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Links between lipid homeostasis, organelle morphodynamics
and protein trafficking in eukaryotic and plant secretory pathways

Su Melser • Diana Molino • Brigitte Batailler • Martine Peypelut • Maryse Laloi •

Valérie Wattelet-Boyer • Yannick Bellec • Jean-Denis Faure • Patrick Moreau

Abstract The role of lipids as molecular actors of protein

transport and organelle morphology in plant cells has

progressed over the last years through pharmacological and

genetic investigations. The manuscript is reviewing the

roles of various lipid families in membrane dynamics and

trafficking in eukaryotic cells, and summarizes some of the

related physicochemical properties of the lipids involved.

The article also focuses on the specific requirements of the

sphingolipid glucosylceramide (GlcCer) in Golgi mor-

phology and protein transport through the plant secretory

pathway. The use of a specific inhibitor of plant gluco-

sylceramide synthase and selected Arabidopsis thaliana

RNAi lines stably expressing several markers of the plant

secretory pathway, establishes specific steps sensitive to

GlcCer biosynthesis. Collectively, data of the literature

demonstrate the existence of links between protein

trafficking, organelle morphology, and lipid metabolism/

homeostasis in eukaryotic cells including plant cells.

Keywords Secretory pathways � Membrane dynamics �
Protein trafficking � Lipid homeostasis � Lipid domains �
Lipid machineries

Introduction to membrane dynamics: from a protein

to a lipid world

Several protein machineries have been shown to be funda-

mental in the functional dynamic membrane organization of

the plant secretory pathway (Moreau et al. 2007; Hanton

et al. 2007, 2009; Woollard and Moore 2008; Richter et al.

2009; Sparkes et al. 2009; Griffing 2009; Hwang and

Robinson 2009; Hawes et al. 2010). For example, the

dynamic ER network (Sparkes et al. 2009; Griffing 2009),

the structural features of the ER-Golgi interface and the ER
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exit sites (ERES) of cargoes are tightly regulated by specific

proteins (Moreau et al. 2007; Hanton et al. 2007, 2009;

Woollard and Moore 2008; Richter et al. 2009; Sparkes

et al. 2009; Griffing 2009; Hwang and Robinson 2009;

Hawes et al. 2010). ERES biogenesis and possibly de novo

Golgi formation were shown to be cargo induced and signal

mediated (Hanton et al. 2007, 2009), and recently the COPII

machinery was also suspected to regulate ER and Golgi

membrane morphology and maintenance (Faso et al. 2009).

Similar situations are described or can be strongly suspected

at other steps (Moreau et al. 2007; Hanton et al. 2007, 2009;

Woollard and Moore 2008; Richter et al. 2009; Sparkes

et al. 2009; Griffing 2009; Hwang and Robinson 2009;

Hawes et al. 2010).

What about lipids? Beside the protein machineries,

more and more data also implicate lipids, enzymes of

their metabolism and lipid modifications of proteins in the

mechanisms of membrane dynamics and their regulation

in the secretory pathway of eukaryotic cells (Moreau

et al. 2007; Moreau 2007 and references therein). Lipids

have also been shown to act as modulators of viral pro-

tein-mediated membrane fusion. For example, membrane

fusion required for virus entry can be dependent on cho-

lesterol, sphingolipids and lipid microdomains (Teissier

and Pécheur 2007). Yeast screens identified all the

enzymes of the ergosterol biosynthetic pathway (coded by

Erg genes) as critical factors involved in mitochondrial

morphology (Dimmer et al. 2002; Altmann and Wester-

mann 2005). Recently, a specific mitochondrial phos-

pholipase D in the outer membrane has also been found

to be a key actor of mitochondrial fusion by generating

phosphatidic acid (PA) from CL (Choi et al. 2006). In

addition, the fatty acyl transferase endophilin B1 was

reported to be involved in the maintenance of mito-

chondrial morphology (Karbowski et al. 2004). In gen-

eral, it must be considered that variations of less than 1%

in the amounts of a given lipid, if concentrated in a

specific domain, may have critical impact on the local

membrane structure, and therefore on membrane dynam-

ics (Devaux 2000). Trafficking of lipids to their final

destination has been studied in several in vivo and in

vitro systems and can occur either via vesicular transfer,

membrane contacts or via lipid transfer proteins (Moreau

et al. 1998; Jouhet et al. 2007; Benning 2009). Whatever

the means by which membrane lipids reach their final

destination, they will, all along their road and/or life

specifically contributes to cellular membrane morphody-

namics due their physicochemical properties. In the

following sections, we will describe our current knowl-

edge on the role of various lipids in intracellular mem-

brane dynamics and trafficking in eukaryotic cells with

a special focus on phospholipids/phosphoinositides,

sterols and sphingolipids in plant cells, and discuss the

physicochemical properties of the various lipid families in

relation to these events.

Lipid-assisted membrane dynamics and trafficking

in eukaryotes and plant cells

Phospholipids, phosphoinositides and related

metabolites

A first example of the specific impact that phospholipid

synthesis can have on membrane behavior is given by the

depletion of phosphatidylcholine (PC) in the thermosensi-

tive Chinese hamster ovary cell line MT58 that undergoes a

50% PC reduction. In this mutant, the structure of the

plasma membrane, Golgi complex and mitochondria

appears to be morphologically intact, and only part of the

ER lost its reticular structure as dilated and spherical ER

structures were observed (Testerink et al. 2009). Transition

of a reticular to a spherical ER structure may reflect a way

to preserve the integrity of the organelle when faced with a

shortage of the major membrane component, due to the

more efficient volume to surface ratio of the spherical

structure. In addition, it is also possible that the ER serves

as a ‘‘PC tank’’ to supply the other organelles. Interest-

ingly, protein transport from the ER towards the Golgi

was not affected in these cells whereas an inhibition from

the Golgi complex towards the plasma membrane was

observed (Testerink et al. 2009). Therefore, the importance

of a balanced PC synthesis was probably more sensitive

and critical for the Golgi membranes than the ER mem-

branes in term of morphodynamics required for protein

transport. It has been shown that both diacylglycerol

(DAG) and PA, which are important PC metabolites, can

be required for the vesicular transport of proteins from the

Trans Golgi Network (TGN), possibly by induction of

membrane bending and formation of highly curved mem-

branes (Kearns et al. 1997; Corda et al. 2002; Mousley

et al. 2007). DAG can recruit and activate proteins required

for protein transport, like the Protein Kinase D (PKD).

Binding of PKD to DAG was shown to be essential for its

recruitment to the TGN where it acts in the formation of

specific transport vesicles (Baron and Malhotra 2002), and

indicated the importance of maintaining DAG concentra-

tion (Baron and Malhotra 2002). In addition, PC metabo-

lism in eukaryotic cells might be involved in DAG

homeostasis through regulations by PI-transfer proteins

such as Sec-14 in yeast or Nir 2 in mammalian cells

(McGee et al. 1994; Litvak et al. 2005). In the mutant

MT58 cells (Testerink et al. 2009), the intracellular DAG

concentration might therefore be disturbed by the inhibi-

tion of PC synthesis in the ER, and specifically perturbed

the Golgi apparatus behavior.



In higher plant cells, an extensive exchange exists

between plastids and the ER network for glycerolipid

biosynthesis (Benning 2009). The de novo biosynthesis of

fatty acids occurs in the plastids, then those fatty acids are

exported as acyl-CoAs to the ER to be incorporated into

various lipids including the most abundant phospholipid

PC, and finally, some PC species can be transferred

through different pathways (see Benning 2009 and refer-

ences therein) back to the plastids to supply galactolipid

biosynthesis. Although critical questions remain, the

potential role of two PA phosphohydrolases (PAH1 and

PAH2) in the regulation of phospholipid metabolism in

Arabidopsis has been determined (Nakamura et al. 2009;

Eastmond et al. 2010). Interestingly, the pah1–pah2 double

mutant shows unusually extended ER membranes (East-

mond et al. 2010) due to a high increase in the phospho-

lipid content (mainly PC and phosphatidylethanolamine,

PE) which are likely to be accumulated in the biosynthetic

ER membranes. In agreement, the pah1–pah2 double

mutation induced an up-regulation of several genes

involved in the biosynthesis of phospholipids (Eastmond

et al. 2010). From a morphodynamic point of view, these

results indicate that the highly regulated lipid biosynthesis

in the ER is certainly a key function for the regulation of

membrane extension of the ER network. At the same time,

ER membrane dynamics, through the numerous potential

interactions the ER can have with other organelles (Sparkes

et al. 2009), serve to manage and regulate lipid biosyn-

thesis and transport to control membrane morphogenesis of

interacting organelles. For example, connections between

ER and plastid envelopes have been regularly reported

from ultrastructural observations (Sparkes et al. 2009), and

recently an optical trapping study has confirmed the

possibility of strong interactions between plastids and ER

membranes (Andersson et al. 2007). In addition to direct

ER-plastid contacts that may result in the exchange of

lipids between the two organelles, through specific proteins

such as TGD4 (Benning 2009), we have also to consider

the non-exclusive possibility of a Golgi-dependent pathway

to the plastids (Sparkes et al. 2009 and references therein).

Whatever the different routes/processes used, these results

illustrate the critical involvement of the early secretory

pathway and the ER network in the regulation of organelle

morphogenesis (see Sparkes et al. 2009 for more

information).

Other steps of phospholipid metabolism can affect Golgi

membrane dynamics and morphology. Lysophospholipids,

issued from phospholipases A2 activities, can induce

membrane tubulation (de Figueiredo et al. 1998), and

inhibition of the reverse reaction by acyltransferases leads

to Golgi membrane tubulation (Drecktrah et al. 2003).

Inhibition of such hydrolytic enzymes by specific inhibitors

can block endosome fusion (Mayorga et al. 1993).

Phospholipases A1-related enzymes have been shown to

induce a dispersion of the Golgi complex and aggregation

of ER membranes (Nakajima et al. 2002). An investigation

in Arabidopsis roots has recently evidenced that a Golgi

PLA2-a is involved in the trafficking of PIN-FORMED

auxin efflux transporters to the plasma membrane of these

cells (Lee et al. 2010).

Similarly, inhibition of phospholipase D, which

decreases PA concentration, can also affect the structural

integrity of the Golgi complex in animal cells (Siddhanta

et al. 2000). Recently, it has been demonstrated that PA

produced by the phospholipase isoform D2 is involved in

the release of Golgi-derived COPI vesicles (Yang et al.

2008). The phospholipase D2 isoform was found to be

concentrated to the rims of the Golgi stacks and could be

involved in membrane morphodynamics driving some

aspects of post-Golgi trafficking and the stability of Golgi

structure (Freyberg et al. 2002). In plant cells, inhibition of

phospholipase D and therefore formation of PA in the

pollen tube strongly reduces the number of secretory ves-

icles, indicating that levels of PA may regulate pollen tube

growth (Potocky et al. 2003; Monteiro et al. 2005). It has

been shown in tobacco BY-2 cells that 1-butanol, which

interferes with phospholipase D activity, triggered the

release of the GTPase ARF1 from Golgi membranes

(Langhans and Robinson 2007). However, this effect dif-

fered from that of brefeldin A (BFA, inhibitor of recruit-

ment of coat COPI proteins) in that 1-butanol did not have

the same ability as BFA to induce an interaction of Golgi

membranes with the ER membranes. Interestingly, we have

observed that the inhibition of phytosterol maturation by

fenpropimorph (see below) was also accompanied by an

increase of PA in endomembranes and particularly the

Golgi (Moreau 2007), which could indicate that elevated

PA levels were inducing fenestration of Golgi bodies

(Hartmann et al. 2002). Recently, the Arabidopsis PLDf2

has been shown to be involved in the regulation of root

gravitropism and auxin-dependent hypocotyl elongation

(Li and Xue 2007). It was shown that the internalization of

an endocytic marker (the fluorescent dye FM4-64) and

PIN2 cycling between the plasma membrane and endo-

somal compartments were positively regulated by PLDf2

and its PA product (Li and Xue 2007). Therefore, it was

suggested that PLDf2 and PA might be required in the

regulation of auxin transport through several possible

mechanisms (see Li and Xue 2007 and references cited).

Therefore, it should be considered that PA and DAG

homeostasis (through DAG kinases, PA phosphohydro-

lases, and phospholipases) may be key players in the reg-

ulation of lipid metabolism and of ER and Golgi membrane

morphodynamics, and as such can control the formation

and fission of ER- and Golgi-derived vesicles as shown

for COPI vesicles through the recruitment of the protein



ARF-GAP1 (GTPase activating protein) (Fernandez-

Ulibarri et al. 2007).

Together with PA, the phosphoinositide PIP2 is another

acidic phospholipid which can be critical for membrane

fusion/fission (Vicogne et al. 2006 and references therein).

It was observed from in vitro SNARE-reconstituted fusion

assays in liposomes that the highest fusion efficiency was

obtained when PA was present in the acceptor liposomes

(containing the t-SNAREs syntaxin 4 and SNAP33) and the

phosphoinositide PIP2 was included in the donor liposomes

(containing the v-SNARE VAMP2) (Vicogne et al. 2006).

These in vitro assays show that an asymmetric distribution

of acidic phospholipids may act in vivo to regulate mem-

brane fusion (Vicogne et al. 2006).

Phosphoinositide homeostasis is also critical to mem-

brane morphodynamics and/or targeting in plant cells, and

this concerns several forms of phosphoinositides. PI4P is

more involved in the regulation of storage vacuole bio-

genesis, PI3P in that of lytic vacuole and PIP2 is chiefly

related to the biogenesis of the plasma membrane. The

latter has been shown to be required in the control of root

hair growth (Vincent et al. 2005), and more precisely the

PI(4)P 5-Kinase 3 is responsible for the enzymatic activity

which produces PI(4,5)P2 in the apical region of root hair

cells, and this may regulate either vesicle trafficking and/or

cytoskeletal organization required for root hair growth

(Stenzel et al. 2008; Kusano et al. 2008). In addition,

PI(4)P 5-Kinase 3 together with several phospholipases C

might control the concentration and distribution of

PI(4,5)P2 at the tip-growing apex (47 and references

therein). Moreover, it has also been shown that the level of

PI(4)P is tightly regulated by a phosphoinositide phos-

phatase (Thole et al. 2008). Therefore, these overall results

confirm the concept according to which the homeostasis of

phosphoinositides concentration and that of their subcel-

lular location are key parameters controlling the polarized

secretion implicated in root hair growth. Lastly PIP2

synthesis may also be linked to Golgi fragmentation as

suggested in animal cells (Siddhanta et al. 2003), and

participate in the control of Golgi structural integrity.

Finally, beside their roles in membrane lipid asymmetry

(Devaux 2000), energy-independent lipid flippases and

energy-dependent lipid translocases may be required for

membrane dynamics involved in membrane trafficking. For

example, the aminophospholipid translocase ALA3 and

ALIS1 (an ALA-interacting protein), both localized in the

Golgi as a complex, have been implicated in lipid trans-

location and secretory vesicle formation (Poulsen et al.

2008). ALA3 activity may transfer and concentrate specific

lipids in one membrane leaflet to induce the tension needed

to drive vesicle formation as suggested earlier (Devaux

2000; Pomorski and Menon 2006), or serves as receptors to

recruit specific proteins involved in membrane deformation

for vesicle production and release (Jürgens 2004). 12 ALA

proteins have been identified in the Arabidopsis genome

(Poulsen et al. 2008) and some may be engaged in such

specific events.

Sterols and related compounds

Cholesterol has been shown to be critical in the formation

of post-Golgi secretory vesicles in animal cells (Wang

et al. 2000), and may be required to favor vesicle fusion

(Churchward et al. 2005). In addition, it has been found

that cholesterol levels in Golgi membranes are tightly

regulated since an excess of this molecule can lead to a

vesiculation of the Golgi complex (Grimmer et al. 2005).

Such an effect also implicates the activity of a cytosolic

phospholipase A2 and a GTPase dynamin (Grimmer et al.

2005). Cholesterol is required for the formation of lipid

rafts at the cell surface, and depletion of this lipid induces a

flattening of clathrin-coated pits and a disappearance of

caveolae in animal cells (Pichler and Riezman 2004), both

structures being involved in different sets of endocytic

events. Another example of the involvement of sterols in

controlling membrane trafficking is coming from yeast

where it has been clearly established that ergosterol is also

critical for endocytosis (Heese-Peck et al. 2002). Interest-

ingly, the internalization step of endocytosis in yeast is

strictly dependent on the fine structural nature of the sterol,

and very small variations in this structure can have dra-

matic consequences on endocytosis (Munn et al. 1999;

Heese-Peck et al. 2002). Therefore, these few examples in

yeast and animal cells strongly argue in favor of a

requirement of sterols in the regulation of exocytotic and

endocytotic events in eukaryotes.

In plants, blocking phytosterol maturation in the ER by

the drug fenpropimorph (a plant specific inhibitor of the

cycloeucalenol–obtusifoliol isomerase) resulted in the

fenestration of the Golgi bodies (Hartmann et al. 2002). On

another hand, disturbing the morphology of the Golgi

bodies by a treatment with BFA, which disturbs the

recruitment of COPI proteins to the Golgi, reduced the

biosynthesis of phytosterols (Mérigout et al. 2002).

Therefore, a relationship does exist between sterol metab-

olism and Golgi morphology in plant cells as in other

eukaryotic cells. However, we must be aware that the

morphologic modifications of the Golgi in this case may

also be due to the elevation of PA amounts (Moreau 2007,

see above). Similarly as ergosterol in yeast and cholesterol

in animal cells, we could expect some critical role for

phytosterols in membrane protein transport. This hypoth-

esis has been verified in two different models. First, use of

the inhibitor fenpropimorph resulted in the retention of

sterols and sterol precursors at the Golgi level, and lipid

rafts disappeared from the plasma membrane and



accumulated in the Golgi (Laloi et al. 2007). Moreover,

protein transport to the plasma membrane was partly

impaired, probably because of the accumulation of sterols

and lipid rafts in the Golgi (Laloi et al. 2007). Such a

relationship was recently confirmed by using the drug

fenpropimorph on tobacco leaf epidermal cells. In this

model, protein secretion was followed in vivo by a con-

focal microcopy approach, and the drug clearly reduced

and/or delayed the delivery of proteins to the cell surface

(Melser et al. 2010).

As in yeast, endocytosis in plants appears to be sensitive

to the presence of minimal amounts of phytosterols. The

best example has recently been given in Arabidopsis tha-

liana where the establishment of the polarity of the auxin

carrier PIN2 was clearly triggered by a sterol-dependent

endocytotic process (Men et al. 2008). PIN2 polarity and

endocytosis, but not exocytosis, were effectively impaired

in the sterol-biosynthesis mutant cyclopropylsterol isom-

erase1-1 (Men et al. 2008). To perform cytokinesis,

proteins of the syntaxin family mediate membrane fusion

in the plane of cell division, and it has recently been

demonstrated that the Arabidopsis KNOLLE syntaxin is

maintained in the plane of cell division by a sterol-

dependent endocytotic process which also involves a

clathrin- and a dynamin related protein (Boutté et al. 2009).

In the endocytosis-defective sterol biosynthesis mutant

mentioned above, the syntaxin KNOLLE displayed a sig-

nificant lateral diffusion, but the secretory trafficking of

KNOLLE remained unaffected (Boutté et al. 2009).

Therefore, regulation of lateral diffusion of specific pro-

teins by sterol-dependent endocytosis may contribute to

maintain the specificity of syntaxin localization during late

cytokinesis.

Behind their biosynthesis, handling and mobilization of

phytosterols by specific proteins such as oxysterol-binding

proteins and related proteins (Boutté and Grebe 2009 and

references therein), may highly contribute to sterol trans-

port and sorting to membrane domains where their physi-

cochemical properties act to regulate membrane structure

and morphodynamics. Thus, the homeostasis of phytos-

terols may affect the biogenesis of numerous organelles

including plastids (Boutté and Grebe 2009 and references

therein).

The sphingolipid universe

The sphingolipid family may also affect the organization of

endomembranes. In animal cells, ceramides dramatically

increase the disassembly of the Golgi that is induced by

BFA, which suggests that changes in ceramide levels affect

the stability of the Golgi (Fukunaga et al. 2000). Pharma-

cological approaches using inhibitors of the glucosylcera-

mide (GlcCer) synthase (GCS) argue in favor of a role of

sphingolipids in the architecture of the Golgi apparatus

(Nakamura et al. 2001). In addition, high concentrations of

the long chain base sphingosine derived from ceramide

hydrolysis can induce the fragmentation of the Golgi

complex (Hu et al. 2005). In yeast, C26-sphingolipids were

shown to be involved in the transport of the Pma1 ATPase

to the plasma membrane (Gaigg et al. 2005).

In plant cells, fenpropimorph treatment led to the

accumulation of phytosterol precursors but also of

hydroxypalmitic acid-containing GlcCer in the Golgi

membranes (Laloi et al. 2007). In addition, since sterols

and sphingolipids can be associated to form lipid micro-

domains in eukaryotic cells (Bagnat and Simons 2002;

Simons and Vaz 2004; Laloi et al. 2007 and references

therein), these features point to the importance of lipid

domain formation may have in the efficiency of the

secretory pathway (Bagnat and Simons 2002; Simons and

Vaz 2004; Hancock 2006; Laloi et al. 2007 and references

therein). Therefore, as sterols, sphingolipids may be critical

for Golgi membrane morphodynamics in plant cells. Such

an assumption has first been studied by a pharmacological

approach. By using the model of tobacco leaf epidermal

cells and PDMP (the ceramide analogue d-threo-1-phenyl-

2-decanoylamin-3-morpholino-propanol which inhibits the

GCS in vivo), it has been shown that the intracellular

transport of soluble and membrane proteins to the cell

surface is reduced (Melser et al. 2010). Moreover, mem-

brane proteins not delivered to the plasma membrane were

retained in the Golgi bodies (Melser et al. 2010). This was

an encouragement to have a look on the structure of the

Golgi apparatus at the level of electronic microscopy.

PDMP was found to induce several morphological modi-

fications of the Golgi bodies: misaligned stacks, decrease

of stack length and cisternae width, and numerous swollen

vesicles surrounding the Golgi (Melser et al. 2010). These

data strongly suggested that in plant cells, the Golgi par-

tially disaggregates into vesicular structures upon inhibi-

tion of GlcCer biosynthesis, resulting in a decrease of

protein secretion. RNAi suppression of the Arabidopsis

LCB2a and LCB2b genes (responsible for the biosynthesis

of sphingolipid precursors) was shown to induce strong

defects in the endomembrane system of pollen (Dietrich

et al. 2008). Such a requirement of GlcCer biosynthesis for

post-Golgi targeting of proteins in plant cells parallels what

has been shown in animal cells where a defect in GlcCer

biosynthesis induced an accumulation of transported

membrane proteins in the Golgi (Sprong et al. 2001).

In addition, it was shown that an increase in the load of

secretory proteins was accompanied by an increase in the

de novo biosynthesis of GlcCer, and this feature was only

observed with proteins transported beyond the Golgi

(Melser et al. 2010). Such a behavior is reminiscent to the

de novo formation of ER export sites which is induced by



membrane cargo (Hanton et al. 2007). Moreover, it was

suggested that in animal cells, GlcCer may exert specific

functions at the cytosolic surface of ER and Golgi mem-

branes in protein sorting (Halter et al. 2007 and references

therein). Such functions may be strongly regulated by the

glycosphingolipid transfer protein FAPP2 (Halter et al.

2007), controlling GlcCer concentration in membrane

domains. Similarly, the Arabidopsis thaliana glycosphin-

golipid transfer protein (GLTP1) was shown to regulate

vesicular transport to the plasma membrane/tonoplast

during root hair development (West et al. 2008), probably

by supplying required GlcCer amounts to specific mem-

brane domains.

To investigate which intracellular steps of the secretory

pathway are dependent on GlcCer biosynthesis, an A. tha-

liana RNAi line (gcs2.2) showing reduced GCS transcripts

from 50% up to 85% of control levels, was crossed with

A. thaliana lines expressing different plasma membrane and

endomembrane markers coupled to GFP (see next chapter).

In these lines, the progressive reduction in transcript levels

correlated well with a progressive reduction up to 50-70%

in total GlcCer content. TEM analyses also revealed

apparent anomalies in root cells, notably in the morphology

of the Golgi. When compared to Golgi bodies from wild

type Col-0, Golgi stacks from gcs2.2 appeared smaller

(Fig. 1a, b), as the Golgi from PDMP-treated Arabidopsis

roots (Melser et al. 2010), and the Golgi in gcs2.2 appeared

swollen, clearly confirming a strong disturbance of Golgi

morphology in GlcCer-depleted cells. In addition, gcs2.2

mutants were found more sensitive to PDMP as illustrated

by the effect on root growth (Fig. 1c). Since no significant

difference in root length was observed between Col-0 and

gcs2.2 mutant seedlings in the absence of PDMP (Fig. 1c),

the higher inhibition of root growth by PDMP for the gcs2.2

mutant seedlings argues for a threshold under which a

decreased content of GlcCer impairs root growth. The

results with the gcs2.2 mutant seedlings are an important

confirmation of the data obtained with the inhibitor PDMP

(Melser et al. 2010) and validate the specificity of the drug.

The gcs2.2 mutant line was used to determine which

intracellular steps of the plant secretory pathway are

dependent on GlcCer biosynthesis.

Protein marker transport defects

in the glucosylceramide synthase gcs2.2 mutant

The localization of plasma membrane and endomembrane

marker proteins (under their own promoter or under 35S)

was observed in 7 to 10-day-old gcs2.2 treated or not

respectively with 10 lM PDMP, and compared to Col-0.

The remaining amounts of GlcCer in gcs2.2 were sufficient

to sustain protein transport when proteins were expressed

under their own promoter. In this case, gcs2.2 lines had to

be treated with PDMP, and they were found more sensitive

to PDMP than the Col-0 controls since the starting amount

of GlcCer was lower. This was taken as an advantage when

protein markers were expressed under their endogenous

promoter. On the contrary, when proteins were expressed

under 35S, any effect could be detected without PDMP.

The roots were also stained with the red fluorescent dye

FM4-64 at a concentration of 8 lM, applied 5–15 min

before observation by confocal microscopy. This dye does

not disturb integral plasma membrane proteins in Arabid-

opsis root epidermis and cortex cells (Jelinkova et al.

2010), and in the conditions used labels the plasma mem-

brane and some endocytic compartments (not the clathrin-

dependent ones) (Jelinkova et al. 2010).

As found in the model of tobacco leaf epidermal cells

(Melser et al. 2010), the transport from the ER to the Golgi

was insensitive to a decrease of GlcCer biosynthesis as

illustrated by the Golgi marker QUA2 (a pectin methyl-

transferase) which was unaffected in its sub-cellular

Fig. 1 GlcCer deficit affects endomembrane morphology and organ

growth. a Typical Golgi from wild-type (WT) Col-0 root cells.

b Golgi from mutant gcs2.2 root cells. Bars in a and b 200 nm.

c Root growth is progressively impaired with increasing concentra-

tions of PDMP. The mutant gcs2.2 is highly sensitive to the GlcCer

synthesis inhibitor PDMP



location even after PDMP treatment (Fig. 2). On the con-

trary, it was observed that the reverse transport from the

Golgi back to the ER was sensitive to the depletion of

GlcCer. The localization of GFP modified by an ER

retrieval HDEL tetrapeptide signal (35S::GFP-HDEL)

showed several punctuate localizations compatible with

Golgi bodies in gcs2.2 roots and exclusively the expected

ER in control roots (Fig. 2). An interesting observation was

that the punctuate structures labeled by GFP-HDEL in

gcs2.2 roots were not co-labeled by FM4-64, supporting a

Golgi location of GFP-HDEL. In conclusion, it can be

hypothesized that the delocalization of GFP-HDEL in

gcs2.2 roots may be caused by a defect in COPI vesicle

function upon inhibition of GlcCer biosynthesis. Therefore,

GFP-HDEL may be normally transported to the Golgi but

could not be efficiently returned by the COPI system to the

ER, producing an accumulation of GFP-HDEL in the Golgi

in Arabidopsis root cells.

LTi6b, Low-temperature Induced 6b, is a small integral

membrane protein originally isolated from a screen of

cDNA prepared from cold-acclimated etiolated Arabidop-

sis seedlings (Capel et al. 1997). The protein is located in

the plasma membrane (Cutler et al. 2000). In the wild type

Col-0 roots, 35S::LTi6b was localized exclusively and

uniformly in the PM (Fig. 2a). On the contrary, fluorescent

labeling was found only in a few cells in gcs2.2, and the

labeling was often found in punctuate structures (Fig. 2b).

These structures appeared along the outline of the PM and

were co-labeled by FM4-64 which labels the plasma

membrane and additional intracellular endocytic compart-

ments (Fig. 2c). As no co-localization was found between

c-TIP (tonoplast) and FM4-64 in the same conditions, it is

likely that these structures correspond to endocytic com-

partments issued from the PM. Importantly, FM4-64 did

not influence the behavior of LTi6b since it has been shown

that FM dyes do not disturb the localization of plasma

membrane proteins in Arabidopsis root epidermal and

cortex cells (Jelinkova et al. 2010). In addition, experi-

ments using fluorescence recovery after photobleaching

(FRAP) under BFA and cycloheximide treatment (Grebe

et al. 2003) suggest that LTi6b may be targeted to the PM

through a Golgi-independent pathway, and therefore it can

be unlikely that the localization of LTi6b in the punctuate

structures observed in the gcs2.2 mutant are only FM4-64-

labeled Golgi. Although it cannot be ruled out that some

LTi6b proteins are retained in the Golgi bodies, it is likely

that an inhibition of GlcCer biosynthesis altered the

dynamics of endosomes labeled by LTi6b in root cells.

The transmembrane auxin efflux carrier PIN1 normally

localizes to the basal end of vascular root cells

(Gälweiler et al. 1998). In gcs2.2, we detected PIN1 also

at the basal end of central protophloem cells, without any

visibly altered localization. Interestingly, levels of PIN1

fluorescence signal were systematically and consistently

reduced in roots treated with PDMP (Fig. 2). In spite of

the general loss in PIN1 signal, the marker did not seem

Fig. 2 Effect of GlcCer deficit (-GlcCer) compared to normal GlcCer

levels (?GlcCer) on the localization of secretory proteins in Arabid-
opsis root cells. QUA2 Golgi protein Quasimodo2, left control cells,

right mutant cells. HDEL GFP coupled with an ER retention/retrieval

signal, left control cells, right mutant gcs2.2 cells. PIN1 plasma

membrane auxin efflux carrier, left control cells, right mutant gcs2.2
cells treated with PDMP. SNX1 prevacuole and early endosome Sortin

Nexin 1, left control cells, right mutant gcs2.2 cells. LTi6b plasma

membrane protein Low-Temperature Induced 6b. a Control cells,

b mutant gcs2.2 cells, c white arrowheads indicate co-localization of

LTi6b (green) and FM4-64 (red) in endosomes. A delocalization of

HDEL, PIN1, and LTi6b is observed upon GlcCer deficit



de-localized in PDMP-treated seedlings. Fluorescent sig-

nal was recovered following PDMP washout, and the

reduced PIN1 levels were unlikely to be the result of a

downregulation at the transcriptional level, since endog-

enous PIN1 transcription were found upregulated in

PDMP-treated seedlings.

The inhibition of GlcCer biosynthesis by PDMP seems

to produce similar effects as those observed in the mutant

smt1orc (Willemsen et al. 2003). Sterols and GlcCer

associate in the plasma membrane to form lipid micro-

domains. The formation of these microdomains may

provide the cell with a dynamic platform for the polar

targeting and localization of proteins in the PM. There-

fore, alterations in the proportion or content of sterols and

GlcCer in the PM or in endomembranes may be sufficient

to alter the transport and/or stability of membrane-bound

proteins such as PIN1. Polarized transport routes may

arise from sorting organelles during development, such as

the Golgi in the biosynthetic secretory pathway, or the

endosomes in the recycling pathway. GlcCer is trans-

ported along the biosynthetic secretory pathway to accu-

mulate in the PM in lipid microdomains. Inhibition of

GlcCer synthesis is sufficient to disrupt the transport flux

through the Golgi, which is reflected in morphological

changes of the Golgi. PIN1 does not accumulate in

intracellular compartments upon a block in GlcCer syn-

thesis but seems to be rapidly degraded. Degradation of

PIN proteins is a necessary part of the regulation of root

gravitropism. For example, continuous cycling between

the PM and endosomes controls subcellular distribution

and steady-state levels of PIN2 (Abas et al. 2006), so that

a fraction of ubiquitinated endocytosed protein is not

recycled but degraded by the proteasome (Abas et al.

2006). It is possible that a deregulation in PM-endosome

dynamics caused by the block in GlcCer synthesis, as

illustrated by LTi6b, may result in the rapid up-regulation

of PIN1 degradation, which would help explain the dis-

appearance of PIN1 in PMDP-treated roots. PIN1 is

known to be enriched in detergent resistant membranes

(DRM) through its interaction with the efflux transporter

ABCB19 (Titapiwatanakun et al. 2009). When ABCB19

and PIN1 co-localize in DRM, ubiquitin-mediated deg-

radation of PIN1 is reduced, a response modulated by

MOP2 and MOP3 (Modulator of PIN) proteins (Malenica

et al. 2007). It is therefore possible that the inhibition in

GlcCer synthesis and its subsequent decrease in the PM is

enough to increase the instability of PIN1 in the PM,

thereby increasing its release for degradation. On the

contrary, no effect of decreasing GlcCer amounts (even

after PDMP treatment) was observed in the gcs2.2 line

expressing Sorting nexin-1 (SNX1) which regulates PIN2

endocytic sorting in distinct endosomes than those han-

dling PIN1 (Jaillais et al. 2006). Therefore, different

endocytic routes and recycling pathways may vary in their

requirement for GlcCer (and sterol) biosynthesis.

In conclusion, the biosynthesis, flow and homeostasis of

GlcCer in membranes, to maintain a certain concentration

in specific areas of these membranes, is likely to be

required for vesicle dynamics that mediate protein trans-

port to the cell surface, retrograde transport from the Golgi

back to the ER, and in some cases recycling between PM

and specific endosomal compartments. It is the synthesis of

GlcCer, and not so much the total content in cells, which is

critical for secretory transport dynamics. This is based on

our observations of the redistribution of marker proteins in

Arabidopsis treated with PDMP, in which the synthesis was

inhibited by at least 50% whereas total GlcCer content was

only reduced by 15–20%. Furthermore, the specific GlcCer

concentration in different areas of the membrane may

determine the formation of transport vesicles. Protein

transport is particularly intensive to and from the Golgi and

there is a strong interplay between GlcCer biosynthesis,

protein transport and the maintenance of Golgi morphol-

ogy. Coat machineries may influence lipid sorting, and

lipids may be able to modify the conformation, activation

and/or recruitment of proteins involved in vesicle forma-

tion. For example, the asymmetrical and unique lipid

composition of the outer leaflet of the outer chloroplast

envelope is essential for the correct topology of the trans-

membrane protein OEP7 (Schleiff et al. 2001). The inter-

actions between GlcCer and the Golgi and endosomal

compartments are not known, but we propose that GlcCer,

through its ongoing synthesis, plays an active role in the

regulation of several transport steps in plant cells (Fig. 3).

Lipid–protein interactions in the eukaryotic

secretory pathway

Protein sorting towards the secretory pathway in eukaryotic

cells may be assisted by lipid-based sorting events and also

specific interactions with acidic phospholipids (Ceppi et al.

2005; Lev 2006). For example, a specific targeting of

phosphatidylserine (PS) to ER-derived domains was evi-

denced in plant cells (Vincent et al. 2001), and PS was

demonstrated to be required in the formation of ER-derived

COPII vesicles in vitro (Matsuoka et al. 1998). Short chain

ceramides can influence the binding of ARF to Golgi

membranes and therefore affect the formation of COPI

vesicles (Abousalham et al. 2002).

In yeast, the oxysterol-binding protein (OSBP) Kes1p is

a lipid receptor which may regulate the formation of Golgi

secretory vesicles through regulation of the ARF and Sec14

pathways (Li et al. 2002). In animal cells, OSBP-related

proteins have been shown to interact with a syntaxin-like

VAMP-associated protein-A, and to be involved in the



function of the COPII-dependent ER-Golgi anterograde

transport pathway required in protein and ceramide trans-

port (Wyles et al. 2002). In Arabidopsis, the sterol-binding

protein ORP3a localizes to ER membranes and is recycling

between the ER and the Golgi, and may participate in sterol

mobilization required for specific membrane dynamics

related to the secretory process (Saravanan et al. 2009).

It has been observed that SNAREs can have various

affinities for lipid microdomains such as sterol- and sphin-

golipid-rich lipid rafts, and that the degree of their inter-

action with these domains may regulate the efficiency of

exocytosis (Salaün et al. 2005a, b). More recent work has

confirmed the interactions between SNAREs and several

lipids (sterols, sphingosine, phospholipids, phosphoinosi-

tides, etc.) and their very critical involvement in shaping

and regulating membrane fusion (Lam et al. 2008; Tong

et al. 2009; Darios et al. 2009; Mima and Wickner 2009).

Phospholipases D and phospholipases A-like enzymes can

interact with proteins of the COPII machinery to sustain the

formation and regulation of ER export sites (Pathre et al.

2003; Shimoi et al. 2005). Moreover, the basic domain

of the synaptobrevin VAMP2 strongly interacts with

the phospholipid PS (De Haro et al. 2003). Acidic

phospholipids (PA, PIP2, PS) may regulate the formation of

SNARE complexes and therefore the fusion events required

for secretion to occur. Protein–lipid interactions can, as in

the case of syntaxin1A, contributes to concentrate fusogenic

lipids such as PA to the fusion sites (Lam et al. 2008).

Finally, it has recently been proposed that ceramides pro-

duced from sphingolipid-rich domains contribute to the

lateral segregation and sorting of protein cargos within

endosomal membranes (Trajkovic et al. 2008).

Instead of the usual C-terminal isoprenylation, common

to Rab5 GTPases, Ara6 is modified with N-terminal

myristoylation and palmitoylation (S-acylation), both of

which are essential and seem to be employed as a mem-

brane anchor system (Ueda et al. 2001). In the case of Arf-

GTPase, responsible for triggering COPI recruitment to

donor Golgi membranes, myristoylation of the N-terminus

is essential for membrane binding of the activated GTP

form (Goldberg 1998). Ara6 co-localizes with the sterol-

reactive dye filipin on a subset of early endosomes, which

suggests that N-terminal myristoylation and S-acylation

may enable association of proteins with DRMs in the

plasma membrane. It is tempting to speculate that fatty acid

modification may determine the preferential interaction of

Fig. 3 Transport steps affected by inhibition of GlcCer biosynthesis

in Arabidopsis roots. This simplified scheme presents the affected

transport steps by red crosses, proteins corresponding to unaffected

transport steps are shown in green, and proteins corresponding to the

affected transport steps are shown in red. Arrival at the Golgi is less

demanding of GlcCer than exit of proteins from the Golgi, as

illustrated by QUA2 and GFP-HDEL respectively, and exit of PMA4

from the Golgi which was also affected by PDMP in tobacco leaf

epidermal cells. Proteins can be internalized from the PM by

endocytosis and can recycle back to the PM (PIN1, LTi6b). GlcCer

inhibition alters endosome dynamics, as illustrated by LTi6b.

Endocytosis of proteins may also result in their degradation in the

lytic vacuole (PIN1). However, SNX1 involved in the PIN2 endocytic

pathway was not disturbed, and PIN2 was also found not affected in

its recycling (not shown). Therefore, the different exocytic and

endocytic transport routes may differ in their requirement of GlcCer

biosynthesis and behavior when this synthesis is impaired. EE early

endosomes, ER endoplasmic reticulum, PM plasma membrane, PVC
pre-vacuolar compartment, SV secretory vesicles, VAC vacuole



proteins with GlcCer-rich membrane domains, in which

GlcCer may dynamically modulate the required protein-

membrane targeting, association and stability that is nec-

essary to execute and maintain cellular responses related to

growth or environmental cues.

The interactions between lipids and proteins of the

intracellular transport machineries may contribute to reg-

ulate the specific targeting and function of these proteins. It

must be considered that at the time a lipid is synthesized,

its physicochemical properties will spontaneously allow or

avoid specific interactions with other partners (other lipids

or proteins) that will govern its interaction within a

microdomain or another, and according to this environ-

ment, will target the lipid and its partners to a specific

transport pathway.

Therefore, lipids, lipid-modifying enzymes and lipid

modification of proteins must be considered as key regu-

lators of membrane domain formation and membrane/

organelle homeostasis. With protein-based machineries,

lipid-based machineries are also crucial regulatory forces

related to protein trafficking and sorting through the

secretory pathway.

Physicochemical properties of lipids

in membrane dynamics

As described above, lipids can serve as protein receptors

through ionic interactions and contribute to the recruitment

of cytosolic proteins of the machineries, they can modify

proteins for their targeting and/or function, they can help

the lateral segregation of protein partners into specific

domains (Haucke and di Paolo 2007; Lang et al. 2008), but

they contribute directly, through their biophysical proper-

ties (non-lamellar intermediary phases, membrane curva-

ture, membrane elasticity, etc.) to help protein machineries

to shape/distort membranes for membrane bending, bud-

ding and fusion processes (Janmey and Kinnunen 2006;

Wickner and Schekman 2006; Chernomordik and Kozlov

2008; Martens and McMahon 2008; Phillips et al. 2009;

Itoh and Takenawa 2009). Lipid-induced membrane cur-

vature can condition the recruitment and activity of protein

partners (Bigay et al. 2005; Mesmin et al. 2007). Some

features of the physicochemical properties of lipids are

summarized in Fig. 4.

It is now mostly accepted that membrane fusion pro-

ceeds through a hemifusion intermediate also called

‘‘hemifusion stalk’’, and progress then via a fusion pore

(Lang et al. 2008; Chernomordik and Kozlov 2008;

Martens and McMahon 2008). There is also compelling

evidence that lipids directly participate in the different steps

of the fusion process. For fusion to occur, membranes have

to be into close proximity, and to be destabilized. It has

been suggested that both events require the induction of

membrane curvature at the fusion site (Martens and

McMahon 2008). Membrane curvature can be managed

by specific proteins and peptidic sequences such as the C2

domains (Chernomordik and Kozlov 2008; Martens and

Fig. 4 Structural features of the main lipid families. Lipids which

can be segregated in Ld or Lo phase domains as defined in Hammond

et al. (2005) are shown. Cone-shape (negative membrane curvature)

and inverted cone-shape lipids (positive membrane curvature) are

indicated. Proteins able to interact with specific lipids to form/

maintain specific membrane domains are also illustrated



McMahon 2008; Hu et al. 2008), which are Ca2? and lipid-

binding domains (Meijer and Munnik 2003), but is also

highly provoked and regulated by lipids and their metab-

olism. The spontaneous curvature of lipids is related to their

structure. PC and SM, which are cylindrical molecules,

favor flat bilayer structures, lysophospholipids such as LPC

and polyphosphoinositides such as PIP2 (inverted cone

shaped lipid) induce membranes with a positive curvature,

whereas PA, PE, PS, DAG, ceramides (cone shaped lipids)

and fatty acids and cholesterol induce membranes with a

negative curvature (Janmey and Kinnunen 2006; Cherno-

mordik and Kozlov 2008). The stalk hypothesis considers

that the formation of the hemifusion stalk intermediate is

favored by lipids inducing negative curvature (Lang et al.

2008; Chernomordik and Kozlov 2008). Therefore, lipids

inducing positive curvature such as lysophosphatidylcho-

line (LPC) are inhibiting the early stages of membrane

fusion whereas lipids, which induce negative curvature

such as PE, are stimulating these steps (Lang et al. 2008;

Chernomordik and Kozlov 2008). Then the reverse is

observed for the formation of the fusion pore, LPC favors

and PE inhibits when they are added to the distal leaflets of

the fusing membranes, suggesting that a positive curvature

of the inner leaflets is required for full fusion to be achieved

(Chernomordik and Kozlov 2008). It has been suggested

for example that PA stimulates the formation of the

hemifusion state and PIP2 is required to complete fusion in

the case of SNARE-driven liposome fusion (Vicogne et al.

2006). The sterol structure can affect membrane curvature

and prepare a membrane for budding or fusion events

(Bacia et al. 2005). Therefore, lipid metabolizing enzymes

such as phospholipases, sphingomyelinase, acyltransfer-

ases, and the overall lipid metabolism strongly contribute to

membrane fusion and its regulation by providing lipids

with specific structures compatible with the different steps

of the fusion process. More examples are illustrating the

requirement of such specific lipids in various intracellular

fusion events (Janmey and Kinnunen 2006; Wickner and

Schekman 2006; Lang et al. 2008; Chernomordik and

Kozlov 2008; Martens and McMahon 2008; Brown et al.

2008; Phillips et al. 2009; Itoh and Takenawa 2009 and

references therein).

In addition, it has also to be taken into account that lipid

phase separation, which may be handled by specific pro-

teins, can trigger membrane fission (Roux et al. 2005).

Recently, lipid sorting without any protein machinery was

found to proceed through curved membranes structures,

and that it occurs near a demixing point (i.e. close to the

phase separation state between curved and non curved

domains or may be also between Ld and Lo phases, see

Fig. 4) (Sorre et al. 2009). Therefore, physiological mem-

branes being mostly close to such phase separation (Roux

et al. 2005 and references therein), it is easy to deduce how

even small variations in lipid composition and/or content in

specific domains can modulate membrane morphodynam-

ics. We have also to take into account that lipid metabo-

lism, through phospholipases, acyltransferases, kinases,

phosphatases, and the various metabolic pathways, can

rapidly (from seconds to minutes) modify the membrane

lipid composition in small or wider membrane domains. In

addition, several proteins (Itoh and Takenawa 2009),

through their lipid-binding domains (ALPS, BAR, I-BAR,

F-BAR/EFC, ENTH, etc.) not only will bind to such spe-

cific membrane domains but will help shaping these

domains for specific purposes (fusion, fission, tubulation,

etc.). Therefore, there are synergistic effects (lipids on

proteins and proteins on lipids) to govern the subtle

membrane lipid composition and structure changes.

ARFGAP1 activity toward ARF1 is repressed by low

membrane curvature to ensure ARF1-mediated recruit-

ment of COPI to the membrane (Bigay et al. 2005).

Recently, ARFGAP1 was shown to be hypersensitive to

positive membrane curvature for binding, to be restricted

to curved regions of the membrane whereas ARF1 binds

to flat regions, and that in the model proposed, mem-

brane fission (COPI vesicle release) is the governing step

in coat disassembly (Ambroggio et al. 2009). Therefore,

ARFGAP1 activity is sensitive to membrane curvature

and ARFGAP1 accelerates deactivation and release of

ARF1 with increasing positive curvature of the mem-

brane as the vesicle is formed. This implies that different

factors regulate COPII and COPI vesicle formation in the

ER and Golgi, respectively. Differences in the lipid

composition of Golgi and ER membranes may be a key

factor in the regulation of COPII and COPI coat

dynamics and cargo sorting during vesicle formation in

the Golgi and the ER.

CtBP/BARS (BARS-50) has been identified as an

important factor for COPI-mediated transport. It has been

shown that CtBP/BARS play a key role in COPI vesicle

fission. Although CtBP/BARS is not essential for cargo

recruitment, CtBP/BARS association with ARF1-directed

ARFGAP1 promotes vesicle fission (Yang et al. 2008).

Membrane lipids are important elements in the function of

CtBP/BARS, as it requires PA, which is generated by

phospholipase D2 (PLD2) (Yang et al. 2008). In addition,

DAG synthesis from PA is required in membrane vesicle

formation in the Golgi apparatus in animal cells (Asp et al.

2009). An orthologue of the human CtBP/BARS has been

identified in plants (Kim et al. 2002).

It has been found that PDMP partially blocks the ADP-

ribosylation of BARS-50 (CtBP/BARS) induced by BFA

(128) and inhibits the disassembly of the Golgi complex

and its merging with the ER compartment in BFA-treated

cells (De Matteis et al. 1999). The effect of PDMP on

BARS-50 is an event that occurs after the binding of COPI



components to Golgi membranes as PDMP did not alter the

effect of BFA on ARF or b-COP binding to isolated Golgi

membranes (De Matteis et al. 1999). These data, combined

with the delocalization of GFP-HDEL in punctuate struc-

tures in the gcs2.2 mutant (Fig. 2) suggest a possible role

for GlcCer in the fission of COPI vesicles through CtBP/

BARS function.

This hypothesis could be challenged by a parallel study,

as PDMP inhibition of BFA-induced Golgi dispersal could

not be counteracted by addition of C6-GlcCer (Kok et al.

1998). The study suggested instead that the PDMP-medi-

ated inhibition of Golgi dispersal by BFA was accom-

plished via a specific modulation of calcium homeostasis.

However, although calcium is important in COPI-mediated

retrograde transport, the need for calcium occurs at late

stages in the COPI system, notably in the timing of COPI

vesicle uncoating, well after ADP-ribosylation factor

binding to the membrane (Ahluwalia et al. 2001). The

results by Kok et al. (1998) may also be confounded by the

observation that short-chain ceramides are able to inhibit

BFA-induced Golgi disassembly whereas long-chain

ceramides do not seem to have any effect (Fukunaga et al.

2000). Glucosylceramides include a large number of

molecular species in plant membranes (Warnecke and

Heinz 2003), which makes them a varied group of lipids.

One main features of GlcCer is the presence of an alpha-

hydroxylated long chain fatty acid (LCFA, up to 18 carbon

atoms) or very long chain fatty acid (VLCFA, more than 18

carbon atoms). The VLCFA are inherently essential com-

ponents of sphingolipids, and it is possible that the effects

of PDMP in BFA-treated cells simply could not be

bypassed by the addition of GlcCer with a short six-carbon

acyl chain.

More precise analysis of the requirement for sphingoli-

pids in surface transport and stabilization of Pma1 subse-

quently revealed that all mutations that affect the synthesis

of VLCFA (C26) result in the rapid turnover of newly

synthesized Pma1 in yeast (Gaigg et al. 2005). The syn-

thesis of C26-containing lipids, rather than ceramide or

sphingolipids per se, is important for raft association of

newly synthesized Pma1 and for its stable delivery to the

cell surface (Gaigg et al. 2005). It has been observed that

C26-containing PI can replace the essential function of

sphingolipids and structurally and functionally mimic

sphingolipids (Schneiter et al. 2004). Shortening the C26

fatty acid on these suppressor lipids by means of an elo3D
mutation, however, neutralized the suppressor activity of

these lipids and resulted in the rapid turnover of the newly

synthesized Pma1 (Gaigg et al. 2006). These results thus

strongly indicate that lipids containing C26 fatty acids

(VLCFA), either bound to ceramide or glycerophospho-

lipids, are important for the stable biogenesis of Pma1.

VLCFA were recently shown to be critical in plants since

VLCFA synthesized by the fatty acid elongase complex in

the ER are required for polar auxin transport, cell expan-

sion and tissue patterning during Arabidopsis development

(Zheng et al. 2005; Roudier et al. 2010). Targeting of

VLCFA-containing phospholipids and especially VLCFA-

PS to ER-derived domains was also observed as critical

events of the early plant secretory pathway (Moreau et al.

1998; Vincent et al. 2001; Moreau 2007). PS was shown to

be required in the formation of ER-derived COPII vesicles

(Matsuoka et al. 1998), and GlcCer was found to be

involved in several steps of post-Golgi trafficking (Melser

et al. 2010, Figs. 2, 3). We can therefore speculate that

VLCFA-containing lipids (glycerophospholipids and

sphingolipids) may be crucial in some instances to mem-

brane dynamics through their tendency to manage mem-

brane curvature (Zheng et al. 2005).

Concluding remarks and perspectives

A tremendous amount of data implicate lipids, lipid-

modifying enzymes and lipid-modified proteins as deter-

minant partners of the functional machineries acting in

the secretory pathway of eukaryotic and plant cells and

also in cytokinesis (Montagnac and Chavrier 2010). One

key feature in these events is also an incredible co-reg-

ulation of the lipid biosynthetic pathways involved

between themselves so that each step/event undergoes

several levels of regulation (Venable et al. 1996; van

Blitterswijk et al. 2003; Tóth et al. 2006; Kajiwara et al.

2008; Aerts et al. 2008; Domonkos et al. 2008). A big

challenge for the future will be to inter-connect all these

lipid biosynthetic pathways and their regulations in an

overall model of lipid-assisted mechanisms involved in

secretory and endocytic pathways and in diverse cell

functions (cytokinesis, apoptotic and cell death events,

ageing, photosynthesis, energy management, etc.). In

addition, modeling mathematically such different events

as recently shown for vesicle trafficking in pollen tubes

(Kato et al. 2010) will be other perspectives. Finally,

behind genetic, biochemical and biophysical approaches

of lipid-dependent phenomena, another challenge in plant

cells will be the monitoring of lipid dynamics in vivo

with specific tools (Vielhaber et al. 2001; Kuerschner

et al. 2005, 2008; Men et al. 2008; Babiychuk et al. 2008;

Stöckl et al. 2008; Boutté et al. 2009; Vermeer et al.

2009; Stöckl and Herrmann 2010).
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