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Abstract

In this paper, we consider the nonlinear Schrödinger equation with the super critical power
of nonlinearity in the attractive case. We give a sufficient condition and a necessary condition
to obtain global or blowing up solutions. These conditions coincide in the critical case, thereby
extending the results of Weinstein [26, 27]. Furthermore, we improve a blow-up condition.

1 Introduction and notations

We consider the following nonlinear Schrödinger equation,










i
∂u

∂t
+∆u + λ|u|αu = 0, (t, x) ∈ (−T∗, T ∗)× R

N ,

u(0) = ϕ, in R
N ,

(1.1)

where λ ∈ R, 0 6 α <
4

N − 2
(0 6 α <∞ if N = 1) and ϕ a given initial data.

It is well-known that for every ϕ ∈ H1(RN ), (1.1) has a unique solution u ∈ C((−T∗, T ∗);H1(RN ))

which satisfies the blow-up alternative and the conservation of charge and energy. In other words, if

T ∗ < ∞ then lim
tրT∗

‖u(t)‖H1 = ∞. In the same way, if T∗ < ∞ then lim
tց−T∗

‖u(t)‖H1 = ∞. And for

all t ∈ (−T∗, T ∗), ‖u(t)‖L2 = ‖ϕ‖L2 and E(u(t)) = E(ϕ), where E(ϕ)
def
= 1

2‖∇ϕ‖2L2 − λ
α+2‖ϕ‖α+2

Lα+2.

If ϕ ∈ X
def
= H1(RN ) ∩ L2(|x|2; dx) then u ∈ C((−T∗, T ∗);X). Moreover, if λ 6 0, if α < 4

N
or if
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‖ϕ‖H1 is small enough then T ∗ = T∗ = ∞ and ‖u‖L∞(R;H1) < ∞. Finally, is α > 4
N

then there exist

initial values ϕ ∈ H1(RN ) such that the corresponding solution of (1.1) blows up in finite time. See

Cazenave [9], Ginibre and Velo [11, 12, 13, 14], Glassey [15], Kato [17].

In the attractive and critical case (λ > 0 and α = 4
N
), there is a sharp condition to obtain global

solutions (see Weinstein [26, 27]). It is given in terms of the solution of a related elliptic problem.

But in the super critical case (α > 4
N
), we only know that there exists ε > 0 sufficiently small such

that if ‖ϕ‖H1 6 ε, then the corresponding solution is global in time.

In this paper, we try to extend the results of Weinstein [26, 27] to the super critical case α > 4
N
.

As we will see, we are not able to establish such a result, but we can give two explicit real values

functions γ∗ and r∗ with 0 < γ∗ < r∗ such that if ‖ϕ‖L2 6 γ∗(‖∇ϕ‖L2), then the corresponding

solution is global in time. Furthermore, for every (a, b) ∈ (0,∞) × (0,∞) such that a > r∗(b), there

exists ϕa,b ∈ H1(RN ) with ‖ϕa,b‖L2 = a and ‖∇ϕa,b‖L2 = b such that the associated solution blows

up in finite time for both t < 0 et t > 0 (see Theorem 4.1 below). Despite of the fact we do not

obtain a sharp condition (since γ∗ < r∗), we recover the results of Weinstein [26, 27] as α ց 4
N
.

Setting A = {ϕ ∈ H1(RN ); ‖ϕ‖L2 6 γ∗(‖∇ϕ‖L2)}, it follows that for every ϕ ∈ A, the corresponding

solution of (1.1) is global in time and uniformly bounded in H1(RN ). It is interesting to note that

A is an unbounded subset of H1(RN ) as for the case α = 4
N
. We also improve some results about

blow-up (Theorems 2.1 and 2.2).

This paper is organized as follows. In Section 2, we give a sufficient blow-up condition. In Section

3, we recall the best constant in a Gagliardo-Nirenberg’s inequality. In Section 4, we give the main

result of this paper, that is necessary conditions and sufficient conditions to obtain global solutions.

In Section 5, we prove the result given in Section 4.

The following notations will be used throughout this paper. ∆ =
N
∑

j=1

∂2

∂x2
j

and we denote by B(0, R),

for R > 0, the ball of RN of center 0 with radius R. For 1 6 p 6 ∞, we design by Lp(RN ) = Lp(RN ;C),

with norm ‖ . ‖Lp , the usual Lebesgue spaces and by H1(RN ) = H1(RN ;C), with norm ‖ . ‖H1 , the

Sobolev space. For k ∈ N ∪ {0} and 0 < γ < 1, we denote by Ck,γ(RN ) = Ck,γ(RN ;C) the

Hölder spaces and we introduce the Hilbert space X =
{

ψ ∈ H1(RN ;C); ‖ψ‖X <∞
}

with norm

‖ψ‖2X = ‖ψ‖2
H1(RN ) +

∫

RN

|x|2|ψ(x)|2dx. For a normed functional space E ⊂ L1
loc(R

N ;C), we denote

by Erad the space of functions f ∈ E such that f is spherically symmetric. Erad is endowed with the

norm of E. Finally, C are auxiliary positive constants.
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2 Blow-up

The first two results are an improvement of a blow-up condition (see Glassey [15], Ogawa and Tsutsumi

[23]). We know that if a solution has a negative energy, then it blows up in finite time. We extend

this result for any nontrivial solution with nonpositive energy.

Theorem 2.1. Let λ > 0,
4

N
< α <

4

N − 2
(4 < α < ∞ if N = 1) and ϕ ∈ X, ϕ 6≡ 0. If E(ϕ) 6 0

then the corresponding solution u ∈ C((−T∗, T ∗);X) of (1.1) blows up in finite time for both t > 0

and t < 0. In other words, T ∗ <∞ and T∗ <∞.

Theorem 2.2. Let λ > 0, N > 2,
4

N
< α <

4

N − 2
(2 < α 6 4 if N = 2) and ϕ ∈ H1

rad(R
N ), ϕ 6≡ 0.

If E(ϕ) 6 0 then the corresponding solution u ∈ C((−T∗, T ∗);H1(RN )) of (1.1) blows up in finite

time for both t > 0 and t < 0. In other words, T ∗ <∞ and T∗ <∞.

Remark 2.3. When E(ϕ) = 0, the conclusion of Theorems 2.1 and 2.2 is false for α =
4

N
. Indeed,

let ϕ ∈ Xrad, ϕ 6≡ 0, be a solution of −∆ϕ + ϕ = λ|ϕ| 4
N ϕ, in RN . Then E(ϕ) = 0 from (3.5) but

u(t, x) = ϕ(x)eit is the solution of (1.1) and so T ∗ = T∗ = ∞.

Similar results exist for the critical case. See Nawa [19, 21]. It is shown that if ϕ ∈ H1(RN )

satisfies E(ϕ) <
(ϕ′, iϕ)2

‖ϕ‖2
L2

, when N = 1, or if E(ϕ) < 0, when N > 2, then the corresponding solution

of (1.1) blows up in finite time or grows up at infinity, the first case always occurring when N = 1.

Here, ( , ) denotes the scalar product in L2(RN ). See also Nawa [20, 22]. Note that in the case N = 1,

the result of Nawa [21] slightly improves that of Ogawa and Tsutsumi [24], since it allows to make

blow-up some solution with nonnegative energy.

Proof of Theorem 2.1. We argue by contradiction. Set for every t ∈ (−T∗, T ∗), h(t) = ‖xu(t)‖2L2 .

Then h ∈ C2((−T∗, T ∗);R) and

∀t ∈ (−T∗, T ∗), h′′(t) = 4NαE(ϕ)− 2(Nα− 4)‖∇u(t)‖2L2 (2.1)

(Glassey [15]). Since E(ϕ) 6 0, we have by Gagliardo-Nirenberg’s inequality (Proposition 3.1)

and conservation of energy and charge, ‖∇u(t)‖2
L2 6 2λ

α+2‖u(t)‖α+2
Lα+2 6 C‖∇u(t)‖

Nα
2

L2 , for every

t ∈ (−T∗, T ∗). Since α >
4

N
and ϕ 6≡ 0, we deduce that inf

t∈(−T∗,T∗)
‖∇u(t)‖L2 > 0 and with (2.1), we

obtain

∀t ∈ (−T∗, T ∗), h′′(t) 6 −C.
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So, if T ∗ = ∞ or if T∗ = ∞ then there exists S ∈ (−T∗, T ∗) with |S| large enough such that h(S) < 0

which is absurd since h > 0. Hence the result.

Proof of Theorem 2.2. For Ψ ∈W 4,∞(RN ;R), Ψ > 0, we set

∀t ∈ (−T∗, T ∗), V (t) =

∫

RN

Ψ(x)|u(t, x)|2dx.

We know that there exists Ψ ∈W 4,∞(RN ;R), Ψ > 0, such that V ∈ C2((−T∗, T ∗);R) and

∀t ∈ (−T∗, T ∗), V ′′(t) 6 2NαE(ϕ)− 2(Nα− 4)‖∇u(t)‖2L2,

(see the proof of Theorem 2.7 of Cazenave [8] and Remark 2.13 of this reference). We conclude in the

same way that for Theorem 2.1.

3 Sharp estimate

In this section, we recall the sharp estimate in a Gagliardo-Nirenberg’s inequality (Proposition 3.1)

and a result concerning the ground states.

Let λ > 0, ω > 0 and 0 < α <
4

N − 2
(0 < α < ∞ if N = 1). We consider the following elliptic

equations.

{

−∆R+R = |R|αR, in RN ,

R ∈ H1(RN ;R), R 6≡ 0,
(3.1)

{

−∆Φ+ ωΦ = λ|Φ|αΦ, in R
N ,

Φ ∈ H1(RN ;R), Φ 6≡ 0.
(3.2)

It is well-known that the equation (3.2) possesses at less one solution ψ. Furthermore, each solution

ψ of (3.2) satisfies ψ ∈ C2,γ(RN )∩W 3,p(RN ), ∀γ ∈ (0, 1), ∀p ∈ [2,∞), |ψ(x)| 6 Ce−δ|x|, for all x ∈ RN ,

where C and δ are two positive constants which do not depend on x, lim
|x|→∞

|Dβψ(x)| = 0, ∀|β| 6 2

multi-index. Finally, ψ satisfies the following identities.

‖∇ψ‖2L2 =
ωNα

4− α(N − 2)
‖ψ‖2L2, (3.3)

‖ψ‖α+2
Lα+2 =

2ω(α+ 2)

λ(4 − α(N − 2))
‖ψ‖2L2, (3.4)

‖ψ‖α+2
Lα+2 =

2(α+ 2)

λNα
‖∇ψ‖2L2. (3.5)
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Such solutions are called bound states solutions. Furthermore, (3.2) has a unique solution Φ satisfying

the following additional properties. Φ ∈ Srad(R
N ;R); Φ > 0 over RN ; Φ is decreasing with respect to

r = |x|; for every multi-index β ∈ NN , there exist two constants C > 0 and δ > 0 such that for every

x ∈ RN , |Φ(x)|+ |DβΦ(x)| 6 Ce−δ|x|. Finally, for every solution ψ of (3.2), we have

‖Φ‖L2 6 ‖ψ‖L2. (3.6)

Such a solution is called a ground state of the equation (3.2).

Equation (3.2) is studied in the following references. Berestycki, Gallouët and Kavian [3];

Berestycki and Lions [4, 5] ; Berestycki, Lions and Peletier [6]; Gidas, Ni and Nirenberg [10]; Jones

and Küpper [16]; Kwong [18]; Strauss [25]. See also Cazenave [9], Section 8.

Proposition 3.1. Let 0 < α <
4

N − 2
(0 < α < ∞ if N = 1) and R be the ground state solution of

(3.1). Then the best constant C∗ > 0 in the Gagliardo-Nirenberg’s inequality,

∀f ∈ H1(RN ), ‖f‖α+2
Lα+2 6 C∗‖f‖

4−α(N−2)
2

L2 ‖∇f‖
Nα
2

L2 , (3.7)

is given by

C∗ =
2(α+ 2)

Nα

(

4− α(N − 2)

Nα

)

Nα−4
4

‖R‖−α
L2 . (3.8)

See Weinstein [26] for the proof in the case N > 2. See also Lemma 3.4 of Cazenave [8] in the case

α =
4

N
. But for convenience, we give the proof. It makes use of a compactness result which is an

adaptation of the compactness lemma due to Strauss (Strauss [25]).

Proof of Proposition 3.1. We define for every f ∈ H1(RN ), f 6≡ 0, the functional

J(f) =
‖f‖

4−α(N−2)
2

L2 ‖∇f‖
Nα
2

L2

‖f‖α+2
Lα+2

,

and we set σ = inf
f∈H1\{0}

J(f). Then σ ∈ (0,∞) by (3.7). We have to show that σ = C−1
∗ where C∗

is defined by (3.8). Let (fn)n∈N ⊂ H1(RN ) be a minimizing sequence. Let

µn =
‖fn‖

N−2
2

L2

‖∇fn‖
N
2

L2

, λn =
‖fn‖L2

‖∇fn‖L2

and ∀x ∈ R
N , vn(x) = µnfn(λnx).

Then ‖vn‖L2 = ‖∇vn‖L2 = 1 and J(fn) = J(vn) = ‖vn‖−(α+2)
Lα+2

n→∞−−−−→ σ. Let v∗n be the symmetrization

of Schwarz of |vn| (see Bandle [1]; Berestycki and Lions [4], Appendix A.III). Then J(v∗n)
n→∞−−−−→ σ

and by compactness, v∗nℓ
⇀ v as ℓ −→ ∞ in H1

w
(RN ) (and in particular, in Lα+2

w
(Ω) for every
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subset Ω ⊂ RN ) and v∗nℓ

Lα+2

−−−→
ℓ→∞

v, for a subsequence (v∗nℓ
)ℓ ⊂ (v∗n)n and for some v ∈ H1

rad(R
N ).

Indeed, since (v∗n)n∈N is bounded in H1
rad(R

N ) and nonincreasing with respect to |x|, then ∀ℓ ∈ N

and ∀x ∈ RN , |v∗nℓ
(x)| 6 C|x|−N

2 , where C > 0 does not depend on ℓ and x (Berestycki and

Lions [4], Appendix A.II, Radial Lemma A.IV). From this and Hölder’s inequality, we deduce that

∀ℓ ∈ N and ∀R > 0, ‖v∗nℓ
‖Lα+2(RN\B(0,R)) 6 CR

− Nα
2(α+2) , for a constant C > 0 which does not

depend on ℓ. Then ∀R > 0, ‖v‖Lα+2(RN\B(0,R)) 6 lim inf
ℓ→∞

‖v∗nℓ
‖Lα+2(RN\B(0,R)) 6 CR

− Nα
2(α+2) . The

strong convergence in Lα+2(RN ) follows easily from the two above estimates and from the compact

embedding H1(B(0, R)) →֒ Lα+2(B(0, R)), which holds for every R > 0. Since ‖vn‖Lα+2 = ‖v∗n‖Lα+2,

it follows that ‖v‖α+2
Lα+2 = σ−1 and then v 6≡ 0. Thus, J(v) = σ and ‖v‖L2 = ‖∇v‖L2 = 1. It follows

that ∀w ∈ H1(RN ), d
dt
J(v+ tw)|t=0 = 0. So v satisfies −∆v+ 4−α(N−2)

Nα
v = σ

2(α+2)
Nα

|v|αv, in RN . Set

a =
(

Nα
4−α(N−2)

)
1
2

, b =
(

2σ(α+2)
4−α(N−2)

)
1
α

and ∀x ∈ RN , u(x) = bv(ax). Then u ∈ H1
rad(R

N ) is a solution

of (3.1) and J(u) = σ. By (3.3)–(3.4), we obtain J(u) = C−1
∗

‖u‖α

L2

‖R‖α

L2
= σ and J(R) = C−1

∗ > σ (since

R also satisfies (3.1)). Then ‖u‖L2 6 ‖R‖L2 and so with (3.6), ‖u‖L2 = ‖R‖L2. Hence the result.

4 Necessary condition and sufficient condition for global ex-

istence

Theorem 4.1. Let λ > 0,
4

N
< α <

4

N − 2
(4 < α <∞ if N = 1) and R be the ground state solution

of (3.1). We define for every a > 0,

r∗(a) =

(

Nα

4− α(N − 2)

)
Nα−4

2(4−α(N−2)) (

λ−
1
α ‖R‖L2

)
2α

4−α(N−2)

a
− Nα−4

4−α(N−2) , (4.1)

γ∗(a) =

(

Nα− 4

Nα

)
Nα−4

2(4−α(N−2))

r∗(a). (4.2)

1. If ϕ ∈ H1(RN ) satisfies

‖ϕ‖L2 6 γ∗(‖∇ϕ‖L2), (4.3)

then the corresponding solution u ∈ C((−T∗, T ∗);H1(RN )) of (1.1) is global in time, that is

T ∗ = T∗ = ∞, and the following estimates hold.

∀t ∈ R,







‖∇u(t)‖2
L2 <

2Nα

Nα− 4
E(ϕ),

‖∇u(t)‖L2 < r−1
∗ (‖ϕ‖L2),

where r−1
∗ is the function defined by (4.5). In particular, E(ϕ) >

Nα− 4

2Nα
‖∇ϕ‖2

L2 .
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2. For every a > 0 and for every b > 0 satisfying a > r∗(b), there exists ϕa,b ∈ H1(RN ) with

‖ϕa,b‖L2 = a and ‖∇ϕa,b‖L2 = b such that the associated solution ua,b ∈ C((−T∗, T ∗);H1(RN ))

of (1.1) blows up in finite time for both t > 0 et t < 0. In other words, T ∗ < ∞ and T∗ < ∞.

Furthermore, E(ϕa,b) > 0 ⇐⇒ r∗(b) < a < ρ∗(b) and E(ϕa,b) = 0 ⇐⇒ a = ρ∗(b), where for

every a > 0,

ρ∗(a) =

(

Nα

4

)
2

4−α(N−2)

r∗(a). (4.4)

Finally, E(ϕa,b) <
Nα− 4

2Nα
‖∇ϕa,b‖2L2 .

Remark 4.2. Let γ∗ be the function defined by (4.2). Set

A = {ϕ ∈ H1(RN ); ‖ϕ‖L2 6 γ∗(‖∇ϕ‖L2)}.

By Theorem 4.1, for every ϕ ∈ A, the corresponding solution of (1.1) is global in time and uniformly

bounded in H1(RN ). It is interesting to note that A is an unbounded subset of H1(RN ). So Theorem

4.1 gives a general result for global existence for which we can take initial values with the H1(RN )

norm large as we want.

Remark 4.3. Let γ∗, r∗, and ρ∗ be the functions defined respectively by (4.2), (4.1) and (4.4). It

is clear that since α > 4
N
, γ∗, γ

−1
∗ , r∗, r

−1
∗ , ρ∗ and ρ−1

∗ are decreasing and bijective functions from

(0,∞) to (0,∞) and for every a > 0,

γ−1
∗ (a) =

(

Nα− 4

Nα

)
1
2

r−1
∗ (a),

r−1
∗ (a) =

(

Nα

4− α(N − 2)

)
1
2 (

λ−
1
α ‖R‖L2

)
2α

Nα−4

a−
4−α(N−2)

Nα−4 , (4.5)

ρ−1
∗ (a) =

(

Nα

4

)
2

Nα−4

r−1
∗ (a).

So the condition condition (4.3) is equivalent to the condition ‖∇ϕ‖L2 6 γ−1
∗ (‖ϕ‖L2). Furthermore,

γ∗ < r∗ < ρ∗ and γ−1
∗ < r−1

∗ < ρ−1
∗ .

Remark 4.4. Let γ∗, r∗, and ρ∗ be the functions defined respectively by (4.2), (4.1) and (4.4). Then

γ∗
αց 4

N−−−−→ λ−
1
α ‖R‖L2 and r∗

αց 4
N−−−−→ λ−

1
α ‖R‖L2 (and even, ρ∗

αց 4
N−−−−→ λ−

1
α ‖R‖L2). So we obtain the

sharp condition for global existence, ‖ϕ‖L2 < λ−
1
α ‖R‖L2 which coincide with the results obtained by

Weinstein [26, 27]. However, we do not know if γ∗ or r∗ are optimum.
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5 Proof of Theorem 4.1

In order to prove the blowing up result (2 of Theorem 4.1), we need of several lemmas. We follow

the method of Berestycki and Cazenave [2] (see also Cazenave [7] and Cazenave [9], Section 8.2). A

priori, we would expect to use Theorem 2.1, that is to construct initial values in X with nonpositive

energy, which is the case for α =
4

N
. But it will not be enough because we have to make blow-up

some solutions whose the initial values have a positive energy.

We define the following functionals and sets. Let λ > 0, ω > 0, β > 0, 0 < α <
4

N − 2
(0 < α <∞

if N = 1) and ψ ∈ H1(RN ).























































































β∗(ψ)
Nα−4

2 =
2(α+ 2)

λNα

‖∇ψ‖2L2

‖ψ‖α+2
Lα+2

, if ψ 6≡ 0,

Q(ψ) = ‖∇ψ‖2
L2 −

λNα

2(α+ 2)
‖ψ‖α+2

Lα+2,

S(ψ) =
1

2
‖∇ψ‖2

L2 −
λ

α+ 2
‖ψ‖α+2

Lα+2 +
ω

2
‖ψ‖2

L2,

P(β, ψ)(x) = β
N
2 ψ(βx), for almost every x ∈ RN ,

M =
{

ψ ∈ H1(RN ); ψ 6≡ 0 and Q(ψ) = 0
}

,

A =
{

ψ ∈ H1(RN ); ψ 6≡ 0 and −∆ψ + ωψ = λ|ψ|αψ, in RN
}

,

G = {ψ ∈ A; ∀φ ∈ A, S(ψ) 6 S(φ)} .

Note that by the discussion at the beginning of Section 3 and (3.3)–(3.6), M 6= ∅, A 6= ∅ and G 6= ∅.

Lemma 5.1. We have the following results.

1. ∀β > 0, β 6= β∗(ψ), S(P(β, ψ)) < S(P(β∗(ψ), ψ)).

2. The following equivalence holds.

ψ ∈ G ⇐⇒
{

ψ ∈M,

S(ψ) = min
φ∈M

S(φ),

3. Let m
def
= min

φ∈M
S(φ). Then ∀φ ∈ H1(RN ) with Q(φ) < 0, Q(φ) 6 S(φ)−m.

See Cazenave [9], Lemma 8.2.5 for the proof of 1; Proposition 8.2.4 for the proof of 2; Corollary 8.2.6

for the proof of 3. There is a mistake in the formula (8.2.4) of this reference. Replace the expression

λ∗(u)
nα−4

2 = α+2
2

(∫

Rn |∇u|2
) (∫

Rn |u|α+2
)−1

with λ∗(u)
nα−4

2 = 2(α+2)
nα

(∫

Rn |∇u|2
) (∫

Rn |u|α+2
)−1

.

The proof of 1 of Theorem 4.1 relies on the following lemma.
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Lemma 5.2. Let I ⊆ R, be an open interval, t0 ∈ I, p > 1, a > 0, b > 0 and Φ ∈ C(I;R+). We set,

∀x > 0, f(x) = a− x + bxp, x = (bp)−
1

p−1 and b∗ =
p− 1

p
x. Assume that Φ(t0) < x, a 6 b∗ and that

f ◦ Φ > 0. Then, ∀t ∈ I, Φ(t) < x.

Proof. Since Φ(t0) < x and Φ is a continuous function, there exists η > 0 with (t0−η, t0+η) ⊆ I such

that, ∀t ∈ (t0 − η, t0 + η), Φ(t) < x. If Φ(t∗) = x for some t∗ ∈ I, then f ◦Φ(t∗) = f(x) = a− b∗ 6 0.

But f ◦ Φ > 0. Then, ∀t ∈ I, Φ(t) < x.

The proof of 2 of Theorem 4.1 makes use the following lemma.

Lemma 5.3. Let λ > 0, ω > 0 and
4

N
< α <

4

N − 2
(4 < α <∞ if N = 1). We set for every β > 0

and for every ψ ∈ H1(RN ), ϕβ = P(β, ψ). Let uβ ∈ C((−T∗, T ∗);H1(RN )) be the solution of (1.1)

with initial value ϕβ . Then we have, ∀ψ ∈ G, ∀β > 1, T∗ <∞ and T ∗ <∞.

Proof. Let ψ ∈ G. By (3.5), we have

β∗(ϕβ)
Nα−4

2 =
2(α+ 2)

λNα

β2‖∇ψ‖2L2

β
Nα
2 ‖ψ‖α+2

Lα+2

,

Q(ϕβ) = β2

(

‖∇ψ‖2L2 − λNα

2(α+ 2)
β

Nα−4
2 ‖ψ‖α+2

Lα+2

)

,

λNα

2(α+ 2)
‖ψ‖α+2

Lα+2 = ‖∇ψ‖2L2 .

So, β∗(ϕβ)
Nα−4

2 = β−Nα−4
2 , Q(ϕβ) = −β2‖∇ψ‖2L2

(

β
Nα−4

2 − 1
)

and β∗(ψ) = 1. From these three last

equalities, from 1 and 2 of Lemmas 5.1 and by conservation of charge and energy, we have

∀β > 1, Q(ϕβ) < 0, (5.1)

∀β 6= 1, S(ϕβ) < S(ψ) ≡ m, (5.2)

∀β > 0, ∀t ∈ (−T∗, T ∗), S(uβ(t)) = S(ϕβ). (5.3)

By continuity of uβ, by (5.1)–(5.3) and from 3 of Lemma 5.1, we have for every β > 1,

∀t ∈ (−T∗, T ∗), Q(uβ(t)) 6 S(ϕβ)−m < 0. (5.4)

Set ∀t ∈ (−T∗, T ∗), h(t) = ‖xuβ(t)‖2L2 . Then we have by Glassey [15], h ∈ C2((−T∗, T ∗);R) and

∀t ∈ (−T∗, T ∗), h′′(t) = 8‖∇uβ(t)‖2L2 − 4λNα
α+2 ‖uβ(t)‖α+2

Lα+2 ≡ 8Q(uβ(t)). So with (5.4),

∀t ∈ (−T∗, T ∗), h′′(t) 6 8(S(ϕβ)−m) < 0,
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for every β > 1. It follows that T∗ <∞ and T ∗ <∞. Hence the result.

Proof of Theorem 4.1. We proceed in two steps.

Step 1. We have 1.

Let C∗ be the constant defined by (3.8). We set I = (−T∗, T ∗), t0 = 0, p = Nα
4 , a = ‖∇ϕ‖2L2 ,

b = 2λ
α+2C∗‖ϕ‖

4−α(N−2)
2

L2 , x = (bp)−
1

p−1 , b∗ = p−1
p
x, ∀t ∈ I, Φ(t) = ‖∇u(t)‖2

L2 and for any x > 0,

f(x) = a−x+ bxp. Then by conservation of energy, by Proposition 3.1 and by conservation of charge,

we have

∀t ∈ I, ‖∇u(t)‖2L2 = 2E(ϕ) +
2λ

α+ 2
‖u(t)‖α+2

Lα+2

< ‖∇ϕ‖2
L2 +

2λ

α+ 2
C∗‖ϕ‖

4−α(N−2)
2

L2 (‖∇u(t)‖2
L2)

Nα
4 .

And so, ∀t ∈ I, a−‖∇u(t)‖2L2+b(‖∇u(t)‖2L2)p > 0, that is f ◦Φ > 0. Furthermore, Φ(t0) ≡ a 6 b∗ < x.

Indeed, by Remark 4.3, we have

Φ(t0) 6 b∗ ⇐⇒ ‖∇ϕ‖L2 6 γ−1
∗ (‖ϕ‖L2) ⇐⇒ ‖ϕ‖L2 6 γ∗(‖∇ϕ‖L2).

So by Lemma 5.2, Φ(t) < x ≡ [r−1
∗ (‖ϕ‖L2)]2, ∀t ∈ I. Thus, I = R and for every t ∈ R,

‖∇u(t)‖L2 < r−1
∗ (‖ϕ‖L2).

It follows from conservation of charge and energy, (3.7), (3.8), and the above inequality, that

∀t ∈ R, E(ϕ) >
1

2

(

‖∇u(t)‖2L2 − 2λ

α+ 2
C∗‖ϕ‖

4−α(N−2)
2

L2 ‖∇u(t)‖
Nα
2

L2

)

=
1

2
‖∇u(t)‖2L2

(

1− 4

Nα

[

r−1
∗ (‖ϕ‖L2)‖∇u(t)‖−1

L2

]−Nα−4
2

)

>
1

2
‖∇u(t)‖2L2

(

1− 4

Nα

)

=
Nα− 4

2Nα
‖∇u(t)‖2L2 .

Hence 1.

Step 2. We have 2.

Let R be the ground state solution of (3.1). Let first remark from the assumptions and from Remark

4.3, we have b > r−1
∗ (a). We set

ν = [r−1
∗ (a)]

N
2

(

4−α(N−2)
Nα

)
N
4

a−
N−2

2 ‖R‖−1
L2 , ω = [r−1

∗ (a)]2 4−α(N−2)
Nα

a−2 =
(

λ−
1
α ‖R‖L2a−1

)
4α

Nα−4

,

and for every x ∈ RN , ψ(x) = νR(
√
ωx). Then ψ ∈ Srad(R

N ) ∩ A. Since R satisfies (3.1)–(3.6), it

follows that ψ ∈ G. Furthermore, ‖ψ‖L2 = a and ‖∇ψ‖L2 = r−1
∗ (a). Let β = b

r
−1
∗

(a)
> 1. Set for every
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x ∈ RN , ϕa,b(x) = ϕβ(x) = P(β, ψ)(x). In particular, ϕa,b ∈ Srad(R
N ) and ϕa,b satisfies

−∆ϕa,b + ωβ2ϕa,b = λβ−Nα−4
2 |ϕa,b|αϕa,b, in R

N .

Denote ua,b ∈ C((−T∗, T ∗);H2(RN ) ∩ Xrad) the solution of (1.1) with initial value ϕa,b. Then by

Lemma 5.3, T∗ <∞ and T ∗ <∞. Moreover, ‖ϕa,b‖L2 = a, ‖∇ϕa,b‖L2 = b and by (3.5),

E(ϕa,b) =
1

2
‖∇ϕa,b‖2L2 −

λ

α+ 2
‖ϕa,b‖α+2

Lα+2

=
1

2
‖∇ϕa,b‖2L2 −

λ

α+ 2
β

Nα
2 ‖ψ‖α+2

Lα+2

=
‖∇ϕa,b‖2L2

2Nα

(

Nα− 4β
Nα−4

2

)

=
‖∇ϕa,b‖2L2

2Nα

(

Nα− 4β
Nα−4

2

)

.

By Remark 4.3, it follows that

E(ϕa,b) 6 0 ⇐⇒ β >

(

Nα

4

)
2

Nα−4

⇐⇒ b >

(

Nα

4

)
2

Nα−4

r−1
∗ (a) ≡ ρ−1

∗ (a) ⇐⇒ a > ρ∗(b).

Hence the result.
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