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Convergence to Scattering States in the Nonlinear Schr ödinger Equation

In this paper, we consider global solutions of the following nonlinear Schrödinger equation iut

|x| 2 ; dx). We show that, under suitable conditions, if the solution u satisfies e -it∆ u(t) -u± → 0 in X as t → ±∞ then u(t)e it∆ u± → 0 in X as t → ±∞. We also study the converse. Finally, we estimate | u(t) Xe it∆ u± X | under some less restrictive assumptions.

Introduction and notations

We consider the following Cauchy problem,

     i ∂u ∂t + ∆u + λ|u| α u = 0, (t, x) ∈ (-T * , T * ) × R N , u(0) = ϕ, in R N , (1.1) 
where λ ∈ R, 0 α < 4 N -2 (0 α < ∞ if N = 1) and ϕ a given initial data.

It is well-known that if λ < 0, α > 4 N and ϕ ∈ H 1 (R N ), then there exists u ± ∈ H 1 (R N ) such that lim t→±∞ T (-t)u(t)-u ± H 1 = 0 (Ginibre and Velo [START_REF] Ginibre | Scattering theory in the energy space for a class of nonlinear Schrödinger equations[END_REF], Nakanishi [START_REF] Nakanishi | Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2[END_REF][START_REF] Nakanishi | Remarks on the energy scattering for nonlinear Klein-Gordon and Schrödinger equations[END_REF]). Since (e it∆ ) t∈R is an isometry on H 1 (R N ), we also have lim

t→±∞ u(t) -T (t)u ± H 1 = 0. Furthermore, if α > -(N -2)+ √ N 2 +12N +4 2N
and if ϕ ∈ X ≡ H 1 (R N ) ∩ L 2 (|x| 2 ; dx), then there exist u ± ∈ X such that lim t→±∞ T (-t)u(t) -u ± X = 0 (Tsutsumi [START_REF] Tsutsumi | Scattering problem for nonlinear Schrödinger equations[END_REF]). The same result holds without assumption on the λ's sign if the initial data is small 2000 Mathematics Subject Classification: 35Q55 (35B40, 35B45, 35P25) 1 enough in X and if α > 4 N + 2 (Cazenave and Weissler [START_REF] Cazenave | Rapidly decaying solutions of the nonlinear Schrödinger equation[END_REF]). Note that to have these limits, we have to make a necessary assumption on α (Barab [START_REF] Barab | Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation[END_REF], Strauss [START_REF] Strauss | Nonlinear scattering theory[END_REF][START_REF] Strauss | Nonlinear scattering theory at low energy[END_REF], Tsutsumi and Yajima [START_REF] Tsutsumi | The asymptotic behavior of nonlinear Schrödinger equations[END_REF]), 2

N < α < 4 N -2 (2 < α < ∞ if N = 1).
The purpose of this paper is to study the asymptotic behavior of u(t) -T (t)u ± X under the assumption lim t→±∞ T (-t)u(t) -u ± X = 0, and the converse. In the linear case (i.e. : λ = 0) or if the initial data is 0, the answer is trivial since T (-t)u(t) -u ± ≡ u(t) -T (t)u ± ≡ 0, for all t ∈ R. Since (e it∆ ) t∈R is an isometry on H 1 (R N ), the equivalence on H 1 (R N ) is trivial. But (e it∆ ) t∈R is not an isometry on X and so it is natural to wonder whether or not we have lim t→±∞ u(t) -T (t)u ± X = 0 when lim t→±∞ T (-t)u(t) -u ± X = 0 and conversely.

This paper is organized as follows. In Section 2, we give the main results. In Section 3, we establish some a priori estimates. In Section 4, we prove Theorems 2.1, 2.4, 2.5 and Proposition 2.8. In Section 5, we prove Theorem 2.10.

Before closing this section, we give some notations which will be used throughout this paper and we recall some properties of the solutions of the nonlinear Schrödinger equation.

z is the conjugate of the complex number z; Re z and Im z are respectively the real and imaginary part of the complex number z; ∆ = N j=1 ∂ 2 ∂x 2 j ; for 1 p ∞, p ′ is the conjugate of the real number p defined by 1 p + 1 p ′ = 1 and

L p = L p (R N ) = L p (R N ; C) with norm . L p ; H 1 = H 1 (R N ) = H 1 (R N ; C) with norm . H 1 ; for all (f, g) ∈ L 2 × L 2 , (f, g) = Re R N f (x)g(x)dx; X = ψ ∈ H 1 (R N ; C); ψ X < ∞ with norm ψ 2 X = ψ 2 H 1 (R N ) + R N |x| 2 |ψ(x)| 2 dx; (T (t)
) t∈R is the group of isometries (e it∆ ) t∈R generated by i∆ on L 2 (R N ; C); C are auxiliary positive constants and C(a 1 , a 2 , . . . , a n ) indicates that the constant C depends only on parameters a 1 , a 2 , . . . , a n and that the dependence is continuous.

It is well-known that for every ϕ ∈ X, (1.1) has a unique solution u ∈ C((-T * , T * ); X) which satisfies the conservation of charge and energy, that is for all t ∈ (-T * , T * ), u(t [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations, volume 26 of Textos de Métodos Matemáticos[END_REF], Ginibre and Velo [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2 and 3[END_REF][START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF][START_REF] Ginibre | On a class of nonlinear Schrödinger equations. II. Scattering theory, general case[END_REF][START_REF] Ginibre | The global Cauchy problem for the nonlinear Schrödinger equation revisited[END_REF], Kato [START_REF] Kato | On nonlinear Schrödinger equations[END_REF]). Definition 1.1. We say that (q, r) is an admissible pair if the following holds.

) L 2 = ϕ L 2 and E(u(t)) = E(ϕ) def = 1 2 ∇ϕ 2 L 2 -λ α+2 ϕ α+2 L α+2 . Moreover, if λ 0, if α < 4 N or if ϕ H 1 is small enough then T * = T * = ∞ and u L ∞ (R;H 1 ) < ∞ (see for example Cazenave
(i) 2 r 2N N -2 (2 r < ∞ if N = 2, 2 r ∞ if N = 1), (ii) 2 q = N 1 2 -1 r .
Note that in this case 2 q ∞ and q = 4r N (r -2) .

Definition 1.2. We say that a solution u ∈ C((-T * , T * ); X) of (1.1) has a scattering state u + at

+∞ (respectively u -at -∞) if T * = ∞ and if u + ∈ X is such that lim t→∞ T (-t)u(t) -u + X = 0 (respectively if T * = ∞ and if u -∈ X is such that lim t→-∞ T (-t)u(t) -u -X = 0).
We recall the Strichartz' estimates. Let I ⊆ R, be an interval, let t 0 ∈ I, let (q, r) and (γ, ρ)

be two admissible pairs, let ϕ ∈ L 2 (R N ) and let f ∈ L γ ′ (I; L ρ ′ (R N )). Then the following integral equation defined for all t ∈ I, u(t) = T (t)ϕ + i t t0
T (t -s)f (s)ds, satisfies the following inequality

u L q (I,L r ) C 0 ϕ L 2 +C 1 f L γ ′ (I;L ρ ′ ) , where C 0 = C 0 (N, r) and C 1 = C 1 (N, r, ρ).
For more details, see Keel and Tao [START_REF] Keel | Endpoint Strichartz estimates[END_REF].

The main results

Theorem 2.1.

Let λ = 0, 2 N < α < 4 N -2 (2 < α < ∞ if N = 1)
, ϕ ∈ X and let u be the solution of (1.1) such that u(0) = ϕ. We assume that u has a scattering state u ± at ±∞ (see Definition 1.2).

Then the following holds.

1. (a) If N 2 and if α > 4 N then lim t→±∞ u(t) -T (t)u ± X = 0. (b) If 3 N 5 and if α > 8 N + 2 then lim t→±∞ u(t) -T (t)u ± X = 0.
2. If N = 1 and α = 4 or if 3 N 5 and α = 8 N + 2 then we have,

sup t 0 u(t) -T (t)u + X < ∞ and sup t 0 u(t) -T (t)u -X < ∞.
Remark 2.2. Remark that in Theorem 2.1, no hypothesis on the λ ′ s sign is made.

Remark 2.3. N ∈ {3, 4, 5} =⇒ 4 N < 8 N + 2 < 6 N < 4 N -2 . N 6 =⇒ 4 N -2 8 N + 2
.

Despite the fact we do not know if lim

t→±∞ u(t) -T (t)u ± X = 0 when α 8 N + 2 (α 4/N if N 2)
or when N 6, we can give an estimate of the difference of the norms, as shows the following theorem, without any restriction on the dimension space N and on α (except α > 2 N ). Since under the scattering state assumption we always have lim

t→±∞ u(t) -T (t)u ± H 1 = 0, it is sufficient to estimate | xu(t) L 2 -xT (t)u ± L 2 | as t -→ ±∞. N < α < 4 N -2 (2 < α < ∞ if N = 1)
, ϕ ∈ X and let u be the associated solution of (1.1). Assume that u has a scattering state u ± at ±∞ (see Definition 1.2). We define for

all t ∈ R, A ± (t) = xu(t) L 2 -xT (t)u ± L 2 and h(t) = xu(t) 2 L 2 .
Then we have the following result.

sup t 0 | u(t) X -T (t)u + X | < ∞ and sup t 0 | u(t) X -T (t)u -X | < ∞,
with the following estimates.

1. If α < 4 N then - C ∇u ± L 2 lim inf t→±∞ A ± (t) lim sup t→±∞ A ± (t) ± h ′ (0) + 4(xu ± , i∇u ± ) 4 ∇u ± L 2 . 2. If α > 4 N then ± h ′ (0) + 4(xu ± , i∇u ± ) 4 ∇u ± L 2 lim inf t→±∞ A ± (t) lim sup t→±∞ A ± (t) C ∇u ± L 2 . 3. If α = 4 N then lim t→±∞ A ± (t) = ± h ′ (0) + 4(xu ± , i∇u ± ) 4 ∇u ± L 2 . Furthermore, h ′ (0) = 4Im R N ϕ(x)x.∇ϕ(x)dx and C = C(sup t∈R T (-t)u(t) X , N, α, λ). Theorem 2.5. Let λ > 0, 2 N < α < 4 N -2 (2 < α < ∞ if N = 1)
, ϕ ∈ X and let u be the associated solution of (1.1). Assume that u has a scattering state u ± at ±∞ (see Definition 1.2). We define for

all t ∈ R, A ± (t) = xu(t) L 2 -xT (t)u ± L 2 and h(t) = xu(t) 2 L 2 .
Then we have the following result.

sup t 0 | u(t) X -T (t)u + X | < ∞ and sup t 0 | u(t) X -T (t)u -X | < ∞,
with the following estimates.

1. If α < 4 N then ± h ′ (0) + 4(xu ± , i∇u ± ) 4 ∇u ± L 2 lim inf t→±∞ A ± (t) lim sup t→±∞ A ± (t) C ∇u ± L 2 . 2. If α > 4 N then - C ∇u ± L 2 lim inf t→±∞ A ± (t) lim sup t→±∞ A ± (t) ± h ′ (0) + 4(xu ± , i∇u ± ) 4 ∇u ± L 2 . 3. If α = 4 N then lim t→±∞ A ± (t) = ± h ′ (0) + 4(xu ± , i∇u ± ) 4 ∇u ± L 2 . Furthermore, h ′ (0) = 4Im R N ϕ(x)x.∇ϕ(x)dx and C = C(sup t∈R T (-t)u(t) X , N, α, λ).
Remark 2.6. By Theorem 2.1 and 2 of Theorems 2.4 and 2.5

, if α > 4 N when N 2 or if α > 8 N + 2 when N ∈ {3, 4, 5}, we have Im R N u -(x)x.∇u -(x)dx Im R N ϕ(x)x.∇ϕ(x)dx Im R N u + (x)x.∇u + (x)dx, if λ < 0, Im R N u + (x)x.∇u + (x)dx Im R N ϕ(x)x.∇ϕ(x)dx Im R N u -(x)x.∇u -(x)dx, if λ > 0. Remark 2.7. If ϕ ∈ H 1 (R N ; C) satisfies ϕ ≡ aψ with ψ ∈ H 1 (R N ; R) and a ∈ C, then we have h ′ (0) ≡ d dt xu(t) 2 L 2 |t=0 ≡ 4Im R N ϕ(x)x.∇ϕ(x)dx = 0.
The following proposition offers others estimates.

Proposition 2.8. Let λ = 0, 2 N < α < 4 N -2 (2 < α < ∞ if N = 1)
, ϕ ∈ X and let u be the solution of (1.1) such that u(0) = ϕ. Assume that u has a scattering state u ± at ±∞. Then the following estimates hold.

1. If λ < 0, lim sup t→±∞ ( xu(t) L 2 -xT (t)u ± L 2 ) xu ± L 2 ∇u ± L 2 ± (xu ± , i∇u ± ) ∇u ± L 2 . 2. If λ > 0, lim inf t→±∞ ( xu(t) L 2 -xT (t)u ± L 2 ) - xu ± L 2 ∇u ± L 2 ∓ (xu ± , i∇u + ) ∇u ± L 2 .
Remark 2.9. By 3 of Theorems 2.4 and 2.5 and by Proposition 2.8, if α = 4 N then we have,

-xu -L 2 ∇u -L 2 1 4 d dt xu(t) 2 L 2 |t=0 xu + L 2 ∇u + L 2 , if λ < 0, -xu + L 2 ∇u + L 2 1 4 d dt xu(t) 2 L 2 |t=0 xu -L 2 ∇u -L 2 , if λ > 0.
Now we give the result concerning the converse.

Theorem 2.10.

Let λ = 0, 2 N < α < 4 N -2 (2 < α < ∞ if N = 1)
, ϕ ∈ X and u be the associated solution of (1.1). Assume that u is global in time and there exists u + ∈ X and u -∈ X such that

lim t→±∞ u(t) -T (t)u ± X = 0. Let α 0 = -(N -2) + √ N 2 + 12N + 4 2N
. Then, we have the following result.

1. If λ < 0 and if α α 0 (α > α 0 if N = 2) then lim t→±∞ T (-t)u(t) -u ± X = 0. 2. If λ > 0 and if α > 4 N then lim t→±∞ T (-t)u(t) -u ± X = 0. 3. If α > 4 N + 2 and if ϕ X is small enough then lim t→±∞ T (-t)u(t) -u ± X = 0.
Remark 2.11. Note that in the case 2, no hypothesis on the ϕ X ' s size is made.

Remark 2.12. Assume there exists u

± , v ± ∈ X such that lim t→±∞ T (-t)u(t) -u ± X = 0 and lim t→±∞ u(t) -T (t)v ± X = 0. Then we have, u + = v + and u -= v -. Indeed, since X ֒→ L 2 (R N ) and
T (t) is an isometry on L 2 (R N ), we have lim t→±∞ T (-t)u(t) -u ± L 2 = lim t→±∞ T (-t)u(t) -v ± L 2 = 0.
Hence the result.

Remark 2.13.

α 0 ∈ 4 N +2 , 4 N (α 0 ∈ 2 N , 4 N if N = 1).

A priori estimates

Throughout this section, we make the following assumptions.

   λ = 0, 2 N < α < 4 N -2 (2 < α < ∞) if N = 1), ϕ ∈ X, u ∈ C(R; X)
is the associated solution of (1.1) and has a scattering state u ± ∈ X at ± ∞.

(3.1)

We define the following real. T (-t)u(t) X < ∞). Let (q, r) be an admissible pair (see Definition 1.1). Then the following holds.

γ * =        α -2 2 , if N = 1, α(N + 2) -4 4 , if N 2. ( 3 
1. For all t = 0, u(t

) L r C|t| -2 q , where C = C(sup t∈R T (-t)u(t) X , N, r). 2. If furthermore α > 4 N + 2 then u ∈ L q (R; W 1,r (R N )).
Proof. We follow the method of Cazenave [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations, volume 26 of Textos de Métodos Matemáticos[END_REF] (see Theorem 7.2.1 and Corollary 7.2.4). We set w(t, x) = e -i |x| 2 4t u(t, x) and f (u) = λ|u| α u. We already know that for every admissible pair (q, r), u ∈ L q loc (R; W 1,r (R N )) (see for example Cazenave [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations, volume 26 of Textos de Métodos Matemáticos[END_REF]; Theorem 5.3.1 and Remark 5.3). We only prove the case t > 0, the case t < 0 following by applying the result for t > 0 to u(-t) solution of (1.1) with initial value ϕ. We proceed in 2 steps.

Step

1. u(t) L r C(sup t∈R T (-t)u(t) X , N, r)|t| -2
q , for every admissible pair (q, r) and for all t = 0.

We have xT

(-t)u(t) L 2 = (x+2it∇)u(t) L 2 C. Furthermore, (x+2it∇)u(t, x) = 2ite -i |x| 2 4t ∇w(t, x).
Using the Gagliardo-Nirenberg's inequality, we obtain

u(t) L r ≡ w(t) L r C ∇w(t) N ( 1 2 -1 r ) L 2 w(t) 1-N ( 1 2 -1 r ) L 2 C (x + 2it∇)u(t) L 2 |t| -1 N ( 1 2 -1 r ) C|t| -N ( 1 2 -1 r ) .
Hence the result.

Step 2. u ∈ L q (R; W 1,r (R N )) for every admissible pair (q, r).

By the Strichartz' estimates and by Hölder's inequality (applying twice), we have

f (u) L q ′ ((0,∞);W 1,r ′ ) C u L qα q-2 ((0,1);L rα r-2 ) + u L qα q-2 ((1,∞);L rα r-2 ) α u L q ((0,∞);W 1,r ) , (3.3) u L q ((S,∞);W 1,r ) C + C u α L qα q-2 ((S,∞);L rα r-2 ) u L q ((S,∞);W 1,r ) , (3.4) 
for all S > 0 and for every admissible pair (q, r).

Case N 3. We set r = 4N 2N -α(N -2) . Since α ∈ 0, 4 N -2 , we have r ∈ 2, 2N N -2 .
So we can take q such that (q, r) is an admissible pair. For this choice of r, we have rα r-2 = 2N N -2 and q q-2 = 4 4-α(N -2) . By (3.4) and the first step we have for all S > 0,

u L q ((S,∞);W 1,r ) C + C ∞ S t -4α 4-α(N -2) dt q-2 q u L q ((S,∞);W 1,r ) . And 4α 4 -α(N -2) > 1 ⇐⇒ α > 4 N + 2
. Thus, there exists S 0 > 0 large enough such that

C ∞ S0 t -4α 4-α(N -2) dt q q-2 1 2 ,
and then,

u L q ((S0,∞);W 1,r ) 2C.
For this choice of (q, r), we deduce from (3.3) that f (u) L q ′ ((0,∞);W 1,r ′ ) < ∞. Hence the result for every admissible pair by the Strichartz' estimates.

Case N=2. Since α > 1 is fixed, we take r > 2 sufficiently close to 2 to have α >

2(r -1) r . So, in particular, rα r -2 > 2. Moreover, q q -2 = r 2
where q is such that (q, r) is an admissible pair. So by Hölder's inequality (twice), (3.4) and the first step, we have for all S > 0,

u L q ((S,∞);W 1,r ) C + C ∞ S t -rα-2(r-2) 2 dt 2 r u L q ((S,∞);W 1,r ) . And rα -2(r -2) 2 > 1 ⇐⇒ α > 2(r -1) r .
And we conclude exactly as the case N 3.

Case N=1. We take (3.3) with the admissible pair (∞, 2) and apply the first step. So,

f (u) L 1 ((0,∞);H 1 ) C u L α ((0,1);L ∞ ) + u L α ((1,∞);L ∞ ) α u L ∞ ((0,∞);H 1 ) C + C u α L α ((1,∞),L ∞ ) C + C ∞ 1 t -α 2 dt < ∞.
Hence the result for every admissible pair by the Strichartz' estimates.

Remark 3.2. We set v(t, x) = (x + 2it∇)u(t, x). In the same way as the above proof, we can show under the assumptions of Proposition 3.

1 that if α > 4 N + 2
, then for every admissible pair (q, r), . Then, the following estimates hold.

v ∈ L q (R; L r (R N )) (
1. If N = 1 then for all t = 0 we have T (-t)u(t) -u ± H 1 C|t| -γ * .

2. If N = 2 then for all t = 0 and for any γ < γ * , we have T (-t)u(t) -u ± H 1 C|t| -γ .

3. If N 3 then for all t = 0 we have

T (-t)u(t) -u ± H 1 C|t| -γ * .
Proof. Denote f (u) = λ|u| α u. We only prove the case t > 0, the case t < 0 following by applying the result for t > 0 to v(t) = u(-t) solution of (1.1) with v(0) = ϕ. In this case, v + = u -and the result follows. By applying the Strichartz' estimates and Hölder's inequality (twice), we have

u(t) -T (t)u + H 1 C f (u) L q ′ (t,∞);W 1,r ′ ) C u α L qα q-2 ((t,∞);L rα r-2 ) u L q (R;W 1,r ) ,
for every admissible pair (q, r) and for all t > 0. Thus, by Proposition 3.1, 2, we have

u(t) -T (t)u + H 1 C u α L qα q-2 ((t,∞);L rα r-2 )
, for every admissible pair (q, r) and for all t > 0. Now, we conclude by the same way than for the step 2 of the proof of Proposition 3.1, using 1 of this proposition, considering separately the three cases N = 1, N = 2, N 3, and using the same admissible pairs. This achieves the proof. 

u(t) -T (t)u + X < ∞ and sup t 0 u(t) -T (t)u -X < ∞ when N = 2 and α = 4 N .
We define the following function h by

∀t ∈ (-T * , T * ), h(t) = xu(t) 2 L 2 . (4.1)
Lemma 4.2. Let u satisfying (3.1) and let h be defined by (4.1). Then h ∈ C 2 (R), and we have

∀t ∈ R,      h ′ (t) = 4Im R N u(t, x)x.∇u(t, x)dx, h ′′ (t) = 2N α ∇u + 2 L 2 -2(N α -4) ∇u(t) 2 L 2 . Furthermore, if λ < 0, ∀t ∈ R, ∇u(t) L 2 ∇u + L 2 , (4.2)
and if λ > 0,

∀t ∈ R, ∇u(t) L 2 ∇u + L 2 . (4.3)
Proof. See Ginibre and Velo [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. II. Scattering theory, general case[END_REF] or Cazenave [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations, volume 26 of Textos de Métodos Matemáticos[END_REF], Proposition 6.4.2 to have h ∈ C 2 (R), the expression of h ′ and ∀t ∈ R, h ′′ (t) = 4N αE(ϕ) -2(N α -4) ∇u(t) 2 L 2 . Furthermore, using the conservation of energy and lim t→±∞ u(t) L α+2 = 0 (Proposition 3.1), we obtain ∇u + 2 L 2 = 2E(ϕ). Which gives, with the above identity, the desired expression of h ′′ . Finally, with the equality ∇u + 2 L 2 = 2E(ϕ) and the conservation of energy, we obtain (4.2) if λ < 0 and (4.3) if λ > 0. Now, we establish 2 lemmas which will be used to prove Theorem 2.4. Lemma 4.3. Let u satisfying (3.1) and let h be defined by (4.1). Assume that λ < 0. Then the following holds.

(i) If α < 4 N then lim sup t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) h ′ (0) + 4(xu + , i∇u + ) 4 ∇u + L 2 . (ii) If α > 4 N then lim inf t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) h ′ (0) + 4(xu + , i∇u + ) 4 ∇u + L 2 . (iii) If α = 4 N then lim t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) = h ′ (0) + 4(xu + , i∇u + ) 4 ∇u + L 2 .
Proof. We proceed in 4 steps.

Step

1. (a) If α < 4 N then ∀t 0, h ′ (t) h ′ (0) + 2N α ∇u + 2 L 2 t. (b) If α > 4 N then ∀t 0, h ′ (t) h ′ (0) + 8 ∇u + 2 L 2 t. (c) If α = 4 N then ∀t ∈ R, h ′ (t) = h ′ (0) + 8 ∇u + 2 L 2 t.
We integrate between 0 and t 0 the function h ′′ of Lemma 4.2.

α 4 N =⇒ -2(N α -4) 0 =⇒ (a). α 4 N =⇒ -2(N α -4) 0 with (4.2) =⇒ (b). α = 4 N =⇒ -2(N α -4) = 0 =⇒(c). Step 2. (a) If α < 4 N then ∀t 0, h ′ (t) h ′ (0) + 8 ∇u + 2 L 2 t. (b) If α > 4 N then ∀t 0, h ′ (t) h ′ (0) + 2N α ∇u + 2 L 2 t.
We integrate between 0 and t 0 the function h ′′ of Lemma 4.2.

α < 4 N =⇒ -2(N α -4) > 0 and (4.2) =⇒(a). α > 4 N =⇒(b).
Step 3. (a) If α < 4 N then ∀t 0,

xϕ 2 L 2 + h ′ (0)t + N α ∇u + 2 L 2 t 2 h(t) xϕ 2 L 2 + h ′ (0)t + 4 ∇u + 2 L 2 t 2 . (b) If α > 4 N then ∀t 0, xϕ 2 L 2 + h ′ (0)t + 4 ∇u + 2 L 2 t 2 h(t) xϕ 2 L 2 + h ′ (0)t + N α ∇u + 2 L 2 t 2 . (c) If α = 4 N then ∀t ∈ R, h(t) = xϕ 2 L 2 + h ′ (0)t + 4 ∇u + 2 L 2 t 2 .
It is sufficient to integrate between 0 and t 0 the formulas of steps 1 and 2 to obtain the step 3.

Step 4. Conclusion.

We set :

g(t) = xϕ 2 L 2 + h ′ (0)t + 4 ∇u + 2 L 2 t 2
, t > 0 large enough. Then for t > 0 large enough, we have the following asymptotic development:

g(t) = 2 ∇u + L 2 t + h ′ (0) 4 ∇u + L 2 + xϕ 2 L 2 4 ∇u + L 2 t + o 1 t . (4.4) 
In the same way, for t > 0 large enough, we have :

xT (t)u + L 2 = 2 ∇u + L 2 t - (xu + , i∇u + ) ∇u + L 2 + xu + 2 L 2 4 ∇u + L 2 t + o 1 t . (4.5) 
And, applying the step 3 (a), (4.4) and (4.5) and taking lim sup t→∞ , we get (i). Indeed,

xu(t) L 2 -xT (t)u + L 2 2 ∇u + L 2 t + h ′ (0) 4 ∇u + L 2 + xϕ 2 L 2 4 ∇u + L 2 t -2 ∇u + L 2 t + (xu + , i∇u + ) ∇u + L 2 - xu + 2 L 2 4 ∇u + L 2 t + o 1 t = h ′ (0) 4 ∇u + L 2 + xϕ 2 L 2 4 ∇u + L 2 t + (xu + , i∇u + ) ∇u + L 2 - xu + 2 L 2 4 ∇u + L 2 t + o 1 t .
Hence (i) by taking lim sup t→∞ in the above expression.

By applying the step 3 (b), (4.4) and (4.5) and taking lim inf t→∞ , we get (ii) by the same way.

By applying the step 3 (c), (4.4) and (4.5) and letting t -→ ∞, we get (iii) by the same way.

Lemma 4.4. Let u satisfying (3.1). Assume that λ < 0. Then the following holds.

(i) If α < 4 N then lim inf t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) - C ∇u ± L 2 . (ii) If α > 4 N then lim sup t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) C ∇u ± L 2 . Furthermore, C = C(sup t∈R T (-t)u(t) X , N, α, λ).
Proof. We proceed in 2 steps. Let h be defined by (4.1).

Step 1. ∀t 1, -

t 1 s 1 ∇u(σ) 2 L 2 dσds C + Ct -N α-4 2 + Ct + ∇u + 2 t - 1 2 ∇u + 2 L 2 t 2 , where C = C(sup t∈R T (-t)u(t) X , N, α, λ). By Proposition 3.1, we have u(σ) α+2 L α+2 C(sup t∈R T (-t)u(t) X , N, α)σ -N α 2
, for all σ > 0. With the conservation of energy and the formula ∇u + 2 L 2 = 2E(ϕ), we deduce that for all σ > 0,

∇u + 2 L 2 -∇u(σ) 2 L 2 C(sup t∈R T (-t)u(t) X , N, α, λ)σ -N α 2 (since λ < 0). Integrating this expression over [1, t] × [1, s],
we obtain the desired result.

Step 2. Conclusion.

(i) Lemma 4.2 implies that for every t 0,

h(t) = xϕ 2 L 2 + h ′ (0)t + N α ∇u + 2 L 2 t 2 -2(N α -4) t 0 s 0 ∇u(σ) 2 L 2 dσds. (4.6) 
By (4.6) and step 1, we obtain,

∀t 1, h(t) C + h ′ (0)t + N α ∇u + 2 L 2 t 2 + Ct 4-N α 2 -Ct + 2(N α -4) ∇u + 2 L 2 t -(N α -4) ∇u + 2 t 2 .
And so for all t > 1, h(t) C + Ct

4-N α 2 + (h ′ (0) -2(4 -N α) ∇u + 2 L 2 -C)t + 4 ∇u + 2 L 2 t 2
. By an asymptotic development on this last inequality, we obtain

xu(t) L 2 2 ∇u + L 2 t + Ct -1 + Ct -N α-2 2 + h ′ (0) -2(4 -N α) ∇u + 2 L 2 -C 4 ∇u + L 2 + o 1 t ,
for all t > 0 large enough. From this last expression and (4.5), we obtain (i) (see the end of the proof of (i) of Lemma 4.3).

(ii) From (4.6) and step 1, we obtain, for all t > 1,

h(t) C + f ′ (0)t + N α ∇u + 2 L 2 t 2 + Ct 4-N α 2 + Ct + 2(N α -4) ∇u + 2 L 2 t -(N α -4) ∇u + 2 L 2 t 2 .
And so, for all t > 1, h(t) C + Ct

4-N α 2 + (h ′ (0) + 2(N α -4) ∇u + 2 L 2 + C)t + 4 ∇u + 2 L 2 t 2
. By an asymptotic development on this last inequality, we obtain Proof. We proceed as for the proof of Lemma 4.3, using (4.3) instead of (4.2).

xu(t) L 2 2 ∇u + L 2 t + Ct -1 + Ct -N α-2 2 + h ′ (0) -2(4 -N α) ∇u + 2 L 2 + C 4 ∇u + L 2 + o 1 t
Lemma 4.6. Let u satisfying (3.1). Assume that λ > 0. Then the following holds.

(i) If α < 4 N then lim sup t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) C ∇u ± L 2 . (ii) If α > 4 N then lim inf t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) - C ∇u ± L 2 .
Furthermore, C = C(sup t∈R T (-t)u(t) X , N, α, λ).

Proof. We proceed in 2 steps.

Step 1. ∀t 1, -

t 1 s 1 ∇u(σ) 2 L 2 dσds -C -Ct -N α-4 2 -Ct + ∇u + 2 L 2 t - 1 2 ∇u + 2 L 2 t 2 , where C = C(sup t∈R T (-t)u(t) X , N, α, λ). By Proposition 3.1, we have u(σ) α+2 L α+2 C(sup t∈R T (-t)u(t) X , N, α)σ -N α 2
, for all σ > 0. With the conservation of energy and the equality ∇u + 2 L 2 = 2E(ϕ), we deduce that for all σ > 0,

∇u + 2 L 2 -∇u(σ) 2 L 2 -C(sup t∈R T (-t)u(t) X , N, α, λ)σ -N α 2 (since λ > 0). Integrating this expression over [1, t] × [1, s],
we get the desired result.

Step 2. Conclusion.

First, note that we have for all t > 1,

t 0 s 0 ∇u(σ) 2 L 2 dσds = t 0 1 0 ∇u(σ) 2 L 2 dσds + 1 0 s 1 ∇u(σ) 2 L 2 dσds + t 1 s 1 ∇u(σ) 2 L 2 dσds t 0 1 0 ∇u(σ) 2 L 2 dσds + t 1 s 1 ∇u(σ) 2 L 2 dσds.
And so, for all t ∈ R and for every λ = 0.

t 0 s 0 ∇u(σ) 2 L 2 dσds C( ϕ H 1 , N, α, λ)t + t 1 s 1 ∇u(σ)
We have also the following estimate.

xT (t)u + L 2 = 2t ∇u + L 2 - (xu + , i∇u + ) ∇u + L 2 + xu + 2 L 2 4 ∇u + L 2 t + o 1 t , (4.8) 
for all t > 0 large enough and for every λ = 0.

We first establish 1 in the case t > 0 that we note in this proof 1 + . 1 in the case t < 0 is obviously noted 1 -. By (4.7), (4.8) and (4.2), we have

xu(t) L 2 -xT (t)u + L 2 2t ∇u(t) L 2 + xT (-t)u(t) L 2 -2t ∇u + L 2 + (xu + , i∇u + ) ∇u + L 2 - xu + 2 L 2 4 ∇u + L 2 t + o 1 t xT (-t)u(t) L 2 + (xu + , i∇u + ) ∇u + L 2 - xu + 2 L 2 4 ∇u + L 2 t + o 1 t
for all t > 0 large enough.

Hence 1 + by taking lim sup t→∞ in the above expression. 1 -follows by applying 1 + to v solution of (1.1) such that v(0) = ϕ. Indeed, by uniqueness v(t) = u(-t) and so v + = u -. Then, using 1 + and the identity T (t)ψ = T (-t)ψ which holds for all t ∈ R and ψ ∈ L 2 , we obtain 1 -.

Using (4.3) instead of (4.2), we obtain 2 by the same way.

5 Proof of Theorem 2.10

Proof of Theorem 2.10. We proceed in 2 steps.

Step 1. We have 1 and 3.

It is well-known that there exist v ± ∈ X such that T (-t)u(t) X ----→ t→±∞ v ± (Cazenave and Weissler [START_REF] Cazenave | Rapidly decaying solutions of the nonlinear Schrödinger equation[END_REF]).

The result follows from Remark 2.12.

Step 2. We have 2.

We set v(t, x) = (x + 2it∇)u(t, x), w(t, x) = e -i |x| 2 4t u(t, x) and f (u) = λ|u| α u. Since T (t) is an isometry on H 1 (R N ), we only have to show that xT (-t)u(t) v ∈ L q (R; L r (R N )), (5.2) for every admissible pair (q, r) (see for example Cazenave [START_REF] Cazenave | An introduction to nonlinear Schrödinger equations, volume 26 of Textos de Métodos Matemáticos[END_REF], Theorem 7.5.3 for (5.1); following the proof of this theorem with v instead of u, yields (5.2)).

From (5.2) we have in particular, v ∈ L ∞ (R; L 2 (R N )) and so by Proposition 3.1, 1,

u(t) L r C|t| -2 q , (5.3) 
for every admissible pair (q, r) and for all t = 0.

We have the following integral equation. For all t ∈ R, u(t) = T (t)u ± -i We also have (x + 2it∇)u(t, x) = 2ite i |x| 2 4t ∇w(t, x). Moreover, e -i |x| 2 4t f (u(t, x)) = f (w(t, x)). Thus, (x + 2it∇)f (u(t, x)) = 2ite i , for every admissible pair (q, r) and for all t > 0.

We use this inequality with the admissible pair (q, r) such that r = α + 2 and we apply (5.3). Then, xT (-t)u(t) -xu + L 2 C ∞ t s -2α q-2 ds q-2 q

Ct -2α-(q-2) q t→∞ ---→ 0, since α > 4 N =⇒ 2α > q -2. Hence the result. The case t < 0 follows with the same method.

Proposition 3 . 3 .

 33 follow the step 2 of the proof of Corollary 7.2.4 of Cazenave [2]; consider separately the three cases N = 1, N = 2, N 3 and replace the admissible pairs therein by those of the proof of Proposition 3.1). Let γ * be defined by (3.2). Assume u satisfies (3.1) and α > 4 N + 2

L 2 (

 2 R N ) -----→ t→±∞ xu ± . We have X ֒→ L α+2 (R N ), thus u(t) -T (t)u ± L α+2 (R N ) ------→ t→±∞ 0 and so lim t→±∞ u(t) L α+2 = lim t→±∞ T (t)u ± L α+2 = 0. Therefore, since α > 4 N , u ∈ L q (R; W 1,r (R N )),(5.1)

T

  (t -s)f (u(s))ds, from which we deduce,∀t ∈ R, T (t)(xT (-t)u(t) -xu ± ) = -i ±∞ t T (t -s)(x + 2is∇)f (u(s))ds.(5.4)

2 C

 2 |x| 2 4t ∇f (w(t, x)), and so|(x + 2it∇)f (u(t, x))| = 2|t||∇f (w(t, x))|. Finally, (x+2it∇)f (u) L r ′ = 2|t| ∇f (w) L r ′ C|t| |w| α ∇w L r ′ .From this inequality, by using the Hölder's inequality twice, we deduce that (note that |w| = |u|)(x + 2it∇)f (u) L q ′ (I,L r ′ ) 2it∇)u L q (I,L r ) ,(5.5)for every admissible pair (q, r) and for any interval I ⊆ R. From (5.4), from the Strichartz' estimates, from (5.5) and from (5.2), we havexT (-t)u(t) -xu + L 2 = T (t)(xT (-t)u(t) -xu + ) L (x + 2is∇)f (u) L q ′ ((t,∞);L r ′ )

  Remark 4.1. Since we do not have the estimate 2 of Proposition 3.3 for γ = γ

	t < 0. So to conclude, it is sufficient to prove that lim t→∞	xu(t) -xT (t)u + L 2 = 0 to obtain 1 and
	sup t 0	xu(t) -xT (t)u + L 2 < ∞ to obtain 2. We have
		xu(t) -xT (t)u + = xu(t) -T (t)xu + + 2itT (t)∇u +
		= xu(t) + 2it∇u(t) -T (t)xu + + 2itT (t)∇u + -2it∇u(t)
	4 Proof of Theorems 2.1, 2.4, 2.5 and Proposition 2.8
	Throughout this section, we assume that u satisfies (3.1).
	Proof of Theorem 2.1. Since lim

t→±∞

T (-t)u(t) -u ± X = 0 and T (t) is an isometry on H 1 , we have lim t→±∞ u(t) -T (t)u ± H 1 = 0. Thus, it is sufficient to prove that lim

t→±∞ xu(t) -xT (t)u ± L 2 = 0

to obtain 1 and that sup

t 0 xu(t) -xT (t)u + L 2 < ∞ and sup t 0 xu(t) -xT (t)u -L 2 < ∞ to obtain 2.

Suppose that the result is proved for t > 0. Then we apply it to v(t) = u(-t) solution of

(1.1) 

with initial data v(0) = ϕ. Then v + = u -is the scattering state at +∞ of u(-t). And using the identity T (t)ψ = T (-t)ψ which holds for all t ∈ R and for every ψ ∈ L 2 , we obtain the result for

= T (t) [(xT (-t)u(t) -xu + ) + 2it(∇u + -T (-t)∇u(t))] ,

for all t > 0. With Proposition 3.3, we obtain

xu(t) -xT (t)u + L 2 xT (-t)u(t) -xu + L 2 + 2t T (-t)∇u(t) -∇u + L 2 xT (-t)u(t) -xu + L 2 + Ct -(γ-

1) 

, for all t > 0 and for all γ ∈ (0, γ * ] if N = 2 and for all γ ∈ (0, γ * ) if N = 2, where γ * is defined by (

3.2)

. And by assumption, lim t→∞ xT (-t)u(t) -xu + L 2 = 0 and γ * -1 > 0 if and only if α > 8 N +2 if N 3 and α > 4 N if N 2. Thus, in the above expression, it is sufficient to choose γ = γ * if N = 2, and γ ∈ (0, γ * ) close enough to γ * if N = 2. Hence the result. * , we do not know whether or not sup t 0

  Proof of Theorem 2.4. As for the proof of Theorem 2.1, it is sufficient to show that | xu(t) L 2 -xT (t)u + L 2 | remains bounded as t -→ ∞. Lemmas 4.3 and 4.4 achieve the proof and give the desired estimates.

	Now, we establish 2 lemmas which will be used to prove Theorem 2.5. The proof is very similar
	to the Theorem 2.4 one.		
	Lemma 4.5. Let u satisfying (3.1) and let h be defined by (4.1). Assume that λ > 0. Then the
	following holds.				
	(i) If α < (ii) If α > (iii) If α =	4 N 4 N 4 N	then lim inf t→∞ then lim sup ( xu(t) L 2 -xT (t)u + L 2 ) t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) then lim t→∞ ( xu(t) L 2 -xT (t)u + L 2 ) =	h ′ (0) + 4(xu + , i∇u + ) 4 ∇u + L 2 h ′ (0) + 4(xu + , i∇u + ) . 4 ∇u + L 2 h ′ (0) + 4(xu + , i∇u + ) 4 ∇u + L 2 .	.
					,
	for all t > 0 large enough. With this last expression and (4.5), we obtain (ii) (see the end of the proof
	of (i) of Lemma 4.3).		
	Now, we are able to prove Theorem 2.4.		

  2 L 2 dσds, for all t > 1. And we proceed as for the proof of Lemma 4.4.

	Proof of Proposition 2.8. By Cauchy-Schwarz' inequality, we have	
	| xu(t) L 2 -2t ∇u(t) L 2 |	xT (-t)u(t) L 2 ,	(4.7)

Now, we are able to prove Theorem 2.5.

Proof of Theorem 2.5. As for the proof of Theorem 2.1, it is sufficient to show that

| xu(t) L 2 -xT (t)u + L 2 | remains bounded as t -→ ∞.

Lemmas 4.5 and 4.6 achieve the proof and give the desired estimates.
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