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Université Pierre et Marie Curie
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Abstract

In this paper, we consider global solutions of the following nonlinear Schrödinger equation
iut + ∆u + λ|u|αu = 0, in R

N , with λ ∈ R, α ∈ (0, 4

N−2
) (α ∈ (0,∞) if N = 1) and

u(0) ∈ X ≡ H1(RN ) ∩ L2(|x|2; dx). We show that, under suitable conditions, if the solution
u satisfies e−it∆u(t) − u± → 0 in X as t → ±∞ then u(t) − eit∆u± → 0 in X as t → ±∞. We
also study the converse. Finally, we estimate | ‖u(t)‖X − ‖eit∆u±‖X | under some less restrictive
assumptions.

1 Introduction and notations

We consider the following Cauchy problem,











i
∂u

∂t
+∆u + λ|u|αu = 0, (t, x) ∈ (−T∗, T ∗)× R

N ,

u(0) = ϕ, in R
N ,

(1.1)

where λ ∈ R, 0 6 α <
4

N − 2
(0 6 α <∞ if N = 1) and ϕ a given initial data.

It is well-known that if λ < 0, α >
4

N
and ϕ ∈ H1(RN ), then there exists u± ∈ H1(RN ) such that

lim
t→±∞

‖T (−t)u(t)−u±‖H1 = 0 (Ginibre and Velo [8], Nakanishi [11, 12]). Since (eit∆)t∈R is an isometry

on H1(RN ), we also have lim
t→±∞

‖u(t)−T (t)u±‖H1 = 0. Furthermore, if α > −(N−2)+
√
N2+12N+4

2N and

if ϕ ∈ X ≡ H1(RN ) ∩ L2(|x|2; dx), then there exist u± ∈ X such that lim
t→±∞

‖T (−t)u(t)− u±‖X = 0

(Tsutsumi [15]). The same result holds without assumption on the λ’s sign if the initial data is small
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enough in X and if α >
4

N + 2
(Cazenave and Weissler [3]). Note that to have these limits, we

have to make a necessary assumption on α (Barab [1], Strauss [13, 14], Tsutsumi and Yajima [16]),

2

N
< α <

4

N − 2
(2 < α <∞ if N = 1).

The purpose of this paper is to study the asymptotic behavior of ‖u(t) − T (t)u±‖X under the

assumption lim
t→±∞

‖T (−t)u(t)− u±‖X = 0, and the converse. In the linear case (i.e. : λ = 0) or if the

initial data is 0, the answer is trivial since T (−t)u(t)− u± ≡ u(t)− T (t)u± ≡ 0, for all t ∈ R. Since

(eit∆)t∈R is an isometry on H1(RN ), the equivalence on H1(RN ) is trivial. But (eit∆)t∈R is not an

isometry on X and so it is natural to wonder whether or not we have lim
t→±∞

‖u(t) − T (t)u±‖X = 0

when lim
t→±∞

‖T (−t)u(t)− u±‖X = 0 and conversely.

This paper is organized as follows. In Section 2, we give the main results. In Section 3, we establish

some a priori estimates. In Section 4, we prove Theorems 2.1, 2.4, 2.5 and Proposition 2.8. In Section

5, we prove Theorem 2.10.

Before closing this section, we give some notations which will be used throughout this paper and

we recall some properties of the solutions of the nonlinear Schrödinger equation.

z is the conjugate of the complex number z; Re z and Im z are respectively the real and imaginary

part of the complex number z; ∆ =
N
∑

j=1

∂2

∂x2
j

; for 1 6 p 6 ∞, p′ is the conjugate of the real number p de-

fined by 1
p
+ 1

p′ = 1 and Lp = Lp(RN ) = Lp(RN ;C) with norm ‖.‖Lp ;H1 = H1(RN ) = H1(RN ;C) with

norm ‖ . ‖H1 ; for all (f, g) ∈ L2 × L2, (f, g) = Re
∫

RN

f(x)g(x)dx; X =
{

ψ ∈ H1(RN ;C); ‖ψ‖X <∞
}

with norm ‖ψ‖2X = ‖ψ‖2
H1(RN ) +

∫

RN

|x|2|ψ(x)|2dx; (T (t))t∈R is the group of isometries (eit∆)t∈R gen-

erated by i∆ on L2(RN ;C); C are auxiliary positive constants and C(a1, a2, . . . , an) indicates that

the constant C depends only on parameters a1, a2, . . . , an and that the dependence is continuous.

It is well-known that for every ϕ ∈ X, (1.1) has a unique solution u ∈ C((−T∗, T ∗);X) which

satisfies the conservation of charge and energy, that is for all t ∈ (−T∗, T ∗), ‖u(t)‖L2 = ‖ϕ‖L2 and

E(u(t)) = E(ϕ)
def
= 1

2‖∇ϕ‖2L2 − λ
α+2‖ϕ‖

α+2
Lα+2. Moreover, if λ 6 0, if α < 4

N
or if ‖ϕ‖H1 is small enough

then T ∗ = T∗ = ∞ and ‖u‖L∞(R;H1) <∞ (see for example Cazenave [2], Ginibre and Velo [4, 5, 6, 7],

Kato [9]).

Definition 1.1. We say that (q, r) is an admissible pair if the following holds.

(i) 2 6 r 6 2N
N−2 (2 6 r <∞ if N = 2, 2 6 r 6 ∞ if N = 1),

(ii) 2
q
= N

(

1
2 − 1

r

)

.

Note that in this case 2 6 q 6 ∞ and q =
4r

N(r − 2)
.
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Definition 1.2. We say that a solution u ∈ C((−T∗, T ∗);X) of (1.1) has a scattering state u+ at

+∞ (respectively u− at −∞) if T ∗ = ∞ and if u+ ∈ X is such that lim
t→∞

‖T (−t)u(t) − u+‖X = 0

(respectively if T∗ = ∞ and if u− ∈ X is such that lim
t→−∞

‖T (−t)u(t)− u−‖X = 0).

We recall the Strichartz’ estimates. Let I ⊆ R, be an interval, let t0 ∈ I, let (q, r) and (γ, ρ)

be two admissible pairs, let ϕ ∈ L2(RN ) and let f ∈ Lγ′

(I;Lρ′

(RN )). Then the following integral

equation defined for all t ∈ I, u(t) = T (t)ϕ + i

∫ t

t0

T (t − s)f(s)ds, satisfies the following inequality

‖u‖Lq(I,Lr) 6 C0‖ϕ‖L2+C1‖f‖Lγ′(I;Lρ′), where C0 = C0(N, r) and C1 = C1(N, r, ρ). For more details,

see Keel and Tao [10].

2 The main results

Theorem 2.1. Let λ 6= 0,
2

N
< α <

4

N − 2
(2 < α <∞ if N = 1), ϕ ∈ X and let u be the solution

of (1.1) such that u(0) = ϕ. We assume that u has a scattering state u± at ±∞ (see Definition 1.2).

Then the following holds.

1. (a) If N 6 2 and if α >
4

N
then lim

t→±∞
‖u(t)− T (t)u±‖X = 0.

(b) If 3 6 N 6 5 and if α >
8

N + 2
then lim

t→±∞
‖u(t)− T (t)u±‖X = 0.

2. If N = 1 and α = 4 or if 3 6 N 6 5 and α =
8

N + 2
then we have,

sup
t>0

‖u(t)− T (t)u+‖X <∞ and sup
t60

‖u(t)− T (t)u−‖X <∞.

Remark 2.2. Remark that in Theorem 2.1, no hypothesis on the λ′ s sign is made.

Remark 2.3. N ∈ {3, 4, 5} =⇒ 4

N
<

8

N + 2
<

6

N
<

4

N − 2
.

N > 6 =⇒ 4

N − 2
6

8

N + 2
.

Despite the fact we do not know if lim
t→±∞

‖u(t) − T (t)u±‖X = 0 when α 6
8

N + 2
(α 6 4/N if

N 6 2) or when N > 6, we can give an estimate of the difference of the norms, as shows the following

theorem, without any restriction on the dimension space N and on α (except α > 2
N
). Since under the

scattering state assumption we always have lim
t→±∞

‖u(t)− T (t)u±‖H1 = 0, it is sufficient to estimate

| ‖xu(t)‖L2 − ‖xT (t)u±‖L2| as t −→ ±∞.
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Theorem 2.4. Let λ < 0,
2

N
< α <

4

N − 2
(2 < α <∞ if N = 1), ϕ ∈ X and let u be the associated

solution of (1.1). Assume that u has a scattering state u± at ±∞ (see Definition 1.2). We define for

all t ∈ R, A±(t) = ‖xu(t)‖L2 −‖xT (t)u±‖L2 and h(t) = ‖xu(t)‖2L2. Then we have the following result.

sup
t>0

| ‖u(t)‖X − ‖T (t)u+‖X | <∞ and sup
t60

| ‖u(t)‖X − ‖T (t)u−‖X | <∞,

with the following estimates.

1. If α <
4

N
then − C

‖∇u±‖L2

6 lim inf
t→±∞

A±(t) 6 lim sup
t→±∞

A±(t) 6 ±h
′(0) + 4(xu±, i∇u±)

4‖∇u±‖L2

.

2. If α >
4

N
then ±h

′(0) + 4(xu±, i∇u±)
4‖∇u±‖L2

6 lim inf
t→±∞

A±(t) 6 lim sup
t→±∞

A±(t) 6
C

‖∇u±‖L2

.

3. If α =
4

N
then lim

t→±∞
A±(t) = ±h

′(0) + 4(xu±, i∇u±)
4‖∇u±‖L2

.

Furthermore, h′(0) = 4Im

∫

RN

ϕ(x)x.∇ϕ(x)dx and C = C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ).

Theorem 2.5. Let λ > 0,
2

N
< α <

4

N − 2
(2 < α <∞ if N = 1), ϕ ∈ X and let u be the associated

solution of (1.1). Assume that u has a scattering state u± at ±∞ (see Definition 1.2). We define for

all t ∈ R, A±(t) = ‖xu(t)‖L2 −‖xT (t)u±‖L2 and h(t) = ‖xu(t)‖2L2. Then we have the following result.

sup
t>0

| ‖u(t)‖X − ‖T (t)u+‖X | <∞ and sup
t60

| ‖u(t)‖X − ‖T (t)u−‖X | <∞,

with the following estimates.

1. If α <
4

N
then ±h

′(0) + 4(xu±, i∇u±)
4‖∇u±‖L2

6 lim inf
t→±∞

A±(t) 6 lim sup
t→±∞

A±(t) 6
C

‖∇u±‖L2

.

2. If α >
4

N
then − C

‖∇u±‖L2

6 lim inf
t→±∞

A±(t) 6 lim sup
t→±∞

A±(t) 6 ±h
′(0) + 4(xu±, i∇u±)

4‖∇u±‖L2

.

3. If α =
4

N
then lim

t→±∞
A±(t) = ±h

′(0) + 4(xu±, i∇u±)
4‖∇u±‖L2

.

Furthermore, h′(0) = 4Im

∫

RN

ϕ(x)x.∇ϕ(x)dx and C = C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ).

Remark 2.6. By Theorem 2.1 and 2 of Theorems 2.4 and 2.5, if α >
4

N
when N 6 2 or if α >

8

N + 2

when N ∈ {3, 4, 5}, we have

Im

∫

RN

u−(x)x.∇u−(x)dx 6 Im

∫

RN

ϕ(x)x.∇ϕ(x)dx 6 Im

∫

RN

u+(x)x.∇u+(x)dx, if λ < 0,

Im

∫

RN

u+(x)x.∇u+(x)dx 6 Im

∫

RN

ϕ(x)x.∇ϕ(x)dx 6 Im

∫

RN

u−(x)x.∇u−(x)dx, if λ > 0.
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Remark 2.7. If ϕ ∈ H1(RN ;C) satisfies ϕ ≡ aψ with ψ ∈ H1(RN ;R) and a ∈ C, then we have

h′(0) ≡ d

dt
‖xu(t)‖2

L2|t=0 ≡ 4Im

∫

RN

ϕ(x)x.∇ϕ(x)dx = 0.

The following proposition offers others estimates.

Proposition 2.8. Let λ 6= 0,
2

N
< α <

4

N − 2
(2 < α < ∞ if N = 1), ϕ ∈ X and let u be the

solution of (1.1) such that u(0) = ϕ. Assume that u has a scattering state u± at ±∞. Then the

following estimates hold.

1. If λ < 0, lim sup
t→±∞

(‖xu(t)‖L2 − ‖xT (t)u±‖L2) 6
‖xu±‖L2‖∇u±‖L2 ± (xu±, i∇u±)

‖∇u±‖L2

.

2. If λ > 0, lim inf
t→±∞

(‖xu(t)‖L2 − ‖xT (t)u±‖L2) > −‖xu±‖L2‖∇u±‖L2 ∓ (xu±, i∇u+)
‖∇u±‖L2

.

Remark 2.9. By 3 of Theorems 2.4 and 2.5 and by Proposition 2.8, if α =
4

N
then we have,

−‖xu−‖L2‖∇u−‖L2 6
1

4

d

dt
‖xu(t)‖2

L2|t=0 6 ‖xu+‖L2‖∇u+‖L2, if λ < 0,

−‖xu+‖L2‖∇u+‖L2 6
1

4

d

dt
‖xu(t)‖2

L2|t=0 6 ‖xu−‖L2‖∇u−‖L2, if λ > 0.

Now we give the result concerning the converse.

Theorem 2.10. Let λ 6= 0,
2

N
< α <

4

N − 2
(2 < α <∞ if N = 1), ϕ ∈ X and u be the associated

solution of (1.1). Assume that u is global in time and there exists u+ ∈ X and u− ∈ X such that

lim
t→±∞

‖u(t) − T (t)u±‖X = 0. Let α0 =
−(N − 2) +

√
N2 + 12N + 4

2N
. Then, we have the following

result.

1. If λ < 0 and if α > α0 (α > α0 if N = 2) then lim
t→±∞

‖T (−t)u(t)− u±‖X = 0.

2. If λ > 0 and if α >
4

N
then lim

t→±∞
‖T (−t)u(t)− u±‖X = 0.

3. If α >
4

N + 2
and if ‖ϕ‖X is small enough then lim

t→±∞
‖T (−t)u(t)− u±‖X = 0.

Remark 2.11. Note that in the case 2, no hypothesis on the ‖ϕ‖X ’ s size is made.

Remark 2.12. Assume there exists u±, v± ∈ X such that lim
t→±∞

‖T (−t)u(t) − u±‖X = 0 and

lim
t→±∞

‖u(t)− T (t)v±‖X = 0. Then we have, u+ = v+ and u− = v−. Indeed, since X →֒ L2(RN ) and

T (t) is an isometry on L2(RN ), we have lim
t→±∞

‖T (−t)u(t)− u±‖L2 = lim
t→±∞

‖T (−t)u(t)− v±‖L2 = 0.

Hence the result.

Remark 2.13. α0 ∈
(

4
N+2 ,

4
N

)

(α0 ∈
(

2
N
, 4
N

)

if N = 1).
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3 A priori estimates

Throughout this section, we make the following assumptions.







λ 6= 0,
2

N
< α <

4

N − 2
(2 < α <∞) if N = 1), ϕ ∈ X, u ∈ C(R;X) is the

associated solution of (1.1) and has a scattering state u± ∈ X at ±∞.
(3.1)

We define the following real.

γ∗ =















α− 2

2
, if N = 1,

α(N + 2)− 4

4
, if N > 2.

(3.2)

Proposition 3.1. Assume u satisfies (3.1) (we can suppose instead of u has a scattering state that

we only have sup
t∈R

‖T (−t)u(t)‖X < ∞). Let (q, r) be an admissible pair (see Definition 1.1). Then the

following holds.

1. For all t 6= 0, ‖u(t)‖Lr 6 C|t|− 2
q , where C = C(sup

t∈R

‖T (−t)u(t)‖X, N, r).

2. If furthermore α >
4

N + 2
then u ∈ Lq(R;W 1,r(RN )).

Proof. We follow the method of Cazenave [2] (see Theorem 7.2.1 and Corollary 7.2.4). We set

w(t, x) = e−i
|x|2

4t u(t, x) and f(u) = λ|u|αu. We already know that for every admissible pair (q, r),

u ∈ Lq
loc(R;W

1,r(RN )) (see for example Cazenave [2]; Theorem 5.3.1 and Remark 5.3). We only

prove the case t > 0, the case t < 0 following by applying the result for t > 0 to u(−t) solution of

(1.1) with initial value ϕ. We proceed in 2 steps.

Step 1. ‖u(t)‖Lr 6 C(sup
t∈R

‖T (−t)u(t)‖X, N, r)|t|−
2
q , for every admissible pair (q, r) and for all t 6= 0.

We have ‖xT (−t)u(t)‖L2 = ‖(x+2it∇)u(t)‖L2 6 C. Furthermore, (x+2it∇)u(t, x) = 2ite−i
|x|2

4t ∇w(t, x).

Using the Gagliardo-Nirenberg’s inequality, we obtain

‖u(t)‖Lr ≡ ‖w(t)‖Lr 6 C‖∇w(t)‖N(
1
2− 1

r )
L2 ‖w(t)‖1−N( 1

2− 1
r )

L2

6 C
(

‖(x+ 2it∇)u(t)‖L2|t|−1
)N( 1

2− 1
r )

6 C|t|−N( 1
2− 1

r ).

Hence the result.

Step 2. u ∈ Lq(R;W 1,r(RN )) for every admissible pair (q, r).
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By the Strichartz’ estimates and by Hölder’s inequality (applying twice), we have

‖f(u)‖Lq′((0,∞);W 1,r′ ) 6 C
(

‖u‖
L

qα
q−2 ((0,1);L

rα
r−2 )

+ ‖u‖
L

qα
q−2 ((1,∞);L

rα
r−2 )

)α

‖u‖Lq((0,∞);W 1,r), (3.3)

‖u‖Lq((S,∞);W 1,r) 6 C + C‖u‖α
L

qα
q−2 ((S,∞);L

rα
r−2 )

‖u‖Lq((S,∞);W 1,r), (3.4)

for all S > 0 and for every admissible pair (q, r).

Case N >3. We set r = 4N
2N−α(N−2) . Since α ∈

(

0, 4
N−2

)

, we have r ∈
(

2, 2N
N−2

)

. So we can take q

such that (q, r) is an admissible pair. For this choice of r, we have rα
r−2 = 2N

N−2 and q
q−2 = 4

4−α(N−2) .

By (3.4) and the first step we have for all S > 0,

‖u‖Lq((S,∞);W 1,r) 6 C + C

(
∫ ∞

S

t−
4α

4−α(N−2) dt

)

q−2
q

‖u‖Lq((S,∞);W 1,r).

And
4α

4− α(N − 2)
> 1 ⇐⇒ α >

4

N + 2
. Thus, there exists S0 > 0 large enough such that

C

(
∫ ∞

S0

t−
4α

4−α(N−2) dt

)

q

q−2

6
1

2
,

and then,

‖u‖Lq((S0,∞);W 1,r) 6 2C.

For this choice of (q, r), we deduce from (3.3) that ‖f(u)‖Lq′((0,∞);W 1,r′ ) < ∞. Hence the result for

every admissible pair by the Strichartz’ estimates.

Case N=2. Since α > 1 is fixed, we take r > 2 sufficiently close to 2 to have α >
2(r − 1)

r
. So, in

particular,
rα

r − 2
> 2. Moreover,

q

q − 2
=
r

2
where q is such that (q, r) is an admissible pair. So by

Hölder’s inequality (twice), (3.4) and the first step, we have for all S > 0,

‖u‖Lq((S,∞);W 1,r) 6 C + C

(
∫ ∞

S

t−
rα−2(r−2)

2 dt

)
2
r

‖u‖Lq((S,∞);W 1,r).

And
rα − 2(r − 2)

2
> 1 ⇐⇒ α >

2(r − 1)

r
. And we conclude exactly as the case N > 3.

Case N=1. We take (3.3) with the admissible pair (∞, 2) and apply the first step. So,

‖f(u)‖L1((0,∞);H1) 6 C
(

‖u‖Lα((0,1);L∞) + ‖u‖Lα((1,∞);L∞)

)α ‖u‖L∞((0,∞);H1)

6 C + C‖u‖αLα((1,∞),L∞) 6 C + C

∞
∫

1

t−
α
2 dt <∞.

Hence the result for every admissible pair by the Strichartz’ estimates.
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Remark 3.2. We set v(t, x) = (x + 2it∇)u(t, x). In the same way as the above proof, we can show

under the assumptions of Proposition 3.1 that if α >
4

N + 2
, then for every admissible pair (q, r),

v ∈ Lq(R;Lr(RN )) (follow the step 2 of the proof of Corollary 7.2.4 of Cazenave [2]; consider separately

the three cases N = 1, N = 2, N > 3 and replace the admissible pairs therein by those of the proof

of Proposition 3.1).

Proposition 3.3. Let γ∗ be defined by (3.2). Assume u satisfies (3.1) and α >
4

N + 2
. Then, the

following estimates hold.

1. If N = 1 then for all t 6= 0 we have ‖T (−t)u(t)− u±‖H1 6 C|t|−γ∗

.

2. If N = 2 then for all t 6= 0 and for any γ < γ∗, we have ‖T (−t)u(t)− u±‖H1 6 C|t|−γ .

3. If N > 3 then for all t 6= 0 we have ‖T (−t)u(t)− u±‖H1 6 C|t|−γ∗

.

Proof. Denote f(u) = λ|u|αu. We only prove the case t > 0, the case t < 0 following by applying the

result for t > 0 to v(t) = u(−t) solution of (1.1) with v(0) = ϕ. In this case, v+ = u− and the result

follows. By applying the Strichartz’ estimates and Hölder’s inequality (twice), we have

‖u(t)− T (t)u+‖H1 6 C‖f(u)‖Lq′(t,∞);W 1,r′ ) 6 C‖u‖α
L

qα
q−2 ((t,∞);L

rα
r−2 )

‖u‖Lq(R;W 1,r),

for every admissible pair (q, r) and for all t > 0. Thus, by Proposition 3.1, 2, we have

‖u(t)− T (t)u+‖H1 6 C‖u‖α
L

qα
q−2 ((t,∞);L

rα
r−2 )

,

for every admissible pair (q, r) and for all t > 0.

Now, we conclude by the same way than for the step 2 of the proof of Proposition 3.1, using 1 of

this proposition, considering separately the three cases N = 1, N = 2, N > 3, and using the same

admissible pairs. This achieves the proof.

4 Proof of Theorems 2.1, 2.4, 2.5 and Proposition 2.8

Throughout this section, we assume that u satisfies (3.1).

Proof of Theorem 2.1. Since lim
t→±∞

‖T (−t)u(t) − u±‖X = 0 and T (t) is an isometry on H1, we

have lim
t→±∞

‖u(t)−T (t)u±‖H1 = 0. Thus, it is sufficient to prove that lim
t→±∞

‖xu(t)−xT (t)u±‖L2 = 0

to obtain 1 and that sup
t>0

‖xu(t) − xT (t)u+‖L2 < ∞ and sup
t60

‖xu(t) − xT (t)u−‖L2 < ∞ to obtain
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2. Suppose that the result is proved for t > 0. Then we apply it to v(t) = u(−t) solution of (1.1)

with initial data v(0) = ϕ. Then v+ = u− is the scattering state at +∞ of u(−t). And using the

identity T (t)ψ = T (−t)ψ which holds for all t ∈ R and for every ψ ∈ L2, we obtain the result for

t < 0. So to conclude, it is sufficient to prove that lim
t→∞

‖xu(t) − xT (t)u+‖L2 = 0 to obtain 1 and

sup
t>0

‖xu(t)− xT (t)u+‖L2 <∞ to obtain 2. We have

xu(t)− xT (t)u+ = xu(t)− T (t)xu+ + 2itT (t)∇u+

= xu(t) + 2it∇u(t)− T (t)xu+ + 2itT (t)∇u+ − 2it∇u(t)

= T (t) [(xT (−t)u(t)− xu+) + 2it(∇u+ − T (−t)∇u(t))] ,

for all t > 0. With Proposition 3.3, we obtain

‖xu(t)− xT (t)u+‖L2 6 ‖xT (−t)u(t)− xu+‖L2 + 2t‖T (−t)∇u(t)−∇u+‖L2

6 ‖xT (−t)u(t)− xu+‖L2 + Ct−(γ−1),

for all t > 0 and for all γ ∈ (0, γ∗] if N 6= 2 and for all γ ∈ (0, γ∗) if N = 2, where γ∗ is defined by

(3.2). And by assumption, lim
t→∞

‖xT (−t)u(t)− xu+‖L2 = 0 and γ∗ − 1 > 0 if and only if α > 8
N+2 if

N > 3 and α > 4
N

if N 6 2. Thus, in the above expression, it is sufficient to choose γ = γ∗ if N 6= 2,

and γ ∈ (0, γ∗) close enough to γ∗ if N = 2. Hence the result.

Remark 4.1. Since we do not have the estimate 2 of Proposition 3.3 for γ = γ∗, we do not know

whether or not sup
t>0

‖u(t)− T (t)u+‖X <∞ and sup
t60

‖u(t)− T (t)u−‖X <∞ when N = 2 and α =
4

N
.

We define the following function h by

∀t ∈ (−T∗, T ∗), h(t) = ‖xu(t)‖2L2 . (4.1)

Lemma 4.2. Let u satisfying (3.1) and let h be defined by (4.1). Then h ∈ C2(R), and we have

∀t ∈ R,











h′(t) = 4Im

∫

RN

u(t, x)x.∇u(t, x)dx,

h′′(t) = 2Nα‖∇u+‖2L2 − 2(Nα− 4)‖∇u(t)‖2L2.

Furthermore, if λ < 0,

∀t ∈ R, ‖∇u(t)‖L2 6 ‖∇u+‖L2 , (4.2)

and if λ > 0,

∀t ∈ R, ‖∇u(t)‖L2 > ‖∇u+‖L2 . (4.3)
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Proof. See Ginibre and Velo [6] or Cazenave [2], Proposition 6.4.2 to have h ∈ C2(R), the expression

of h′ and ∀t ∈ R, h′′(t) = 4NαE(ϕ) − 2(Nα − 4)‖∇u(t)‖2L2. Furthermore, using the conservation of

energy and lim
t→±∞

‖u(t)‖Lα+2 = 0 (Proposition 3.1), we obtain ‖∇u+‖2L2 = 2E(ϕ). Which gives, with

the above identity, the desired expression of h′′. Finally, with the equality ‖∇u+‖2L2 = 2E(ϕ) and the

conservation of energy, we obtain (4.2) if λ < 0 and (4.3) if λ > 0.

Now, we establish 2 lemmas which will be used to prove Theorem 2.4.

Lemma 4.3. Let u satisfying (3.1) and let h be defined by (4.1). Assume that λ < 0. Then the

following holds.

(i) If α <
4

N
then lim sup

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) 6

h′(0) + 4(xu+, i∇u+)
4‖∇u+‖L2

.

(ii) If α >
4

N
then lim inf

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) >

h′(0) + 4(xu+, i∇u+)
4‖∇u+‖L2

.

(iii) If α =
4

N
then lim

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) =

h′(0) + 4(xu+, i∇u+)
4‖∇u+‖L2

.

Proof. We proceed in 4 steps.

Step 1. (a) If α <
4

N
then ∀t > 0, h′(t) > h′(0) + 2Nα‖∇u+‖2L2t.

(b) If α >
4

N
then ∀t > 0, h′(t) > h′(0) + 8‖∇u+‖2L2t.

(c) If α =
4

N
then ∀t ∈ R, h′(t) = h′(0) + 8‖∇u+‖2L2t.

We integrate between 0 and t > 0 the function h′′ of Lemma 4.2.

α 6
4

N
=⇒ −2(Nα− 4) > 0 =⇒ (a).

α >
4

N
=⇒ −2(Nα− 4) 6 0 with (4.2) =⇒ (b).

α =
4

N
=⇒ −2(Nα− 4) = 0 =⇒(c).

Step 2. (a) If α <
4

N
then ∀t > 0, h′(t) 6 h′(0) + 8‖∇u+‖2L2t.

(b) If α >
4

N
then ∀t > 0, h′(t) 6 h′(0) + 2Nα‖∇u+‖2L2t.

We integrate between 0 and t > 0 the function h′′ of Lemma 4.2.

α <
4

N
=⇒ −2(Nα− 4) > 0 and (4.2) =⇒(a).

α >
4

N
=⇒(b).

Step 3. (a) If α <
4

N
then ∀t > 0,

‖xϕ‖2L2 + h′(0)t+Nα‖∇u+‖2L2t2 6 h(t) 6 ‖xϕ‖2L2 + h′(0)t+ 4‖∇u+‖2L2t2.
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(b) If α >
4

N
then ∀t > 0,

‖xϕ‖2L2 + h′(0)t+ 4‖∇u+‖2L2t2 6 h(t) 6 ‖xϕ‖2L2 + h′(0)t+Nα‖∇u+‖2L2t2.

(c) If α =
4

N
then ∀t ∈ R, h(t) = ‖xϕ‖2L2 + h′(0)t+ 4‖∇u+‖2L2t2.

It is sufficient to integrate between 0 and t > 0 the formulas of steps 1 and 2 to obtain the step 3.

Step 4. Conclusion.

We set : g(t) =
√

‖xϕ‖2
L2 + h′(0)t+ 4‖∇u+‖2L2t2, t > 0 large enough.

Then for t > 0 large enough, we have the following asymptotic development:

g(t) = 2‖∇u+‖L2t+
h′(0)

4‖∇u+‖L2

+
‖xϕ‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

. (4.4)

In the same way, for t > 0 large enough, we have :

‖xT (t)u+‖L2 = 2‖∇u+‖L2t− (xu+, i∇u+)
‖∇u+‖L2

+
‖xu+‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

. (4.5)

And, applying the step 3 (a), (4.4) and (4.5) and taking lim sup
t→∞

, we get (i). Indeed,

‖xu(t)‖L2 − ‖xT (t)u+‖L2

6 2‖∇u+‖L2t+
h′(0)

4‖∇u+‖L2

+
‖xϕ‖2

L2

4‖∇u+‖L2t
− 2‖∇u+‖L2t+

(xu+, i∇u+)
‖∇u+‖L2

− ‖xu+‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

=
h′(0)

4‖∇u+‖L2

+
‖xϕ‖2

L2

4‖∇u+‖L2t
+

(xu+, i∇u+)
‖∇u+‖L2

− ‖xu+‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

.

Hence (i) by taking lim sup
t→∞

in the above expression.

By applying the step 3 (b), (4.4) and (4.5) and taking lim inf
t→∞

, we get (ii) by the same way.

By applying the step 3 (c), (4.4) and (4.5) and letting t −→ ∞, we get (iii) by the same way.

Lemma 4.4. Let u satisfying (3.1). Assume that λ < 0. Then the following holds.

(i) If α <
4

N
then lim inf

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) > − C

‖∇u±‖L2

.

(ii) If α >
4

N
then lim sup

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) 6

C

‖∇u±‖L2

.

Furthermore, C = C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ).

Proof. We proceed in 2 steps. Let h be defined by (4.1).

Step 1. ∀t > 1, −
t

∫

1

s
∫

1

‖∇u(σ)‖2L2dσds 6 C + Ct−
Nα−4

2 + Ct + ‖∇u+‖2t −
1

2
‖∇u+‖2L2t2, where
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C = C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ).

By Proposition 3.1, we have ‖u(σ)‖α+2
Lα+2 6 C(sup

t∈R

‖T (−t)u(t)‖X , N, α)σ−Nα
2 , for all σ > 0. With the

conservation of energy and the formula ‖∇u+‖2L2 = 2E(ϕ), we deduce that for all σ > 0,

‖∇u+‖2L2 − ‖∇u(σ)‖2L2 6 C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ)σ−Nα
2

(since λ < 0). Integrating this expression over [1, t]× [1, s], we obtain the desired result.

Step 2. Conclusion.

(i) Lemma 4.2 implies that for every t > 0,

h(t) = ‖xϕ‖2L2 + h′(0)t+Nα‖∇u+‖2L2t2 − 2(Nα− 4)

t
∫

0

s
∫

0

‖∇u(σ)‖2L2dσds. (4.6)

By (4.6) and step 1, we obtain,

∀t > 1, h(t) > C+h′(0)t+Nα‖∇u+‖2L2t2+Ct
4−Nα

2 −Ct+2(Nα−4)‖∇u+‖2L2t− (Nα−4)‖∇u+‖2t2.

And so for all t > 1, h(t) > C + Ct
4−Nα

2 + (h′(0)− 2(4−Nα)‖∇u+‖2L2 − C)t + 4‖∇u+‖2L2t2. By an

asymptotic development on this last inequality, we obtain

‖xu(t)‖L2 > 2‖∇u+‖L2t+ Ct−1 + Ct−
Nα−2

2 +
h′(0)− 2(4−Nα)‖∇u+‖2L2 − C

4‖∇u+‖L2

+ o

(

1

t

)

,

for all t > 0 large enough. From this last expression and (4.5), we obtain (i) (see the end of the proof

of (i) of Lemma 4.3).

(ii) From (4.6) and step 1, we obtain, for all t > 1,

h(t) 6 C + f ′(0)t+Nα‖∇u+‖2L2t2 + Ct
4−Nα

2 + Ct+ 2(Nα− 4)‖∇u+‖2L2t− (Nα− 4)‖∇u+‖2L2t2.

And so, for all t > 1, h(t) 6 C + Ct
4−Nα

2 + (h′(0) + 2(Nα− 4)‖∇u+‖2L2 + C)t+ 4‖∇u+‖2L2t2. By an

asymptotic development on this last inequality, we obtain

‖xu(t)‖L2 6 2‖∇u+‖L2t+ Ct−1 + Ct−
Nα−2

2 +
h′(0)− 2(4−Nα)‖∇u+‖2L2 + C

4‖∇u+‖L2

+ o

(

1

t

)

,

for all t > 0 large enough. With this last expression and (4.5), we obtain (ii) (see the end of the proof

of (i) of Lemma 4.3).

Now, we are able to prove Theorem 2.4.

Proof of Theorem 2.4. As for the proof of Theorem 2.1, it is sufficient to show that

12



| ‖xu(t)‖L2 − ‖xT (t)u+‖L2| remains bounded as t −→ ∞. Lemmas 4.3 and 4.4 achieve the proof

and give the desired estimates.

Now, we establish 2 lemmas which will be used to prove Theorem 2.5. The proof is very similar

to the Theorem 2.4 one.

Lemma 4.5. Let u satisfying (3.1) and let h be defined by (4.1). Assume that λ > 0. Then the

following holds.

(i) If α <
4

N
then lim inf

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) >

h′(0) + 4(xu+, i∇u+)
4‖∇u+‖L2

.

(ii) If α >
4

N
then lim sup

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) 6

h′(0) + 4(xu+, i∇u+)
4‖∇u+‖L2

.

(iii) If α =
4

N
then lim

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) =

h′(0) + 4(xu+, i∇u+)
4‖∇u+‖L2

.

Proof. We proceed as for the proof of Lemma 4.3, using (4.3) instead of (4.2).

Lemma 4.6. Let u satisfying (3.1). Assume that λ > 0. Then the following holds.

(i) If α <
4

N
then lim sup

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) 6

C

‖∇u±‖L2

.

(ii) If α >
4

N
then lim inf

t→∞
(‖xu(t)‖L2 − ‖xT (t)u+‖L2) > − C

‖∇u±‖L2

.

Furthermore, C = C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ).

Proof. We proceed in 2 steps.

Step 1. ∀t > 1, −
t

∫

1

s
∫

1

‖∇u(σ)‖2L2dσds > −C − Ct−
Nα−4

2 − Ct + ‖∇u+‖2L2t− 1

2
‖∇u+‖2L2t2, where

C = C(sup
t∈R

‖T (−t)u(t)‖X , N, α, λ).

By Proposition 3.1, we have ‖u(σ)‖α+2
Lα+2 6 C(sup

t∈R

‖T (−t)u(t)‖X , N, α)σ−Nα
2 , for all σ > 0. With the

conservation of energy and the equality ‖∇u+‖2L2 = 2E(ϕ), we deduce that for all σ > 0,

‖∇u+‖2L2 − ‖∇u(σ)‖2L2 > −C(sup
t∈R

‖T (−t)u(t)‖X, N, α, λ)σ−Nα
2

(since λ > 0). Integrating this expression over [1, t]× [1, s], we get the desired result.

Step 2. Conclusion.
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First, note that we have for all t > 1,

∫ t

0

∫ s

0

‖∇u(σ)‖2L2dσds

=

∫ t

0

∫ 1

0

‖∇u(σ)‖2L2dσds +

∫ 1

0

∫ s

1

‖∇u(σ)‖2L2dσds+

∫ t

1

∫ s

1

‖∇u(σ)‖2L2dσds

6

∫ t

0

∫ 1

0

‖∇u(σ)‖2L2dσds +

∫ t

1

∫ s

1

‖∇u(σ)‖2L2dσds.

And so,

t
∫

0

s
∫

0

‖∇u(σ)‖2L2dσds 6 C(‖ϕ‖H1 , N, α, λ)t+

t
∫

1

s
∫

1

‖∇u(σ)‖2L2dσds,

for all t > 1. And we proceed as for the proof of Lemma 4.4.

Now, we are able to prove Theorem 2.5.

Proof of Theorem 2.5. As for the proof of Theorem 2.1, it is sufficient to show that

| ‖xu(t)‖L2 − ‖xT (t)u+‖L2| remains bounded as t −→ ∞. Lemmas 4.5 and 4.6 achieve the proof

and give the desired estimates.

Proof of Proposition 2.8. By Cauchy-Schwarz’ inequality, we have

| ‖xu(t)‖L2 − 2t‖∇u(t)‖L2| 6 ‖xT (−t)u(t)‖L2, (4.7)

for all t ∈ R and for every λ 6= 0.

We have also the following estimate.

‖xT (t)u+‖L2 = 2t‖∇u+‖L2 − (xu+, i∇u+)
‖∇u+‖L2

+
‖xu+‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

, (4.8)

for all t > 0 large enough and for every λ 6= 0.

We first establish 1 in the case t > 0 that we note in this proof 1+. 1 in the case t < 0 is obviously

noted 1−. By (4.7), (4.8) and (4.2), we have

‖xu(t)‖L2 − ‖xT (t)u+‖L2

6 2t‖∇u(t)‖L2 + ‖xT (−t)u(t)‖L2 − 2t‖∇u+‖L2 +
(xu+, i∇u+)
‖∇u+‖L2

− ‖xu+‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

6 ‖xT (−t)u(t)‖L2 +
(xu+, i∇u+)
‖∇u+‖L2

− ‖xu+‖2L2

4‖∇u+‖L2t
+ o

(

1

t

)

for all t > 0 large enough.

Hence 1+ by taking lim sup
t→∞

in the above expression. 1− follows by applying 1+ to v solution of (1.1)
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such that v(0) = ϕ. Indeed, by uniqueness v(t) = u(−t) and so v+ = u−. Then, using 1+ and the

identity T (t)ψ = T (−t)ψ which holds for all t ∈ R and ψ ∈ L2, we obtain 1−.

Using (4.3) instead of (4.2), we obtain 2 by the same way.

5 Proof of Theorem 2.10

Proof of Theorem 2.10. We proceed in 2 steps.

Step 1. We have 1 and 3.

It is well-known that there exist v± ∈ X such that T (−t)u(t) X−−−−→
t→±∞

v± (Cazenave and Weissler [3]).

The result follows from Remark 2.12.

Step 2. We have 2.

We set v(t, x) = (x + 2it∇)u(t, x), w(t, x) = e−i
|x|2

4t u(t, x) and f(u) = λ|u|αu. Since T (t) is an

isometry on H1(RN ), we only have to show that xT (−t)u(t) L2(RN )−−−−−→
t→±∞

xu±. We have X →֒ Lα+2(RN ),

thus u(t)− T (t)u±
Lα+2(RN )−−−−−−→
t→±∞

0 and so lim
t→±∞

‖u(t)‖Lα+2 = lim
t→±∞

‖T (t)u±‖Lα+2 = 0. Therefore, since

α >
4

N
,

u ∈ Lq(R;W 1,r(RN )), (5.1)

v ∈ Lq(R;Lr(RN )), (5.2)

for every admissible pair (q, r) (see for example Cazenave [2], Theorem 7.5.3 for (5.1); following the

proof of this theorem with v instead of u, yields (5.2)).

From (5.2) we have in particular, v ∈ L∞(R;L2(RN )) and so by Proposition 3.1, 1,

‖u(t)‖Lr 6 C|t|− 2
q , (5.3)

for every admissible pair (q, r) and for all t 6= 0.

We have the following integral equation. For all t ∈ R,

u(t) = T (t)u± − i

±∞
∫

t

T (t− s)f(u(s))ds,

from which we deduce,

∀t ∈ R, T (t)(xT (−t)u(t)− xu±) = −i
±∞
∫

t

T (t− s)(x + 2is∇)f(u(s))ds. (5.4)
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We also have (x + 2it∇)u(t, x) = 2itei
|x|2

4t ∇w(t, x). Moreover, e−i
|x|2

4t f(u(t, x)) = f(w(t, x)). Thus,

(x+ 2it∇)f(u(t, x)) = 2itei
|x|2

4t ∇f(w(t, x)), and so |(x+ 2it∇)f(u(t, x))| = 2|t||∇f(w(t, x))|. Finally,

‖(x+2it∇)f(u)‖Lr′ = 2|t|‖∇f(w)‖Lr′ 6 C|t|‖|w|α∇w‖Lr′ . From this inequality, by using the Hölder’s

inequality twice, we deduce that (note that |w| = |u|)

‖(x+ 2it∇)f(u)‖Lq′(I,Lr′) 6 C‖u‖α
L

qα
q−2 (I,L

rα
r−2 )

‖(x+ 2it∇)u‖Lq(I,Lr), (5.5)

for every admissible pair (q, r) and for any interval I ⊆ R. From (5.4), from the Strichartz’ estimates,

from (5.5) and from (5.2), we have

‖xT (−t)u(t)− xu+‖L2 = ‖T (t)(xT (−t)u(t)− xu+)‖L2

6 C‖(x+ 2is∇)f(u)‖Lq′((t,∞);Lr′)

6 C‖u‖α
L

qα
q−2 ((t,∞);L

rα
r−2 )

‖v‖Lq(R;Lr)

6 C‖u‖α
L

qα
q−2 ((t,∞);L

rα
r−2 )

,

for every admissible pair (q, r) and for all t > 0.

We use this inequality with the admissible pair (q, r) such that r = α+ 2 and we apply (5.3). Then,

‖xT (−t)u(t)− xu+‖L2 6 C

(
∫ ∞

t

s−
2α
q−2 ds

)

q−2
q

6 Ct−
2α−(q−2)

q
t→∞−−−→ 0,

since α >
4

N
=⇒ 2α > q − 2. Hence the result. The case t < 0 follows with the same method.
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