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Abstract

In this paper, we show that any solution of the nonlinear Schrédinger equation iu: + Au +
|u|%u = 0, which blows up in finite time, satisfies a mass concentration phenomena near the
blow-up time. Our proof is essentially based on the Bourgain’s one [3], which has established this
result in the bidimensional spatial case, and on a generalization of Strichartz’s inequality, where
the bidimensional spatial case was proved by Moyua, Vargas and Vega [17]. We also generalize
to higher dimensions the results in Keraani [13] and Merle and Vega [15].

1 Introduction and main results

Let v € R\ {0} and let 0 < a < =. It is well-known that for any ug € L?(R"), there exists a unique

maximal solution

4(a+42)

u e C((*Tmin7Tmax); LQURN)) N Lloéva ((*Tminmiax); La+2(RN))7

of

0
i At Y|u|®u = 0, (t,2) € (—Tmin, Tmax) X RY,
ot (1.1)

u(0) = ug, in RY,
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satisfying the conservation of charge, that is for any ¢ € (—Tiin, Tmax), |u(t)||L2@yy = |luollL2@n)-
The solution wu also satisfies the following Duhamel’s formula

t

Vt € (=Thmin, Tmax), u(t) = T (t)uo + iv/(’f(t = s){[ul®u})(s)ds, (1.2)

0
where we design by (7 (t))¢cr the group of isometries (e?*2);cr generated by iA on L?(RY;C). More-
over u is maximal in the following sense. If o < % then Thax = Tmin = 00, if a = % and if Thayx < 00

then

lull 2o (o o 22 vy =

)

and if &« = % and Tinin < oo then Hu||L2(N+2> 2(N+2) = o0 (see Cazenave and Weissler

N ((=Twin,0);L7 N (RN))
and Tsutsumi [25], also Cazenave [5], Corollary 4.6.5 and Section 4.7). Now, assume that o =

(6]
4
¥
It is well-known that if ||ug||z2 is small enough then Tyax = Tiin = 00, whereas if v > 0 then there
exists some ug € L? (RN ) such that Tax < 00 and Thin < 0o. For example, it is sufficient to choose
ug = A, where ¢ € HY(RY) N L?(|z|?;dx), ¢ # 0, and where A\ > 0 is large enough (Glassey [11],

Vlasov, Petrischev and Talanov [28], Cazenave and Weissler [6]).

In the case v > 0, when blow-up in finite time occurs, a mass concentration phenomena was observed
near the blow-up time (see Theorem 2 in Merle and Tsutsumi [14] and Theorem 6.6.7 in Cazenave [5]),
under the conditions that uy € H*(RY) is spherically symmetric, N > 2 and ~ > 0. Theorem 6.6.7 in

Cazenave [5] asserts that if Tjyax < 0o for a solution u of equation (1.4) below, then for any € € (0, 1),

liminf/ lu(t, z)|?dx > ||Q||> , (1.3)
¢ Tmax J B(0,(Tyax—t)2 ) L2(RN)

where (Q is the ground state, i.e. the unique positive solution of —AQ + Q = |Q|%Q (see Merle
and Tsutsumi [14], Tsutsumi [25]). The proof uses the conservation of energy and the compactness
property of radially symmetric functions lying in H'(R). The spherical symmetry assumption was
relaxed by Nawa [18]; see also Hmidi and Keraani [12]. Later, it was proved that for data in H?, for
some s < 1, (1.3) holds. This was proved by Colliander, Raynor, Sulem and Wright [7] for dimension

2, and extended by Tzirakis [26] to dimension 1 and by Visan and Zhang [27] to general dimension.

In Bourgain [3], a mass concentration phenomena, estimate (1.5) below, is obtained for any ug €

L?(R?), v # 0, but in spatial dimension N = 2. Consider solutions of the following critical nonlinear



Schrodinger equation,

ou 4
i— + Au +yuYu=0,(tz) € (_TminaTmax X RNa
% ul¥u=0, (t,2) ) »
u(0) = ug, in RY,
where v € R\ {0} is a given parameter. Bourgain showed, in the case N = 2 (see Theorem 1
in [3]), that if u € C((—Tinin, Tmax); L2(R?)) is a solution of (1.4) with initial data ug € L*(R?) which
blows-up in finite time Ty, < 00, then
lim sup sup / . lu(t, z)|?dx > ¢, (1.5)
t " Tmax c€RN J B(c,C(Tmax—1)2)
where the constants C' and ¢ depend continuously and only on ||ug| 2 and |y|. The proof is based on

a refinement of Strichartz’s inequality for N = 2, due to Moyua, Vargas and Vega (see Theorem 4.2

and Lemma 4.4 in [17]).

Very recently, Keraani [13] showed for N € {1,2} that there is some &g > 0, such that, under the

same assumptions, if in addition |lug|z2 < v/28y then for any A(¢) > 0 such that A(¢) AZELTN 00,

lu(t, z)|*dx > 53. (1.6)

lim inf sup/ 1
t/ Tmax ceRN J B(c,\(t)(Tmax—t) 2 )

Keraani’s proof uses a linear profile decomposition that was shown in dimension N = 2 by Merle
and Vega [15] and in dimension N = 1 by Carles and Keraani [4] (see Theorem 5.4 below for the
precise statement). The proofs of the decompositions are based on the above mentioned refinement
of Strichartz’s inequality by Moyua, Vargas and Vega and another one for the case N = 1 observed
by Carles and Keraani [1]. In this paper, we generalize the refinement of Strichartz’s inequality (see
Theorem 1.4 below) in order to establish the higher dimensional versions of all these results. Our
proofs (namely, those of Theorem 1.2 and Lemma 3.3) rely on the restriction theorems for paraboloids
proved by Tao [22]. There is another minor technical point, because the Strichartz’s exponent %;4,

is not a natural number when the dimension N > 3, except N = 4. We have to deal with this little

inconvenience which did not appeared in N € {1, 2}.

This paper is organized as follows. At the end of this section, we state the main results (Theorems 1.1
and 1.4) and give some notations which will be used throughout this paper. Section 2 is devoted to
the proof of the refinement of Strichartz’s inequality (Theorems 1.2-1.4). In Section 3, we establish

some preliminary results in order to prove a mass concentration result in Section 4 (Proposition 4.1).



We prove Theorem 1.1 in Section 4. Finally, Section 5 is devoted to the generalization to higher

dimensions of the results by Keraani [13] and Merle and Vega [15].

Throughout this paper, we use the following notation. For 1 < p < oo, p’ denotes the conjugate of
p defined by % + ﬁ = 1; LP(RN) = LP(RY;C) is the usual Lebesgue space. The Laplacian in R
is written A = g: % and %7; = wuy is the time derivative of the complex-valued function u. For
c€ RN and R éz(lo,oo), we denote by B(c, R) = {z € RY; |z —¢| < R} the open ball of RV of
center ¢ and radius R. We design by C the set of halfclosed cubes in RY. So 7 € C if and only
if there exist (a1,...,ay) € RY and R > 0 such that 7 = lj—vl[ajﬂj + R). The length of a side of
7 € C is written £(7) = R. Given A C RY, we denote by |A| ijtzleebesgue measure. Let j,k € N with
j < k. Then we denote [j, k] = [j, k] " N. We denote by F the Fourier transform in RY defined by !

u(§) = Fu(§) = / e 28y (z)dx, and by F~! its inverse given by F~lu(z) = / e2mETy (€)dE.
RN

RN
C' are auxiliary positive constants and C(ay,as,...,a,) indicates that the constant C' depends only
on positive parameters ai, as, ..., a, and that the dependence is continuous.
Finally, we recall the Strichartz’s estimates (Stein-Tomas Theorem) (see Stein [20], Strichartz [21]

and Tomas [241]). Let I C R be an interval, let to € I and let v € C. Set for any t € I, ®,(t) =

i’y/ (T(t— 8){\u|%u})(s)ds Then we have

to
ITC ol 2o o < Colluollzaes), (L7)
o Nid
(I)u < N ’ 1.
| ||L2<NN+2> (IXRYN) 1Hu||L2(1\]7v+2) IxRN) (1.8)

where Cy = Co(N) > 0 and C; = C1(N,|y]) > 0. For more details, see Ginibre and Velo [10]
(Lemma 3.1) and Cazenave and Weissler [6] (Lemma 3.1), also Cazenave [5] (Theorem 2.3.3). The

main results of this paper are the following.

Theorem 1.1. Let v € R\ {0}, let ug € L2(RN)\ {0} and let

2(N+2) 2(N+2)
N

u € C((=Trmins Trmax); L2 (RM) N Ly ™ (= Timins Tinax); L

loc

(RY))
be the mazximal solution of (1.4) such that u(0) = ug. There exists € = £(||uo| 2, N, |7¥]) > 0 satisfying

the following property. If Tiax < 0o then

lim sup sup / . lu(t, z)|?dx > ¢,
t,/ Tmax c€ERN J B(c,(Tmax—t)2)

Lwith this definition of the Fourier transform, || Ful|| 2 = || F tul 2 = |Jullp2, F1F = FF~L =1d 2, Flu*v) =
FuFv and F~Hu*xv) = F~luF 1o



and if Tinin < 00 then

limsup sup / ) lu(t, z)|>dx > e.

t\(—Tmin c€ERN J B(¢,(Tmin+t)2)
By keeping track of the constants through the proofs, it can be shown that e = C(V, |v])|luo||; 2" for
some m > 0 (this was pointed out by Colliander). Notice that no hypothesis on the attractivity on
the nonlinearity (that is on the 7’s sign), on the spatial dimension N and on the smoothness on the

initial data uq are made.

. N ) )
For each j € Z, we break up RY into dyadic cubes 77 = T[] [km277, (km + 1)277), where k =
m=1

(k1,...,kyn) € ZN with £(1]) = 277, Define f](z) = X (). Let 1 < p < ocand let 1< g < oo. We
define the spaces

Xpq = {f € LL.RY); [fllx,., < oo},

where )

q

N 2-p i
1fllx,, = ZQJZ O Z ||fi||qu(RN)
JEZ keZN
Then (X, ., | - || x is a Banach space and the set of functions f € L>(RY) with compact support
p,q P,q

is dense in X, ; for the norm || . ||x, -

We prove the following improvement of Strichartz’s (Stein—Tomas’s) inequality.

Theorem 1.2. Let g = % and 1 < p < 2 be such that i > NE3L [or every function g such

1
N+1gq-

that g € Xp 4 or g € Xp g, we have
I7C.)gll a1y < Cmin {|gllx, . 9], } - (1.9)
where C' = C(N,p).

Theorem 1.3. Let g > 2 and let 1 < p < 2. Then there exists p € (O, %) such that for every function
f € L3(RY), we have

1fllx,., <C

n
i N (o _
sup 2740 ,f<w>|pdx] 1A, < Cllflanys (110)
(j,k)EZXTZN )

where C = C(p,q) and p = u(p,q). In particular, L*(RN) < X, ,. Moreover, L>(RN) # X, ..

As a corollary we obtain the following improvement of Strichartz’s (Stein—-Tomas’s) inequality.



Theorem 1.4. Let ¢ = w and let p < 2 be such that z% N—f)’l Then, there exists p € (0, %)

such that for every function g € L*(RY), we have

17C)gllLa@y+y < C
(G, k)EZXZN

m
sup  27¥ D) / 7€) |Pdf] o8, < Cllglliy, (11D
where C = C(N,p) and = u(N,p).

Remark 1.5 (See Bourgain [3], p.262-263). By Holder’s inequality, if 1 < p < 2 then for any
(J: k) € Z x ZN,

1/p
i N (9 ~
[w@ o[ |g<§>|pda] lzh / (¢ |ds] 18120y < oy 1305y
Tk

for some 0 < 6 < 1. Therefore, it follows from our Strichartz’s refinement, Theorem 1.4, that the
following holds.

VM > 0, 3n > 0 such that if ||up|/r2 < M and ”“0”3300 < n then Tyax = Tiin = 00,

2(1\7+2) 2(N+2)

where w is the corresponding solution of (1.4). Furthermore, u € L (RY)) and there

(R; L
exists a scattering state in L2(RY). The same result holds if the condition ||u|| By _ < is replaced
by

sup 2300 [ fug(a)Pda <,
(G,k)EZXLN i

for a suitable 7'

Very recently, Rogers and Vargas [19] have proved, for the non—elliptic cubic Schrédinger equation
i0pu+ 02 u— 02 u+ y|u[*u = 0 in dimension 2, some results analogous to Theorems 1.1, 1.2, 1.3 and

1.4.

2 Strichartz’s refinement

]2

We recall that T (t)g = K, * g, where K,(z) = (47it)~ > e'"3 and that f(\t(ﬁ) = ¢~ "WmlE1*t Using that

for any g € L2(RN), T(t)g = F~1(},j) we have,

(T(t)g)(x) = / e2im(w6=2mle”) 5 ¢) de. (2.1)

RN



Let S = {(1,€) e Rx RY; 7 = —2r|¢|?}, let do(|¢]?,€) = d€ and let f be defined on S by f(7,£) =
—27[¢?,€) = §(&). Then,

(T(t)g)(x) = /f(—27r\§|27f)e2i”($~€—2ﬂt\€|2)d5

(2.2)
- // f(7, e =0 do (r,€) = FH (fdo) (¢, @),
s
Our main tool will be the following bilinear restriction estimate proved by Tao [22]. We adapt the

statements to our notation using the equivalence (2.2).

Theorem 2.1 (Theorem 1.1 in [22]). Let Q, Q' be cubes of sidelength 1 in RN such that

min{d(z,y); 1€ Q, ye Q'} ~ 1

N+3

and let f7 g functions respectively supported in Q and Q'. Then for any r > )

and p = 2, we have

ITC)FT()gllLr@neny < Cl Fllo@ 18] o @
with a constant C independent of f, g, Q and Q.

By interpolation with the trivial estimate

ITCHFTC)9l Lo @n+ry < Cllf L@ lglizi@y < Cllflle@llgllLe @y
for any p > 1, one obtains the following result.

Theorem 2.2 ([22]). Let Q, Q' be cubes of sidelength 1 in RN such that

min{d(z,y); 1€ Q, y € Q'} ~ 1

and f, g functions respectively supported in Q and Q'. Then for any r > %i? and for all p such that

f>N+31

N1l we have

ITCHFTC)gllLr@y+ay < Cllf [l ze@a 191 Lo vy,
with a constant C independent of f, g, Q and Q'.

By rescaling and taking r = %, we obtain the following.

Corollary 2.3. Let 7, 7/ be cubes of sidelength 277 such that

min{d(z,y); €7, ye '} ~277



and f, g functions respectively supported in T and 7'. Then for r = % and for any p such that

2 o N431
7 > N1 W have

iN2=P ~
NTCHFTC)gllor@yery < C2N I £l e @™y 191 Lo vy »
with a constant C independent of f, g, T and 7'.

We will need to use the orthogonality of functions with disjoint support. More precisely, the

following lemma, a proof of which can be found, for instance, in Tao, Vargas, Vega [23], Lemma 6.1.

Lemma 2.4. Let (Ry)rez be a collection of rectangles in frequency space and ¢ > 0, such that the
dilates (1 + c)Ry are almost disjoint (i.e. Y, X(1+c)r, < C), and suppose that (fi)rez is a collection

of functions whose Fourier transforms are supported on Ry. Then for all 1 < p < oo, we have

I~ fellps@y) < O, 0) (Z ||fk||§1(RN)> ,

kEZ keZ

where p* = min(p, p’).

Proof of Theorem 1.2. We set r = § = % We first consider the case where g € X, ;. We can
assume that the support of g is contained in the unit square. The general result follows by scaling
and density. For each j € Z, we decompose R into dyadic cubes le of sidelength 277. Given a dyadic
cube T,z we will say that it is the “parent” of the 2%V dyadic cubes of sidelength 277~! contained in
it. We write le ~ TIZ, if T,Z, T,Z, are not adjacent but have adjacent parents. For each j > 0, write
g= Zgi where @\i(ﬁ) = §XT,JC- (€). Denote by I' the diagonal of RN x RN, I' = {(z,z); v € RN}. We
have the following decomposition (of Whitney type) of RN x RV \ T (see Figure 1),

RY x RM\T = J U X Tl

. J
J kK TkNTk,

Thus,

T(t)g(x) T(t)g(x)://eQiTr(a:.f—27rt|§|2)/g\(£) 217r(xn 27rt\77\) ( )dfdn

RN RN
=22 ) / / i =2mtlel () o2 =210 g ) g
J ks T]NTJ T ><7—
k

:ZZ S T Tl

k 1o J
k TR ™~Th



T

-2 |

vy

-6 -4 -2 o 2 4 &

Figure 1: RY x RV
(see also Tao, Vargas and Vega [23]). Thus,

ITC)glFer@nsy = 1T T (gllr@reny = 1> D TCIGT () ghollrgnoy-
ik

7 ~rd

R TR
For each k = (ki,ka,...,kn), the support of the (N + 1)-dimensional Fourier transform of 7. )gi
is contained in the set 7} = {(—27[¢|?,€); € € 1{}. Hence the support of the Fourier transform of
T(.)ghT( . )gl, is contained in 7 + 7, = {(=2m(|¢[> + |['[*),§ + &); € € 7, € € 71} Using the
identity [¢]?+ [¢'|* = €+ E'[* + 1[€ — &'|* we see that 7] +7], is contained in the set H; ; = {(a,b) €
RV xR: |a—279H1k| < C279, 272 < —[a|? — £ <3N27%}. Note that,

2.0 2 . <O

N T AN
Hence, the functions 7( . )g)7( . )gl, are almost orthogonal in L2(RN*1). A similar orthogonality
condition was the key in the proof of the L* boundedness of the Bochner-Riesz multipliers given
by Cérdoba [3], see also Tao, Vargas and Vega [23], and implicitly appears in Bourgain [2], Moyua,
Vargas and Vega [16, 17]. But we need something more, since we are not working in L? and we want
to apply Lemma 2.4. For M = 2[ln(N +1)], we decompose each TJ’»“ into dyadic subcubes of sidelength
277=M _Consequently, we have a corresponding decomposition of T,g X Tg, and of RY x R¥, as follows :

set D the family of multi-indices (m,m’, ) € ZN x ZN x Z, so that, there exists some T,f_M and ,gl_M



M {—M

with 7/, C Tl ) Ty C Ty and Te M T,fTM (j =¢—M). Then,

RY x RM\T = UT x Tt
Hence,

I7C. )g||2L2r(RN+1) =[7(.)gT(. )QHLT(RNH) = ZT( : )gfnT( : )gfn'HLr(RNH)-
D

Notice that if (m,m/,¢) € D, then the distance between 7/, and 7£, is bigger than 2=¢*M > N2-¢

and smaller than VN2 M We claim that there are rectangles Ry, ¢, and ¢ = ¢(N), so that

=0

X Fh, C Ry g and Y X(14¢)R < C(N). We postpone the proof of this claim to the end of

m,m/’ £

the proof. Assuming that it holds, and by Lemma 2.4, since r < 2, we have

I ZT )9 e @y < C(N) [Z ITC) g TC g vy
D

Now use Corollary 2.3 to estimate

1

DT 9T ()G ET(RN+1)‘|
D

C(N,p) ZZ Z 2£NT7||gfn”LP(RN)Hgm 2 &)

m m/;(m,m’ £)ED

Now, for each (m, ) there are at most 4V2M¥ indices m’ such that (m,m’,¢) € D. Hence,

e

ZZ > G 19 Ty | S

m m’;(m,m’ l)eD

Z Z 2N |Gk I ey

We still have to justify the claim. Assume, for the sake of simplicity that

mtoxrt, c {(x1,20,...,x5) € RY; Vi € [1,N], z; > 0}.

Then 7, x 7%, is contained on a set Hy,my = {(a,b) € RN xR; a = (m+m )27 + v, v =
(v1,v2, - ,oN), 0 < v < 27601 272F2M g2 — b < 3N2-2+2MY  Consider the paraboloid
defined by —|a|? — £ = 272F2M_ Take II,, ;¢ to be the tangent hyperplane to this paraboloid at
the point of coordinates (ag,bp), with ag = (m 4+ m’)27¢, by = —nlag|? — 272T2M (and passing
through that point). Consider also the point (ay,b;) with a; = ag + (271,271 ... 271y and

by = —7la1|? — 3N272¢F2M Then, the rectangle Ry, ., ¢ is defined as the only rectangle having a

10



2
iy \\\ yz_nx
\\\\\\
o ™ ™y ,

Figure 2: Hy i ¢ C Ryt

face contained in that hyperplane and the points (ag, by), and (a1, b1) as opposite vertices. Due to the
convexity of paraboloids, it follows that Hy, p ¢ C Ryme ¢ (see Figure 2). Moreover, one can also see
that, for small ¢ = ¢(N), (1+ ¢)Rmm ¢ C {(a,b); a = (m+m)27" + v, v = (v1,02,...,0n), |vi] <

C(N)2=4F1, C/(N)27242M  —[q|> — & < C7(N)2726F2M} | Therefore, we have > p X(140)R,, .., , <

¥
C(N). Hence (1.9) in the case § € X, ,. Now, assume g € X,,. By density, it is sufficient to
prove (1.9) for g € L2(RY). By a straightforward calculation and the above result, we obtain that

1Tl La@n+ry = 1TC) (F7'9) lna@n+1y < C(N,p)lgll x,,,- Hence (1.9). 0
Proof of Theorem 1.3. Notice first, that the second inequality follows from Holder’s. By homo-

geneity, we can assume that || f|| ,2(gvy = 1. Then, it suffices to show that for any function f € L2(RN)

such that || f|| 2@~y =1,

e

Sy E (/W) < C(p,q) [sup 275 7" (/ |f|”> :
ik Th 3.k Th

where o = pupq and where p has to be determined. Take « and £ such that % <f <1, 8>%and

B

a+ qB = q. Then,

B2 »
ZZQJ‘%Z%% (/_|f|p> < ZZng%qu (/_f|p> sup 2i 35 </_|f|p>
k T k i ok I

J J

(e

LIS

We set p= 2 =18 ¢ 0,1 ). Hence, it is enough to show
K P

rq p
i
Sy PE ( / | |f”> < C(p,q).
k T

J

11



We split the sum,

ﬂg
Yoy (/ |f|”> ,,
ik Tk

E
<oy (| ik
ZZ < Tn{If|>2%/2}
+C 9i % 558 Ba / 77| Lo+ B),
;Xk: mn{If1<29N/2}

where C' = C(p, q). We study the first term. Set for each j € Z, f7

B
A=Y (2”5‘2—” /) fj|p>
ik .

Since Bq > 2, we also have ﬁ% > 1. Then,

a
P

= fX{lf‘>2jN/2}. Then,

q

P

B4 By

A< ZZQJ 5 (2— p)/j |F7P — Zgj%(%p)/ﬂwqu
Tk: J

< p 975 (2-p)
N>

{55 | f1>29N7/2}
Since 2 —p > 0, we can sum the series and obtain

q q

By By
A<c< / |fp|f(2-p>) <c( / |f2> <c
RN RN

by our assumption that || f||z2 = 1. We now estimate B. Set for any j € Z, f;

T
N2 p
poyy e ([ )
Ti
We use Holder’s inequality with exponents 5 4 and ﬂ q . We obtain,
B < 222]77&1/ |/ |6q |Tj|ﬁq p)
ik
N 2— p ﬂq p B
_ZZQJ Bq/ s, |5q g—iNEL2 )
_ ZZQJ’NUfB%)/; ‘fj|ﬁq:ZQjN(1fﬁ%)/ 15,1
ik Ti 3 RN
< Ba 9iN(1-83)
Lo ¥

{5 1f1<29N/2}

= fX{|f‘<2jN/2}. Then,

12



Since 1 — 34 < 0, we sum the series to obtain

B< c/ F1Pal 20 < c/ R <c,
RN RN

since ||f||zz = 1.

We give an example to show that L*(RY) # X, ;. Let

1
T)= ——
J) |z|%|1n|x||§x(0a%)N
Then for any 1 < p <2 and any ¢ > 2, f € X,,, but f ¢ L*(RY). O

3 Preliminary results

In this and next section, we follow Bourgain’s arguments ([3]). We have to modify them in the proof

of Lemma 3.3, because the Strichartz’s exponent is not, in general, a natural number.

Lemma 3.1. Let f € L2(RY)\ {0}. Then for any ¢ > 0, such that ||T(')fHL2(NN+2) (B > ¢, there
X
exist No € N with No < C(||flr2, N,e), (An)1<n<n, C (0,00) and (fr)1<n<n, C L*(RY) satisfying

the following properties.

1. Vn € [1,No], supp fn C T, where 7, € C with 0y,) < C||szz(]RN)E_”An7 and where the

constants C, ¢ and v are positive and depend only on N.

— _N
2. ¥n € [1,No], |fnl < An?.

<e€
(RXRN)

No
3. ”T( . )f - ZT( . )fn||L2(1\JTV+2)
n=1

2 X 2 = 2
4. ”f”LZ(RN) = nzl ”anLZ(]RN) + ”.f - 721 f"HL2(RN)'
The proof relies on the following lemma.

Lemma 3.2. Let g € L*(RY) and let ¢ > 0 be such that || T (. )gHL2(N+2) ® > e. Then there exist
N

xRN)

h € L2(RN) and A > 0 satisfying the following properties.

1. supph C 7, where 7 € C with 1) < C’||g||CL2(R1V)8"’A7 and where the constants C, ¢ and v

depend only on N.

N
2

2. |h| < A% and Hh||2L2(RN) > C’||g||£§(RN)Eb, where the constants C, a and b depend only on N.

13



”g h”L?(RN H9HL2(RN ”hH[ﬂ(RN

Proof. We distinguish 3 cases.

Case 1. supp g C [~1,1]". Then the function h will also satisfy suppﬁ crcl[-1,1¥

Let € > 0 and let g be as in Lemma 3.2 such that supp g C [—1, 1]". It follows from Theorem 1.4 that

m
e<||T(. )g||Lz(zgv+z> Hg||1Lzé‘H€N L‘ksup 975 (2-p) / §(£)|Pd§] .
J T

(R RN) K)ELXIN

So there exist j € Z and 7 € C, with 7 C [~1,1]" and ¢(7) = 277, such that

[1a©rde > gl ot i¥ e, (3.1)

1
Let M = ((CHgH‘LL(fERN) ! )}%27]‘%(27;))71) "% where C is the constant in (3.1). Then by Plancherel’s

Theorem,

gords=ar [ g < v [ geae = a2l (3:2)
m{lgl=M} m{lgl=M}

It follows from (3.1)—(3.2) that

§(6)Pde = / §(6)Pde — / §(6)Pde
Tn{|gl<M} T T{|g|=>M}

1 _iN(o_ _
> (Cllgll vy ) 72797 7P — MP=2|g|[3.
-

. LT HP
> Csﬁ 9—i% (2-p) ||9||L2(§N)-

By Holder’s inequality and the above estimate, we get

(NS}

1—pp - N 2-p
ety < [ gores<| [ gorae| 1
~{lgl<M} n{lgl<M}
Since |7| = 277V we then obtain,

20—11p)
1G(E)Pde = Cllg] 2, e, (3.3)
n{lgl<M}
Let h € LZ(RN) be such that h = IXrn{lgl<m} and let A = M~~. Then suppﬁ c7cC[-1,1]N with

2u(2—p)+2 ~ ~
Ur) = =Cl|g ||L12V’£$v)p) e~ ™a-» A. So we have 1, and 2 follows from (3.3). Since h and g — h

14



have disjoint supports, 3 follows.

Case 2. supp g C [-M, M]" for some M > 0. Then h will also satisfy supph C 7 C [-M, MV,

Let ¢ > 0 and let g be as in the Lemma 3.2 such that suppg C [-M, M]" for some M > 0. Let
g € L*(R™) be such that §'(¢) = M%’g\(Mﬁ) Then supp g’ C [~1,1]"V and so we may apply the
Case 1 to g’. Thus there exist b’ € L2(RY), 7/ € C and A’ > 0 satisfying 1-3. We define h € L*(RY)
by h(¢) = M~ %R (ﬁ) - Then ||gllr2ey) = [|¢'lL2@®~) and [|BllL2@y) = [|B'[|L2~). In particular,
second part of 2 holds for g and h. Setting 7 = M7, it follows that suppfz c 1 C[-M,M"N and
(r) = ML(7') < Clgl

qLQ(RN)E”MA’. So h satisfies 1 with A = MA’. Finally, [h| < M~ 2 A'~% =

A~%, which implies 2. Finally, 3 follows from the similar identity for g’ and A'.

Case 3. General case.

Let ¢ > 0 and let g be as in the Lemma 3.2. For M > 0, we define uy; € L?(RY) by uy; = GX[—M,M]N -
It follows from Strichartz’s estimate (1.7) and Plancherel’s Theorem that

— ~ M
‘Lz(l\jv+2) (RXEN) < CH’LLM — g||L2(RN) = CHUM — gHLQ(RN) 27000,

I7C.)(unr = 9)|

Then there exists My > 0 such that

g
. > —.
HT( )uMOHL?(]\]’VJr?) (RxRN) = 2

Setting go = ua,, we apply the Case 2 to go, obtaining h. Since ||gol|2r~) < ||lg]|L2®~), Properties 1
and 2 are clear for g and h. Also, Property 3 holds for g and h, again because the disjointness of

supports. This achieves the proof of the lemma. O

Proof of Lemma 3.1. Let f € L?(RY)\ {0} and let £ > 0 be such that

ITCIFN 2gem ey 2 €
We apply Lemma 3.2 to f. Let h € L2(RY), 7€C, A>0,a=a(N)>0,b=5b(N)>0,c=c(N) >0
and v = v(N) > 0 be given by Lemma 3.2. We set f; = h, m = 7 and 4; = A. By Lemma 3.2, we
have
U(r1) < Cllfll 267" A, (34)
If = Al = 1F17: = 1ANT2, I = fullgs = 1FZ8 and il = CllflIse” (3.5)

Now, we may assume that

)

I17C)f=TC(. )f1||L2<N+2>

>
N (RxRN) ~

15



otherwise we set Ny = 1 and the proof is finished. So we may apply Lemma 3.2 to g = f — f1. Let
h € L2(RN), let 7 € C and let A > 0 be given by Lemma 3.2. We set fo = h, 75 = 7 and Ay = A. By

Lemma 3.2 and (3.5), we have

U(ra) < C|f = fillgze7" As < C[|f[[7267" As, (3.6)
If = o+ flZ2 = If = fullze = 1f20Z2 = 1£172 = (1f2l1Z2 + [ f2llZ2), (3.7)
If2lZ2 = CIf = fillz2e® > Cllfllzze" (3-8)

We repeat the process as long as

k—1
. - . j 2 )
T = TN, 2505 ) >
k—1
applying Lemma 3.2 to g = f — Z fj- Then, by (3.4)—(3.8), we obtain functions fi, ..., f, satisfying
j=1
Properties 1 and 2 of Lemma 3.1 and
k k
1f =D fillze = 1172 = D1 £illZe, (3.9)
Jj=1 j=1
IfellZ= > CllflIZEe, (3.10)

for any k € [1,n], for some n > 2. From Strichartz’s estimate (1.7) and (3.9)—(3.10), we obtain

N (RxRN)

I7CHf - ZT( : )fjHiz(NM)
j=1

<OIf =Y fillze < CUIFIZe = Cnll fllie") = —c.

j=1

So the process stops for some n < C(||f||z2, N, €). We set Ng = n and the proof is achieved. O

Lemma 3.3. Let g € L2(RN), let 7 € C, let A > 0 and let Cy > 0 be such that suppg C T,
(1) < CoA and [g| < A%, Let &o be the center of T. Then for any ¢ > 0, there exist Ny € N with

N; < C(N, C(),E) and (Qn)lgngNl CRx RN with

Qn=1{(t2) eRxRN; t e, and (v — 4nt&) € Cp, }, (3.11)
1 1
where I, C R is an interval with |I,| = ye and C,, € C with £(C,) = 1 such that

( / |(T(t))g(x)|wdtdz>m<s.

Ny
RNFI\ U Qn
n=1

16



Notice that the functions f,, obtained in Lemma 3.1 satisfy the hypothesis of Lemma 3.3.

Proof of Lemma 3.3. We define ¢ € L2(RY) by ¢/(¢/) = A% §(& + AE'). Then lg'llz = llgllrz,

19| <1 and supp g’ C [-% @]N. It follows from (2.1) applied to ¢’ that

27 2
\(T(A%)g')(A(x . 47Tt§0))| _ ‘ / 62iﬂ(A(z—4Trt§o).5—27rA2t|§|2)§l(§)d§
(-5.9)"
:A% / eZi'}r(A(1747Tt§0).§727r142t\£\2)fg\(é»O+A§)d£
(-%.)"
= 477 |(T()g)(@)],

where the last identity follows from the change of variables ¢ = &y + AE. Setting

v =4%, (3.12)
' = A(x — 4ntéy), '

we then have
() @) (313
By (2.1),
(T =] [ Foe@neci) (3.14)
(% %)"

By (2.2) (with ¢’ in the place of g) and Corollary 1.2 of Tao [22], we obtain

I\J‘OO

17( )9 lLa@xrry < C(N, Qg | Lrmrvy = C(N, Q)HQ’HLP((,%’%)N)v (3.15)

for any q > i%vjf')) and any p > 1 such that ¢ = %p’. Let p’ = p/(N) € (1,2) be such that
2(N+3) N+2, 2(N+2)
(N+1) N P N

N +2 2(N + 2
Thus ¢ = ¢(N) = ; ' ( N+ ) and it follows from (3.15) that and Holder’s inequality that
1
~ Co Co\ V|7 ~
/
ITC )8 aegeny < OO gy < OO (= 2 L) | ey,

so that
17(.)g | Larxryy < C(Co, N).
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This estimate implies that for any A > 0,

T(t)g ()| % dt'da’
(T 1<A}
= / 1T (1" ()| R =D+ da’ < O(Co, N)N T4,
(T 1<A}

So there exists A\g = A\o(V, Co, €) € (0,1) small enough such that

2(N+ ) 2(N+2)

dt'dz’ , (3.16)

E

T (t)g' ()]
(7 )g'1<220)

Since supp ¢’ C [—%, %] N and 19’ |z < 1, it follows from formula (2.1) that for any (¢/,2") € RxRY

and any (t”,2") € R x RV,
IT(#)g'(2") = T(t")g'(z")] < C(|t' = t"| + 2" — 2"]),

where C' = C(Cp, N) > 1. So for such a constant, if (t',2') € {|T(.)d'| = 2X\o} and if (¢",2") €

R x R is such that [t/ — | < 2% < & and |2/ — 2”| < 3% < 5 then [T(#")g(z")| > Xo, that is
(", 2") € {|T(.)d'| = Mo}. So there exist a set R and a family (P,),cr = (J;, K;)rer C R x RV,
where J, C R is a closed interval of center ¢ € R with |J,.| = @ and K, € C of center 2’ € RY with

UK,) =22 and (¢',2') € {|T(.)g| = 2\o}, such that

V(r,s) € R x R with r # s, Int(P,) N Int(Ps) = 0, (3.17)
{7T()d'| =20} c |J P c{IT()g'| = Ao}, (3.18)
TER

where Int(P,) denotes the interior of the set P.. We set N1 = #R. It follows from (3.17)—(3.18) and

Strichartz’s estimate (1.7) that,

)\0 N+1
M(E) = Un] <001 )
reR
_ 2(N42) , 2(N+2) _ 2(N+42) 2(N+2)
IO <o T gl
LT N (RxRN)

from which we deduce that N7 < oo and Ny < C(||g||zz2, N, Co,¢). Actually, since our hypothesis
implies that ||g||re < C'(])V/z7 we can write also Ny < C(N,Cy,¢). For any n € [1,N1], let (¢, )
be the center of P,, let I,, C R be the interval of center % with |I,| = %, let I, = A%I,, let

C,, € C of center %xn with ¢(Cy) = %, let C] = AC, and let @, be defined by (3.11). Then

18



Ny Ny
U P, C U (I, x C)), which yields with (3.16) and (3.18),
n=1 n=1

/ (g ()22t da’ < 252 (3.19)
Ny
RN+I\ {J (I}, xC7,)
n=1

By (3.13),

2(N+2)

/ T (1) g(2) 2R dtda — AN+2 / T (g ()22 dtda
RN+1\ ng Qn RN+1\ JE:Jll Qn

But (t,z) € Q, < (t',2') € I, x C}, and so we deduce from the above estimate and (3.12) that

/ 1T (t)g(z)| 7 dtdx = / 1T (¢)g(z')| 5 dt'da’. (3.20)
Ny Ny
RN+I\ U Qn RN+ U (17, xC})
n=1 n=1
Putting together (3.19) and (3.20), we obtain the desired result. O

4 Mass concentration

Proposition 4.1. Let v € R\ {0}, let ug € L2(RY)\ {0} and let

2(N+2) 2(N+2)

u € C((_Tmina Tmax); L2 (RN)) N LlocN ((_Tmina Tmax); L™~ (RN))

be the maximal solution of (1.4) such that w(0) = ug. Then there exists ng = no(N,|y|) > 0 satisfying

the following properties. Let (To,T1) C (—Timin, Tmax) be an interval and let

n=lull zogn ooy (4.1)
If n € (0,m0] then there exist to € (Ty, T1) and ¢ € RN such that
lu(to)llz2(B(c,R)) = €5 (4.2)

where R = min {(T} —t0)2, (to —To)%} and € = &(||uo|| 2, N, n) > 0.

Proof. Let ~, ug, u and (Tp,T1) be as in the Proposition 4.1. Let n > 0 be as in (4.1). By (1.2), we

have

Vt € (—Tmin, Tmax), u(t) =T (t — To)u(Tp) + i”y/T (T(t— 5){|u|%u})(s)ds. (4.3)
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Setting for any t € (—Tiin, Imax); Pult) = @y f;o (T(t — s){|u|~¥u})(s)ds and applying Strichartz’s
estimate (1.8), we get with (4.1)

N+4

Nid
‘I) 2 =C N 4.4
H ” (N vtz )((T T1)><]RN) 1”“” 2(N+2) (To/T) xRN 17 ) ( )

where C; = C1(N,|v|) = 1. For every a,b > 0, (a+b)* < C’(a)(ao‘+b°‘), where C(a) =1if0<a <1

and C(a) = 2% if a > 1. Let Cy be such a constant for « = 5-. We choose 19 = 19(N, |y]) > 0 small

enough to have

6

1
2(2C1)~ Cang” < 1. (4.5)
Assume that 1 < ng. We proceed in 3 steps.

Step 1. We show that, there exist fo € L2(RY), A > 0 and 7 € C of center & € RY satisfying

supp fo C T, (1) < C(J|uo|lzz, N,n)A and |ﬁ)| < A=, and there exist an interval I C R and K € C,
1 1

with |[I] = yel and {(K) = 1 such that for Q@ C R x RY defined by

Q={(tz) e RxRY; teland (v—4nt&) € K},

we have
[ult, 2)IT(t = To) fo )| ¥ dtda > Cp ™5 (4.6)
((To,T1) xRN)NQ
where C' = C(||ugl|2, N,n).
To prove this claim, we apply Lemma 3.1 to f = u(Tp) with ¢g = nN# (4.1), (4.3),
(4.4), (4.5) and time translation, we have that
ITOUT aogem o = ITC = ToulT) aogem > 0/2 3 <o

It follows from Holder’s inequality (with p = 22 and p’ = #), (4.3)—(4.4) and Lemma 3.1 that

2]~

No
“S T = To) fulx)|  dida
n=1

Ty RN
< luw 22 2 T _T n
|| HL%((TO,T ><RN) Z 0 f | 2(N+2) ((To,T1)xRN)
No N+4 %
, N+a
TCu(To) =Y T ()l 20vs +Culull 3
I7(. )u(To) Z ()f HL R RxRN) dl HL%((TO,Tl)xRN)

N44 762 2(N+2) 1 2(N+2)
_— N

20



The above estimate and (4.1) yield

Ty g
UW:/ |’U,(t,l‘)|2 ( ZTt_TOfn >+ZTt—T0fn() dtdx
To RN -
. T No ~
2(N+2)
<0 | g™+ [P | T T e |
To RN n=
which gives
1 2av+2)
//\utx ZTt—Tofn ) dtd:v 270217 N (4.7)

To RN

By Lemma 3.1 and conservation of charge, No < C(||luo|r2, N,n). It follows from (4.7) that there

exists ng € [1, Ny] such that

2(N+2)

1
/ [u(t, 2) 2 [Tt = To) fuy (2)| ¥ dtdz > Cp~ %, (4.8)
To RN
where C' = C(||ugl|z2, N,n). Set A = A,,,, 7 = 7, and Cy = C(N)||u0||z(2N)egV(N), where we have
used the notations of Lemma 3.1. Let & € RY be the center of 7,,,. We apply Lemma 3.3 to g = fn,
+2

N
and g1 = (%) ¥ 9, where C' is the constant in (4.8). Tt follows from Hélder’s inequality (with p = &

and p’ = &+2) (4.1) and Lemma 3.3 that

J[ 0 ol 7= T gl dre

Ny
((TO)TI)XRN)\ L;Jl Qn

2 +2 ; fn N
4 C 2(N+
< "72 N 277 (N 2).

The above estimate with (4.8) yield

2(N+2)

JI WP 176 - T h @ dide > 00" 5, (19)
Ny
(To.T)xENN( U Qn)
where C = C(||ugl| 2, N,n). By Lemma 3.3, Ny < C(JJugl|r2, N,n). With (4.9), this implies that there
exists ny € [1, N1] such that

2(N+2)

ut, 2) |2 |T(t = To) fug (2)| ¥ dtdz > Cn* 5, (4.10)

((To,T1) XRN)NQuny
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where C' = C(||uo||2, N, n). Hence we obtain the Step 1 claim with fo = fn,, [ = I,, K = C,, and
Q = in'

Step 2. We show that 5
C(||u0||L23N377)'

By (2.1) and Step 1, |T(t — To) fo| < / |]?0(§)|d§ <A™T 1d€ < CA?, which yields second part of

T

< C(Tl — To)% and sup||T(t — TO)fO”Lao(RN) < CA y where C' =
teR

o=

Step 2. Using this estimate, Step 1 and conservation of charge, we deduce

2(N+2)

e < [ e )PIT( - T fole) | dade

((To, T1)xRN)NQ

T
<A / / lu(t, ) Pdwdat < C A2 / / lu(t, 2) [2dadt
((To,T1) xRN)NQ Ty RN
< CA?|lugl|72(Th = To).

Hence we obtain the Step 2 claim.

Step 3. Conclusion.

2(N+2)

Let K € C, I and @ be as in Step 1, and let # = Cn~ ~ | where C is the constant of (4.10). Let

K(t) = K 4 47t&y and let k > 0 be small enough to be chosen later. It follows from Step 1, Step 2

and Holder’s inequality (with p = % and p’ = %), that

< // lu(t, 2)|2 [T (¢ = To) fo()| ¥ dedt

((To, T1) xRN )NQ
4
<7 —To) foll / (/ Iu(t,a:)Qd:z:> dt
K(t)
IN(To,T1)

< CA? / </ |u(t,x)|2dx> dt
K(t)

IN(Ty,Th)

<CA? / ( / |u(t,x)2da:> dt
K(t)

IN(To+5% 11— 5%)

2

N+2
Ol s / [ ovae)a
L7 ((To, T1)xRY) \ JIn[(To, To+ 5% )u(Ti— 5% 11 )] \JK(t)

A2 A2

N

/ 2 1 N+2
<caltl swp [ jua)Pde oty ()T <)
teIn(To+ 2% Ty 25 ) VK (%) A A

<C sup / lu(t, z)|?dx + Cr~¥2q,
) r ()

teln(To+ 5% 11— =%
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where C' = C(||luo||r2, N,n). For such a C, let £ > 0 be small enough to have Cr™7 < 1. Then
k = k(||uoll L2z, N,n) and

)
sup / fu(t, @)|?de > Cyp ™ N
teIn(To+ 5% 11— 5% ) 7 K (1)

where C' = C(||uo|| 2, N, 7). So there exists to € I N (Tp + 5%, Ty — 5% ) such that

2(N+42)
N

/ lu(to, z)|*dx > Cn , (4.11)
K(to)

1 N
where C' = C(||ugl|rz, N,n). Since £(K (t)) = T then K (tp) is contained in a ball of radius \/—;
m

/
Furthermore, Ty + 12 <tg<Ti— Z—Z, which yields

1
A

Nl

< Cmin{(Ty — t0)?, (to — To)? }, (4.12)

where C = C(||luo||L2, N,n). Using this and Step 2, it follows that K (¢p) can be covered by a finite
number (which depends only on ||ug||z2, N and ) of balls of radius R = min {(Tl —t0)2, (to — To)%} .

Then, by (4.11), there is some ¢ € RY such that

[ qutto.o)fds > (s, N, (4.13)
B(c,R)
This concludes the proof. O

Proof of Theorem 1.1. Let v, up and u be as in Theorem 1.1. Let 19 = no(N, |7|) > 0 be given

by Proposition 4.1. We apply Proposition 4.1 with n = ng. Let ¢ = e(||uo||r2, N, |y]) > 0 be given

by Proposition 4.1. Assume that Ti,.x < oo. Then ||uHL2<ng+z) ((O,Tn,ax);L2(NN+2) ) = 0o and so there
exist

0=T<To < - <Tp <Tpy1 < < Thax
such that

Vn € N, ||UHL2(1\17V+2) Mo-

(T Tus) XBY)
It follows from Proposition 4.1 that for each n € N, there exist ¢, € RN, R, > 0 and t,, € (Ty,, Tp41)

such that

Rn < min{(Tmax - tn)%a (Tmin + tn)%} and Hu(tn)”Lz(B(cn,Rn)) > g,

for every n € N. The case Tyin < oo follows in the same way. Hence we have proved the result. O

23



5 Further Results

As a corollary of the previous results, we can generalize to higher dimensions the 2—dimensional results
proved by Merle and Vega [15] and the results proved by Keraani in [13] dimensions 1 and 2. We

state here the most interesting of them. We need first some notation.

Definition 5.1. Let v € R\ {0}. We define §y as the supremum of § such that if

lluollzz < 6,

2(N+42) 2(N+2)
N

then (1.4) has a global solution u € C(R; L*(RY)) N L (R; L=~ (RM)).

We can prove the following

Theorem 5.2. Let v € R\ {0}, let ug € L*(RN) \ {0}, such that |Jugl| 2w~y < V280, and let

2(N+2) 2(N+2)
N

(RS C((*Tmina Tmax); LZ(RN)) N L N ((*Tminy Tmax); L

loc

(RY))

be the mazimal solution of (1.4) such that u(0) = ug. Assume that Tmax < 00, and let A(t) > 0, such
that \(t) — 00 as t — Tyax. Then there exists x(t) € RN such that,

liminf/ Jult, x) P > 62,

87 T S B(2(t) (D) (Tmax—1) 2)
If Tipin < 00 and A(t) — 00 as t —> —Tyin then there exists x(t) € RN such that,

lim inf / .
5= Tomin J B(2(8), A (1) (Tmin+)2)

lu(t, z)|*dx > 52.

The main ingredient in the proof of that theorem is a profile decomposition of the solutions of
the free Schrodinger equation. This decomposition was shown in the case N = 2 by Merle and
Vega [15] (see also Theorem 1.4 in [1]) and by Carles and Keraani [1] when N = 1. We generalize it to

higher dimensions thanks to the improved Strichartz estimate, Theorem 1.4. To describe it we need

a definition. We follow the notation of Carles and Keraani [4].

Definition 5.3. If IV = (p} ), &), 2 )pen, j = 1,2, ... is a family of sequences in (0,00) x R x RV x

RY, we say that it is an orthogonal family if for all j # k,

lim sup %—i—@ Wl_tm + mﬁll_,ﬁﬁ—f—%&fﬁzﬂi =00
noee \Pnph o (ph)? Ph Ph

Now, we can state the theorem about the linear profiles.
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Theorem 5.4. Let (uy,)nen be a bounded sequence in L?(RN). Then, there exists a subsequence (that
we name (uy) for the sake of simplicity) that satisfies the following: there exists a family (¢7)jen
of functions in L2(RYN) and a family of pairwise orthogonal sequences T9 = (pJ, ) €1 2 )pen, 7 =

1,2,... such that
‘

T(tun(z) =Y HA($)(t,2) +wy(t,2),

j=1
where
el , el
H)(9)(t,2) = T(0) (e“‘)%"ﬂ—tﬁn 7 ;Wb( p)) (@),
with
liranHsotip ”wa”LW(RXRJ\’) — 0 as {— o0

Moreover, for every £ > 1

4
lunl| 22 @ny = D167 12y + lwn ()22 +o(1),

j=1
as n — oo.

A similar result has been proved for wave equations by Bahouri and Gérard [1]. To prove The-
orem 5.4 one can follow Carles and Keraani (proof of Theorem 1.4) in [4]. It is observed in that

paper (Remark 3.5) that the result follows from the refined Strichartz’s estimate, our Theorem 1.4,

2(N+2) .
%waneven

once we overcome a technical issue, due to the fact that the Strichartz exponent
natural number when N € {1,2} (which covers the cases that the previous authors considered) but
not in higher dimensions (except N = 4). Thus, to complete the proof we only need the following

orthogonality result.

Lemma 5.5. For any M > 1

+2

M
+2)
HJ J HJ J +o(l) as n — oo.
HE (¢ || 2<N+2> v ;:1 | H, (¢ H 2(N+2)(]R (1)

N+1)
Jj=1

Proof. The proof if based on a well-known orthogonality property (see Gérard [9] and (3.47) in Merle
and Vega [15]): if we have two orthogonal families I'' and T'?, and two functions in L2(RY), ¢! and
¢?, then

|HAGYH2()]

=o(l) as n— oo. (5.1)
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(N+2)
N norm as a

WhenN:lorN:Z%'

product and, using (5.1), we obtain directly the lemma. In the higher dimensional case, write
Mo e S, Sy
(DI EACH] s :/IZH%W)I 1> H) ()|~
=1 Lo j j
S DI TEID AT
ik ¢
S IEHE) S HISERS 39 O ALACOLATSID AT
j ¢ i k#j ¢

A+ B.

N+2
N

N2

We estimate B using Holder’s inequality with exponents and 5=,

/lHﬂ (@) HEI S Hio I
||Z R

Then, we use the orthogonality (5.1) and obtain B = o(1).

<|H (&) Hy (6",

About A, when N > 4 then % < 1 and therefore,
A< [P
—Z/\Hﬂ CIREACIEES 9y Sy AL AT ELATSIES

J A5

The first term of the sum is
+2

2N +2)
Z” || 2<N+2>
The second one is
SO [ O
J £

We apply Holder’s with exponents N—j and #

and bound the last sum by

. 2_7 4
DD IH(4h) I 2R I H, (&) Hp (&)1 M g
Jg#e
which is o(1) by (5.1). This finishes the proof of the Lemma for N > 4.

When N = 3, then + = > 1, which complicates a bit the argument. We write

A= Z/\Hi(@)lﬂZHﬁ(#)HZH?WN% < ZZZ/|H$;<¢j>|2\Hf;<¢f>|\H;"W)ﬁ.
J 4 m ¢ § m

26



Using a similar argument as in the previous case, we show that the above integrals are o(1) except in

the case j = ¢ = m. This ends the proof of the lemma for N = 3. O

Proof of Theorem 5.2. To prove Theorem 5.2, one can follow the arguments given by Keraani
in [13]. Again one has to deal with the fact that % is not in general a natural number. Apart
from Lemma 5.5, we just need an elementary inequality (see (1.10) in Gérard [9]) for the function

F(z) = |z|~x:
14

FQ_U) =Y FU) <Y 07 |IUt+.
Jj=1 Jj=1 J k#j
Then, the arguments given by Keraani generalize to higher dimensions without difficulty, and prove
Theorem 5.2. U
Remark 5.6. As said in the beginning of this section, we generalize all the results of Keraani [13] to

higher dimension N. In particular, we display two of them.

1. There exists an initial data ug € L2(RY) with ||ug||z2 = &9, for which the solution u of (1.4)

blows-up in finite time Ty ax.-

2. Let u be a blow-up solution of (1.4) at finite time Ty with initial data ug, such that |jugl|z2 <
V26y. Let (tn)nen be any time sequence such that ¢, Do, Tmax- Then there exists a sub-
sequence of (t,)nen (still denoted by (t,)nen), which satisfies the following properties. There
exist 1 € L2(RY) with ||¢||z2 > o, and a sequence (pn,&n, Tn)nen € (0,00) x RY x RN such
that

lim ——2 < 4,

n—00 max — tn
for some A > 0, and

N
P €ty ppx + x,) — b in L2 (RY),
as n — 0o.
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