtain the nonlinear solutions up to a
Reynolds number equal to 65 for this example.

Both methods require approximatively the same CPU time (about 350s). Nevertheless, the number of steps is greater with
Classical ANM than with the Proposed method, respectively 50 and 19. In fact, close to singular points, a step accumulation is
observed when using the Classical ANM. In previous papers (see Refs. [2,16] for example), this propriety has been used to
detect singular points, it is a ‘visual’ bifurcation indicator. The number of linear systems to be solved is greater with the Pro-
posed method, 1260, while it is 900 for Classical ANM, because each step needs two problems to be solved, one for the sta-
tionary solution and one for the bifurcation indicator. In the end, the CPU time is approximatively the same with both
methods. Nevertheless, Classical ANM requires some couples of parameters that help compute different nonlinear branches.
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Table 6
Values of the ANM parameters to obtain the bifurcated branches of Fig. 7 with Classical ANM. Flow in a sudden
expansion.

Name (Fig. 7) ANM parameters

d P

BB11 5 � 10�6 10
BB12 6 � 10�3 18
BB21 7 � 10�6 10
BB22 8 � 10�4 20
BB31 5 � 10�5 10
BB32 2 � 10�5 14
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Nevertheless, sometimes a great number of calculi are necessary to determine the efficient values of ANM parameters. For
example, for the flow in a sudden expansion (see below) more than 700 calculi have been necessary to compute all the bifur-
cated branches of Fig. 7. Thus in Table 5, we present the ‘‘optimum’’ computational time for the Classical ANM.

One can also note in Table 5 that, for the Proposed method, four extended linear systems have been solved: two for each
bifurcation point. The first one to compute vectors W and bUk

p (respectively Eq. (18) and (28)) and the second one to compute
the left eigenvector, U (Eq. (20)).

We will now consider flow in a sudden expansion. In Fig. 7 we have plotted the nonlinear curves up to a Reynolds number
equal to 1200. These curves are obtained with Classical ANM, but the same solutions are also obtained with the Proposed
method. In Table 6, the values of the ANM parameters (P,d) used to obtained all the branches of Fig. 7 are given. In this case,
more than 700 calculi have been necessary to compute all these nonlinear branches. Indeed 700 couples of values of (P,d) in
the following ranges 10 < P < 40 and 10�1 < d < 10�8 have been automatically tested. These numerous calculations lead to a
huge amount of computational time compared to that of the Proposed method. Indeed with the latter, only 10 calculi are
necessary to get all the nonlinear branches of Fig. 7 with the same couple of ANM parameters (P = 30,d = 10�8). Moreover,
with the Proposed method, three bifurcation points can be accurately determined (see Table 1). The first one, Rec1 � 215
is relatively well-known in the literature (see Table 1). The second bifurcation point Rec2 � 537 has only been reported to
our knowledge in Ref. [7]. The third one, Rec3 � 943 has never been reported in the literature, perhaps because the flow be-
comes time periodic (via a Hopf bifurcation) for a Reynolds number close to 600 [35]. Moreover, as in Ref. [7], the three pre-
14



vious bifurcation points are determined on the fundamental branch. No bifurcation point has been detected on the bifur-
cated branches.

We will now consider the third example, the flow in a channel with an expansion ratio A equal to 8/3. The corresponding
nonlinear response curves versus the Reynolds number are plotted in Fig. 8. These curves are obtained with the Proposed
method. In Table 2, we give the critical Reynolds numbers computed with the bifurcation indicator. For this example, two
bifurcation points are found, Rec1 � 41 and Rec2 � 106. The second bifurcation point has been detected on the fundamental
branch FB2 (emanating from the first bifurcation point). On the two bifurcation branches, BB11 and BB12 (see Fig. 8), a turn-
ing point (satisfying relation (12)) is determined for each branch for a Reynolds number equal to 111. In Ref. [7], the authors
have found that a second stationary bifurcation occurs for a critical Reynolds number close to 111. In fact, they could not
accurately evaluate this second bifurcation point because they could not compute the unstable fundamental branch FB2 with
their numerical method. With the proposed methods presented, stable and unstable branches can be computed. Neverthe-
less, one cannot assert if these branches are stable or unstable.
9. Conclusion

In this paper, several numerical methods to study the stability of fluid problems have been proposed. Firstly, a bifurcation
indicator is introduced to determine the bifurcation points. The presented indicator has the property to be null in the bifur-
cation points. Compared to previous studies in fluid mechanics [3,5], the proposed method is quite different. Indeed, the
bifurcation indicator is sought, as the stationary solution, in the form of an integro power series. The computation of this
indicator is realized in parallel with the computation of the stationary solution. These asymptotic expansions are then re-
placed by equivalent rational fractions. Determining a bifurcation point consists in finding the roots of these rational approx-
imations coupled with the ‘poles’ of the stationary solution. Finally, an automatic method to determine the critical Reynolds
numbers of the flow is defined. As the stability is studied during the computation of the stationary nonlinear solutions, the
additional computational time is low. Indeed no additional matrix triangulations are necessary, only supplementary linear
systems have to be solved. The corresponding linear systems is twice what is needed to compute the fundamental solution
with ANM. As in Ref. [4], the optimium ANM parameters seem to be a great order of truncature (P greater than 20) and a
small accuracy parameter (d lower than 10�6). With these values, the Proposed method is very efficient and the numerical
results correspond well with the results of the literature.

Secondly, as the bifurcation points are determined, a method to compute all the nonlinear bifurcated branches is pro-
posed. ANM is also used but by taking some precautions in its application. Indeed, as the tangent matrix is singular in
the bifurcation point, one has to define the extended system to compute the nonlinear branches. Moreover, the method re-
quires the computation of the left eigenvector at the bifurcation point. Nevertheless, the Proposed method permits one to
determine very accurately the nonlinear bifurcated solutions. Compared to Classical ANM, this method is very reliable
and leads, with few calculi, to the determination of all the bifurcated nonlinear branches. Hence, one can study the stability
on these nonlinear solutions and determine additional bifurcation points.

The proposed methods are only applied in this work to 2D-flows. Nevertheless, the application to the 3D case is not a
difficult task. The only difficulty being the number of unknowns which is considerably increased when 3D flows are studied.
The solution is, for example, to use specific linear solvers as in Ref. [12] or in Ref. [36]. In the latter, a linear solver which is
well adapted to ANM is introduced and makes it possible to reduce the computational times.

The presented methods should help to easily study the influence of some geometric parameters on the stability of the
flow as is done in Refs. [7,8,10,30]. This will be one of our future works. Hence, with the proposed algorithm, the influence
of the geometric aspect ratios on the critical Reynolds numbers can be easily studied. For example, for the flow in a sudden
expansion, the influence of the expansion ratio and the expansion asymmetry (see [7,37]) on the critical Reynolds numbers
can be studied without difficulties. In this example, a small modification of the expansion asymmetric can have a great influ-
ence on the critical Reynolds numbers. For some values of this geometric parameter, the bifurcation vanishes and a limit
point occurs. With the proposed algorithm, a geometric study can be easily done. One can also couple the present study with
the algorithms presented in [13,14] to detect Hopf bifurcations on the stationary bifurcation branches and then determine all
the instabilities in the flow with low computational time.
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