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Image Reconstruction in Interferometry

Interferometric Measurements
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J (u, v) coverage for Arcturus
(IOTA/IONIC interferometer;
Lacour et al. 2008).

interferometers sample the Fourier transform of the object brightness distribution:

ym,`︸︷︷︸
data

= Îλ` (νm,`)︸ ︷︷ ︸
complex vis.

+ em,`︸︷︷︸
errors

with νm,`︸︷︷︸
spatial freq.

= Bm/λ`︸ ︷︷ ︸
baseline/wavelength

missing data (voids in (u, v) coverage, partial Fourier phase information, etc.)
I no unique solution
I image reconstruction must take into account the data and priors;
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Image Reconstruction in Interferometry

Image Reconstruction in a Nutshell

objective: seek for the image that best match our priors while being compatible
with the data
in math:

x+ = arg min
x∈X

fprior(x)︸ ︷︷ ︸
regularization

s.t. fdata(x|y)︸ ︷︷ ︸
likelihood

≤ η

with:
fprior(x) is the distance to the priors;
fdata(x|y) is the distance to the data, e.g. χ2;
η is a tolerance level;
X is the feasible set, e.g. X = {x ∈ RN

+}
the Lagrangian of this constrained problem writes:

L(x;α) = fprior(x) + α fdata(x|y)

with α > 0 the Lagrange multiplier tuned so that:

fdata(xα|y) = η with: xα = arg min
x∈X

{
fprior(x) + α fdata(x|y)

}
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Image Reconstruction in Interferometry

Direct Model and Likelihood

image parameters:

xn,` = Iλ` (θn) with:

{
λ` effective wavelength in `th spectral channel
θn angular direction for nth spatial pixel

Bm projected position of mth observed baseline

direct model of the data:

yp,m,` =
∑

n
Hp,m,n,` xn,` + ep,m,` in short: y = H · x + e

with:

Hp,m,n,` =

{
+ cos(θ>n ·Bm/λ`) for p = 1

− sin(θ>n ·Bm/λ`) for p = 2

likelihood (assuming Gaussian statistics for the errors):

fdata(x|y) = 1
2 (H · x − y)> ·W · (H · x − y) with: W = Cov(e)−1

note: same wavelengths in the model than in the data (i.e. no spectral interpolation
of the model)
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Regularization by Means of Sparsity Prior

Regularization by Sparsity Prior

object of interest: point-like sources (e.g. stellar cluster, galactic center, ...);
=⇒ our priors are that the object is spatially sparse
in math, sparsity ∼ `0 norm:

fprior(x) = ‖x‖0 = 1>· ι(x) with: ι(x)n,` =
{

1 if xn,` 6= 0;
0 if xn,` = 0;

however `0 norm yields non-convex penalty; thus sparsity prior is imposed via `1
norm (Donoho 2006):

fsparse(x) = ‖x‖1 =
∑
n,`

|xn,`| = 1>· x︸ ︷︷ ︸
because x ≥ 0
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Regularization by Means of Sparsity Prior

Reconstruction of a Star Cluster with Full Sparsity

simulation:
50 random stars with spectra randomly taken from the library provided by Jacoby et al.
(1984)
∼106 parameters: 128×128 pixels (0.5 mas/pixel) × 100 spectral channels
(493 nm ≤ λ ≤ 507 nm and ∆λ = 0.14 nm)
100 baselines with ‖B‖ ≤ 180m
Gaussian noise with SNR ≤ 100

spectrally integrated images:
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∫
Iλ(θ) dλ reconst. with fsparse

Éric Thiébaut & Ferréol Soulez (CRAL) Multi-spectral Image Reconstruction in Interferometry Amsterdam, 2012 8 / 20



Regularization by Means of Sparsity Prior

Trans-spectral Constraints

with fsparse(x) = ‖x‖1, the resulting criterion is separable along the spectral axis, thus
image reconstruction makes use of the different spectral channel independently;
we want trans-spectral continuity (i.e., in our case, a source is sparse in space but
not in wavelength);
following Fornasier and Rauhut (2008) and Soulez et al. (2011) we propose to use a
structured norm:

fgroup(x) =
∑

n

[∑
`

x2
n,`

] 1
2

note that
[∑

`
x2

n,`

] 1
2 is `2 norm of spectrum at nth pixel

example with 3 pixels × 3 wavelengths:

λ
−→

1 0 0
0 1 0
0 0 1
θ −→

fgroup(x) = 3

λ
−→

0 1 0
0 1 0
0 0 1
θ −→

1 +
√

2 ' 2.41

λ
−→

0 1 0
0 1 0
0 1 0
θ −→√
3 ' 1.73

the cost is minimal when the chromatic emission is grouped at the same position;
this is the same behavior as in Total Variation (Rudin et al. 1992);
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Regularization by Means of Sparsity Prior

Images of a Star Cluster with Structured Sparsity

fully separable sparsity: fsparse(x) = ‖x‖1 =
∑
n,`

|xn,`| = 1>· x︸ ︷︷ ︸
because x ≥ 0

structured sparsity: fgroup(x) =
∑

n

[∑
`

x2
n,`

] 1
2

spectrally integrated images:
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∫
Iλ(θ) dλ reconst. with fsparse
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∫
Iλ(θ) dλ reconst. with fsparse reconst. with fgroup
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Regularization by Means of Sparsity Prior

Pushing Spectral Continuity to the Extreme: Assuming a Gray Object

an extreme case to impose spectral continuity is to assume a gray object:

xn,` = gn with xn,` = Iλ` (θn)

and impose spatial sparsity by:

fprior(g) = ‖g‖1

spectrally integrated images:
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∫
Iλ(θ) dλ reconst. with fsparse reconst. with fgroup

Éric Thiébaut & Ferréol Soulez (CRAL) Multi-spectral Image Reconstruction in Interferometry Amsterdam, 2012 11 / 20



Regularization by Means of Sparsity Prior

Pushing Spectral Continuity to the Extreme: Assuming a Gray Object

an extreme case to impose spectral continuity is to assume a gray object:

xn,` = gn with xn,` = Iλ` (θn)

and impose spatial sparsity by:

fprior(g) = ‖g‖1

spectrally integrated images:

−30 −20 −10  0  10  20  30

−30

−20

−10

 0

 10

 20

 30

−30 −20 −10  0  10  20  30

−30

−20

−10

 0

 10

 20

 30

−30 −20 −10  0  10  20  30

−30

−20

−10

 0

 10

 20

 30

∫
Iλ(θ) dλ reconst. with fsparse reconst. as gray object
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Regularization by Means of Sparsity Prior

Spectra Extracted from the Restored 3-D Images
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we consider the spectra of two particular stars
in green: true spectrum
in red: spectrum in 3-D reconstruction with fsparse
in blue: spectrum in 3-D reconstruction with fgroup

again transverse constraints yield superior results
however there is a slight bias =⇒ make a reconstruction with support constraint to
unbias
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Regularization by Means of Sparsity Prior

Distribution of Luminosity

distribution of average pixel intensity:

1
∆λ

∫
Iλ(θ) dλ
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− true

suggest thresholding to detect sources in reconstructed 3-D image:

reconst. with fgroup reconst. as gray object
can be used to debias spectra
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Algorithm

Optimization of non-smooth criterion

image reconstruction ∼ solving problem:

min
x∈X

{
fprior(x) + α fdata(x)

}
but fprior(x) is non-smooth (not C2)
⇒ rules out quasi-Newton methods (such as VMLM-B in MiRA or WISARD)

equivalent problem (variables splitting):

min
x∈X,z

{
fprior(x) + α fdata(z)

}
s.t.: x = z

augmented Lagrangian:

Lρ(x, z,u) = fprior(x) + α fdata(z) + u>· (x − z) + ρ

2 ‖x − z‖2
2

with ρ > 0 and u the quadratic weight and Lagrange multipliers of the constraints
solved by alternating direction method of multipliers (ADMM) Boyd et al. (2010)
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Algorithm

Alternating Direction Method of Multipliers

0. Choose initial variables z(0) and Lagrange multipliers u(0). Then repeat, for
t = 1, 2, . . . until convergence, the following steps:

1. Choose ρ(t) > 0 and update variables x:

x(t) = arg min
x∈X

Lρ(t)
(
x, z(t−1),u(t−1)) = arg min

x∈X

{
fprior(x) + ρ(t)

2
∥∥x − x̃(t)∥∥2

2

}
with: x̃(t) = z(t−1) − u(t−1)/ρ(t).

2. Update auxiliary variable z:

z(t) = arg min
z
Lρ(t)

(
x(t), z,u(t−1)) = arg min

z

{
α fdata(z) + ρ(t)

2
∥∥z − z̃(t)∥∥2

2

}
with: z̃(t) = x(t) + u(t−1)/ρ(t).

3. Update Lagrange multipliers u:

u(t) = u(t−1) + ρ(t) (x(t) − z(t)) .
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Algorithm

Updating the Auxiliary Variables

Updating the auxiliary variables z amounts to solving:

z(t) = arg min
z

{
α

2 (H · x − y)> ·W · (H · x − y)︸ ︷︷ ︸
α fdata(z)

+ρ(t)

2
∥∥z − z̃(t)∥∥2

2

}

with: z̃(t) = x(t) + u(t−1)/ρ(t).
This has an analytical solution:

z(t) =
(
αH> ·W ·H + ρ(t) I

)−1 ·
(
αH> ·W · y + ρ(t) z̃(t))

which can be computed by means of linear conjugate gradient method (Hestenes
and Stiefel 1952)
Computations are wavelength-separable =⇒ trivial to parallelize:

solve, ∀` A(t)
` · z

(t)
` = b(t)

` with:

{
A(t)
` = αH>` ·W` ·H` + ρ(t) I

b(t)
` = αH>` ·W` · y` + ρ(t) z̃(t)

`
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Algorithm

Updating the Variables

objective:

x(t) = arg min
x∈X

{
fprior(x) + ρ(t)

2
∥∥x − x̃(t)∥∥2

2

}
with: x̃(t) = z(t−1) − u(t−1)/ρ(t).
for many different non-differentiable fprior(x) analytical expressions of the solution
exist for X = RN (Combettes and Pesquet 2011);
easy to adapt for X = RN

+:
when fprior(x) = fsparse(x) = ‖x‖1:

x(t)
n,` = max

(
0, x̃(t)

n,` − 1/ρ(t)
)

when fprior(x) = fgroup(x) =
∑

n

√∑
`

x2
n,`:

x(t)
n,` =

{ (
1− 1/β(t)

n
)

max
(

0, x̃(t)
n,`

)
if β(t)

n > 1
0 else

with:

β
(t)
n = ρ(t)

√∑
`

max
(

0, x̃(t)
n,`

)
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Conclusions

Conclusions and Perspectives

Current Work:
exploiting multi-variate data is powerful but require to account for transverse
constraints (e.g. spectral and spatial regularization);
non-smooth regularization requires specialized algorithms (e.g. a new algorithm
based on ADMM strategy dedicated to multi-spectral observations of point-like
sources);
3-D image reconstruction with a few 106 parameters is not an issue;

Future Work:
consider more realistic data (non-linear model) and noise statistics;
debiasing of the result;
compare with multi-spectral matching-pursuit method (a kind of multi-spectral
CLEAN);
implement other regularizations (remember that means new algorithms):

explicit spectral continuity (`2 − `1 smoothness);
other spatial regularizations suitable for non-sparse sources (e.g. Total Variation);

implement spectral interpolation;
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