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This study focuses on the numerical simulation of roller hemming of an aluminium alloy sample with a

curved geometry; this non-planar geometry is obtained by a prestrain procedure similar to deep drawing

process. Material characterization was performed through tensile and simple shear tests at different

orientations on the sheet plane. The influence of considering the Bauschinger effect, anisotropy, and the

strain history on the final geometry was studied. A specific laboratory device for roller hemming was

designed to forward an experimental database. The numerical simulation of the roller hemming of these

samples is presented here, as well as the correlation between the calculations and the experimental tests,

notably the roll-in value and the prediction of wrinkling.

1. Introduction

Opening parts of automobiles are generally made of a rein-
forcing inner part and an outer part (skin), which are both deep
drawn, glued, and assembled by hemming, as is described for exam-
ple by Iwata et al. (1995). Hemming, an alternative to traditional
assembly processes like welding, is a three-step process (Livatyali
et al., 2000) which can be performed with specific dies and blades
(classical hemming) or with a robot and a roller (roller hemming).
These technologies have greatly evolved in recent years. In fact,
industries are phasing out expensive technologies, such as classical
hemming, and opting for roller hemming, a technology which uses
lighter equipment and for which tool development is more flexible
and which employs a handling robot. Usage of this new process is
quite recent and there is only limited information available from
the experiments of specialists; however, its numerical simulation
was developed not so long ago (Thuillier et al., 2008). Therefore,
numerical simulation of this process will still demand some time
and several hypotheses on sheet behavior under the roller (appear-
ance of wrinkling, roll-in value, etc.) should be investigated. Like for
classical hemming, numerical modeling should provide insight into
the geometry of opening parts, which should be adopted to avoid
hemming feasibility problems.

The research works of Thuillier et al. (2008) focus on the finite
element simulation of the roller hemming process for an Al–Mg
alloy. The sample is planar and has a convex edge. Particular atten-
tion is paid to the influence of the behavior models have on the
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numerical predictions and the results are compared to those of
classical hemming for the same geometry. The results for both pro-
cesses show different evolutions of the plastic strain and the roll-in.
The study carried out by Li et al. (2011) presents a similar study
on a simpler geometry (planar straight-edged sample), but com-
pares the numerical results to the experimental results. The results
correspond to those of previous studies and show better testing
correlation when considering the Bauschinger effect. The samples,
however, are not prestrained and are, therefore, not representa-
tive of the industrial process in which pieces first undergo deep
drawing. It is important to take prestrain into account because it
affects the final geometry and can cause damage during classical
hemming for steels (Le Maoût et al., 2009), for aluminium alloys
(Thuillier et al., 2011), as well as during roller hemming (Hu et al.,
2010).

This article is devoted to the numerical simulation of the roller
hemming of a curved piece, which has undergone prestrain equiva-
lent to that of an opening part of an automobile after deep drawing.
The numerical modeling of the process is developed in a finite-
element code and the results obtained for this particular geometry
are then presented. The influence of the material model and of the
preliminary hemming steps is also studied. Finally, the numeri-
cal prediction is compared to the experimental results gathered
through a specific experimental set-up for hemming.

2. Material and identification

A 6000 series aluminium alloy is focused on here, which is
widely used in the automobile industry for the visible body parts of
vehicles. Its main additional elements are magnesium and silicium,
the chemical composition being given in Table 1.
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Table 1

Chemical composition in weight % of aluminium alloy AA6016.

Al Mg Si Cr Mn Cu Ti Fe Zn Others

96.4-98.8 0.25 1.0-1.5 ≤0.1 ≤0.2 ≤0.2 ≤0.15 ≤0.5 ≤0.2 ≤0.2

To describe the behavior of this aluminium alloy, Hill’s 1948
yield criterion (Hill, 1948) is used to represent the material
anisotropy. This choice is in accordance with the conclusions of pre-
vious studies (Svensson and Mattiason, 2002), on the pertinence
of the various yield surfaces applied to numerical simulation of
hemming process. Mixed hardening is also used, the kinematic con-
tribution of which is non-linear and of the Armstrong and Frederick
(1966) type. In this case, the yield function � is written as:

�(�, X, R) =

√

3

2
(S − X) : H : (S − X) − �0 − R (1)

where �0 is the yield stress in tension in the rolling direction (RD),
S is the deviatoric part of the Cauchy stress tensor �, and H is the
fourth-order Hill’s tensor which takes into account the orthotropic
symmetry of the material. It depends on coefficients: F, G, H, L, M

and N among which F, G, N are identified at the same time as all
parameters of the hardening model. The following classical hypoth-
esis are made: L = M = 3 and H + G = 2. Variable R of Eq. (1) is a scalar
describing isotropic hardening and X a second-order tensor which
describes kinematic hardening. The evolution of X is:

Ẋ = Qx�̇
p

− bxXṗ (2)

bx represents the hardening saturation rate, Qx is the saturation
value, p the cumulated plastic strain and �̇

p
the plastic strain rate

tensor. Three models are studied, the first uses a mixed hardening
with a saturated isotropic hardening of the Voce type (Lange et al.,
2005) (Hill48-Mixed model):

R = Q [1 − exp(−bp)] (3)

Q represents the maximum change of the yield surface size, while
b defines the growth rate of the yield surface. The second model
uses isotropic hardening with an anisotropic yield surface to high-
light the influence of the Bauschinger effect on the load and roll-in
results (Hill48-Iso model). Finally, the third model only uses a Voce
type isotropic hardening with an isotropic yield surface (Mises-Iso
model).

Several types of mechanical tests were carried out to determine
the material parameters through a process set forth in detail in
Gallée et al. (2007). Tensile tests were carried out on rectangular
samples, the useful surface of which is 140 mm × 20 mm. A series
of tests were done on orientations of 0◦, 45◦ and 90◦ to RD to deter-
mine the plastic anisotropy ratios (Figs. 1a and 2 ). The tests were
carried out till failure with a strain rate of �̇ = 10−3 s−1. To mea-
sure the parameters linked to the kinematic hardening component,
simple shear tests were done according to the method described
by Thuillier and Manach (2009) on samples with a useful area of
50 mm × 4.5 mm. Both monotonic and alternating tests were per-
formed, after a prestrain of  = 0.1 and 0.2, in the RD (Fig. 1b).
Finally, parameter identification was carried out through an inverse
method using SiDoLo (Chaparro et al., 2008); the parameter values
thus obtained are given in Table 2.

As has been noted here, the retained models enable good rep-
resentation of flow stress, as well as tensile and shear stress for the
various orientations for monotonic loading. The alternating shear
tests, presented in Fig. 1b, highlight the necessity of taking the kine-
matic hardening component into account. Finally, the use of Hill’s
1948 yield criterion for this material does not provide a satisfying
description of plastic anisotropy ratio evolution for various orien-
tations. In fact, this is in correlation with Bochud et al. (2008), who

proved that is was often difficult to correctly represent both the
stress level and the transverse strain with the same set of parame-
ters for this yield criterion.

3. Experimental investigation

The hemming sample of thickness 1 mm is characterized by a
curved surface of radius Sst = 215 mm and a hemming edge of radius
Esh = 258 mm, see Fig. 3a. Radius Sst is obtained through sample pre-
strain done before the flanging and hemming steps. Different types
of car opening parts (doors, hoods, and deck lids) have been ana-
lyzed in such a way as to determine the value of radius Sst to come
as close as possible to industrial cases in terms of geometry and
prestraining. Sample length was chosen to be 160 mm, so as to
avoid edge effects while facilitating their placement in the tools.
The edge radius value Esh is close to the value used on the planar
samples studied in Lange (2008), also representative of the radii
often found in the opening parts of automobiles.

The hemming process generates a modification in the final
dimensions of the assembly which is difficult to anticipate. This
phenomenon, called roll-in, may be considered as a defect as it
significantly modifies the esthetics of the vehicle, see Fig. 4. This
dimensional reduction, which happens between the flanging and
pre-hemming steps, requires the measuring of the evolution of the
position of the hemmed edge during each step. To do so, roll-in is
measured for several sections of the sample defined in Fig. 3b along
a concentric circle to the radius Esh, the one at 0◦ corresponds to
RD. The measurements for the flanging height as well as the roll-in
reference, are given in Fig. 3c. Roll-in is calculated using the dis-
tance between the points (1st point and 2nd point at 4 mm from
the surface) as a reference during flanging. For the pre-hemming,
and hemming steps, the second point is the one farthest away in
the bent zone. Roll-in corresponds to the difference between the
flanging measurement and the pre-hemming and hemming mea-
surements.

A biaxial expansion set up similar to the one developed by
Grolleau et al. (2008) is used to obtain the curved surface. The
value Sst of the curved surface is obtained by monitoring the three
displacement points during the test (Fig. 5a). The geometry of the
hemming samples with an in-plane radius Esh is finally produced
by laser trimming (Fig. 5b). It should be noted that the radius Esh of
the inner part is smaller so that it may be set back from the edge
of the skin part. A hemming set up was designed and realized to
flange and hem prestrained samples. This device, the characteris-
tics of which are given by Le Maoût et al. (2010), can be adapted
onto a tensile testing machine of 500 kN capacity in order to flange
the outer skin samples. The flanged samples are then placed in the
pre-hemming die in such a way that makes them flush with the tool
edge (Fig. 5c) and both the inner and the outer skins are tightened
under a pressure of 8.9 MPa, eliminating any geometric deviation
from the biaxial prestrain. The flanged height is around 9 mm and
the flanging radius is set to 2 mm for this material. Roller hemming
is then carried out. Kinematics of the roller are imposed by a han-
dling robot. A 47 mm cylindrical roller is mounted on a ball bearing
thus giving it free rotation on its revolution axis. A sensor, placed
above the roller, registers the compressive loads applied accord-
ing to the direction of the robot arm. The robot trajectory is set
so that the arm is constantly normal to the die surface edge with
a pre-hemming angle of 50◦ and the linear speed of the roller is
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Fig. 1. (a) Tensile tests and identification at 0◦ , 45◦ and 90◦ to RD and (b) tensile and shear tests and identification of the different models for AA6016 aluminium alloy.
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Fig. 2. Experimental thickness strain evolution in function to the transverse strain and tensile identification at (a) 45◦ to RD and (b) 90◦ to RD for AA6016 aluminium alloy.

See Fig. 1a for the definition of �y and �z directions.

Table 2

Coefficients identified for AA6016 aluminium alloy for the different models (G + H = 2, L = M = 3 for Hill’s 1948 criterion).

�0 (MPa) Q (MPa) b Qx (MPa) bx F G N

Mises-Iso 139 190 11.7 – – 1 1 3

Hill48-Iso 139 190 11.7 – – 1.24 1.22 2.70

Hill48-Mixed 109 178 6.19 5929 81 1.31 1.20 2.89

80 mm s−1. Moreover, the roller revolution axis remains perpen-
dicular to radius Est.

4. Numerical simulations

The numerical simulations of roller hemming were done with
the finite-element code Pamstamp2G. Given the multi-operation

character of the process, the numerical simulations include several
successive steps, as can be seen in Fig. 6.

The numerical simulations were done with Belytschko-type
finite elements. Although the Mindlin–Reissner hypotheses used
for their formulation are not satisfied, Le Maoût et al. (2010) showed
that these elements still make it possible to obtain good results.
The number of through-thickness integration points is set to 5. The

Fig. 3. (a) Definition of geometric parameters Sst and Esh , (b) definition of the measured sections for geometric measurement after flanging, pre-hemming, and hemming and

(c) details of the measurements of geometric parameters after springback during the flanging step. Section 1 is located on the left side of the sample while section 11 is on

the right side, both for an angle of 17.50◦ to the RD.
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Fig. 4. Steps of (a) flanging, (b) pre-hemming, and (c) hemming. The characteristic parameters are a flanging height Ht , a flanging radius Rt (0.5 mm), and e is the position of

the inner part. Here, outer and inner parts have the same thickness t.

Fig. 5. (a) Biaxial expansion giving the sample curved surface, (b) laser trimming and (c) roll hemming set up.

adaptive algorithm of Pamstamp2G mesh is used, as well as two
criteria to subdivide an element. The first criteria are determined
by the angle between the normal to the element and that of its
neighboring elements, set at a maximum of 10◦. The second deals
with the detection of the blank being closer to the tool area with
high local curvature. This criterion triggers significant refining of
the flanging radius area when the blank is in contact with the die
radius in order to prepare for the pre-hemming and hemming steps.

4.1. Biaxial expansion, trimming and flanging stages

Simulation of the biaxial expansion test was done by consider-
ing half of the blank (Fig. 6). Only one blank symmetry is used so as
to extract the whole sample during trimming. Indeed, simulation
of the roller hemming process requires the use of the entire sam-
ple as the problem has neither geometrical nor loading symmetry.
Pressure is applied to the surface of the outer part in contact with
oil. The evolution of the pressure in function of time is obtained
experimentally. The blank-holder force and the friction coefficient

are adjusted to 600 kN and 0.12 respectively in order to be closer
to the experimental displacement evolution at the pole. At the
end of the test, the equivalent plastic strain reached at the pole
is slightly lower than 0.1. The samples are obtained by trimming
blanks which have undergone biaxial expansion according to the
same experimental trimming line, and by keeping the elements
located within the line. The elements located on the edge of the
sample are refined. Intermediate springback is carried out between
each step through implicit calculation. For the flanging step, the
friction coefficient adopted to model the contact between the blank
and the tool is 0.12. Numerically, the sample was placed in the die
and adjusted to perfectly correspond to the flanging height (Ht) val-
ues obtained experimentally at 9 mm on average along the sample.
The gap between the blade and the flanging die equals the thickness
of the initial sheet increased by 10%. The flanging blade displace-
ment rate is imposed by a linear ramp, starting at a null rate and
finishing at a constant rate of 5 m s−1 after a displacement of 1 mm.
During this step and the subsequent ones, the blank-holder force is
set to 93 kN.

Fig. 6. Finite element calculation flow chart for samples with curved surfaces (isovalues correspond to the distribution of the equivalent plastic strain).
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Fig. 7. (a) Definition of the roller path in roller hemming. Definition of the frames associated with the discretization points of the 3D curve and (b) modeling of the arm and

roller.

Before biaxial expansion, the element size in the future bending
zone is 8.3 mm. Element refinement is allowed since the flanging
step and the element size is equal to 0.25 mm at the end of flanging,
which corresponds to 16 elements in the final curvature radius area.
The elements that are located on the edge of the sample are of small
dimensions, and as their influence on the process is rather weak, a
mass scaling is applied to these elements in order to decrease the
calculation time. The weighting coefficient is calculated in order to
correspond to the mass of an element with a characteristic length
of 0.16 mm. Several studies, such as Lange et al. (2005), have shown
that this parameter has only a weak influence on the prediction of
roll-in but decreases significantly the calculation time.

4.2. Roller hemming process

To define the roller path, a 3D curve is discretized on the piece to
be hemmed. A local frame is attached to each point, which defines
the direction of the roller during hemming (Fig. 7a). The displace-
ment of the roller is performed by successively superposing the
robot frame with the frame of each point of the discretized curve
(Fig. 7b). The robot is constituted of a roller and an arm, the numer-
ical link between the two parts enables free translation of the roller
in direction �Zroller of the frame combined with free rotation around
axis �Xroller . The other relative degrees of freedom between the roller
and the robot arm are set, the rotation of the roller around its axis
is generated by the friction force between the roller and the sheet.
A follower force is applied according to direction �Zroller to simulate
the action of the spring located between the roller and the arm. Its
intensity corresponds to the experimental values taken from the
sensor at the top of the robot. Moreover, the path and directions of
the lowering and raising of the roller are modeled in accordance to
the experimental protocol. At the beginning of the pre-hemming,
the roller is set on the die edge and bend the edge of the sample near
section 1 (see Fig. 3b). This lowering of the roller is performed along
the normal to the die surface. It moves up at the end of the hemmed
line, on the opposite side. For the hemming step, the lowering of
the roller is carried out identically, but starting on the opposite side
of the lowering of the roller during pre-hemming, i.e. near section
11. The friction coefficient between the roller and the sheet is taken
as equal to 0.12, the value of which is experimentally determined
by averaging the results obtained for several sample geometries
according to Le Maoût et al. (2010).

Acceleration of the robot arm is slight and tool inertia is negligi-
ble which justify considering the process as quasi-static. However,
as modeling this process implies high non-linearity due to the
material and friction contact, the equilibrium equations are solved
with an explicit scheme. The stability of the solution is checked
to ensure that the conditions of data generation are close to those

of a quasi-static solution. The classic criterion consists in verifying
that the kinetic energy stays below 5% of the internal strain energy.
It should be noted that the influence of the strain rate is not taken
into account here. Indeed, a preliminary numerical study has shown
that a rate set at 5 m s−1 to obtain low kinetic energy (around 4% of
internal energy) leads to a stable solution, unlike higher rates.

5. Results and discussion

Based on the work of Li et al. (2011), the longitudinal strain dur-
ing roller hemming of straight samples is weak, because it always
remains under 10% of the circumferential strain in the hemmed
zone. Therefore, this component of the strain tensor should have
only a weak influence on the roll-in value and has not been investi-
gated here. However, in the case of curved samples, the variation of
the longitudinal strain along the edge may emphasize the wrinkling
and could have a larger influence on the roll-in value.

5.1. Preliminary steps

Fig. 8 shows the evolution of stress �YY in function to strain �YY

after the flanging process for three integration points in the local
frame of an element situated on the symmetry plane of a sample in
the bent area. The integration points are such that 1 is the closest
to the internal surface to which the pressure is applied, 2 is on the
median surface, and 3 is closest to the external surface. The stress
evolution was noted to alternate between the biaxial expansion

Fig. 8. Evolution of stress �YY in function to strain �YY for the Hill48-Mixed model

during biaxial expansion and flanging for 3 integration points in the thickness.
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Fig. 9. Evolution of horizontal and vertical load components on the blade during

flanging.

step and the flanging step for integration point 3, which justifies
the use of Hill48-Mixed model.

Fig. 9 gives the evolution of horizontal and vertical load com-
ponents on the blade during flanging. The rate of the vertical
force-displacement curve has the characteristics of the one usually
seen for flanging, see Livatyali and Altan (2001) and Muderrisoglu
et al. (1996) for example. The increase of the load component at
the beginning of the curve corresponds to the bending of the sheet
against the flanging die radius, while inversely, the load decreases
when the flanged edge comes closer to the die. Finally, the residual
load at the end of flanging is caused by the sliding of the blade along
the folded sheet. It can be noted that the predicted flanging load
evolution is little influenced by the models used. Load amplitude is
highest with Mises-Iso model which does not correlate as well with
the experimental values. The results obtained with Hill48-Iso and
Hill48-Mixed models are very close, despite the occurrence of cyclic
loading between the biaxial expansion and flanging. The influence
of anisotropy is thus preponderant in this case.

5.2. Roller hemming

Fig. 10 compares the beginning of the pre-hemming of the
sheet during the experimental test and the numerical simulation.
It was noticed that the simulation contained wrinkling similarities
in terms of number and amplitude.

Figs. 11 and 12 show the roll-in evolution along the measured
sections of the sample during pre-hemming and then hemming.
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The experimental roll-in value is relatively stable over the length
of the sample with nonetheless significant variations at the edges
of the sample which corresponds to areas where the roller was low-
ered. Passage of the roller in the opposite direction during hemming
does not, however, completely compensate for this phenomenon.
Roll-in variations along the hemmed edges display the high wrin-
kling sensibility of this hemming technology in comparison to the
classical technology. According to Livatyali et al. (2004), such sam-
ple geometry should not lead to wrinkles in classical hemming.
Conversely, with roller hemming, it is noticed that flanging of such
shrink samples leads to severe wrinkling during pre-hemming and
that these wrinkles are mostly flattened during final hemming.
This wrinkling sensitivity could be explained by a non uniform

Fig. 10. Comparison of numerical simulation of pre-hemming with experiments.
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distribution of the longitudinal strain that will be later investigated.
The numerical results obtained for the roll-in are also provided in
Figs. 11 and 12. The three constitutive models give similar results,
which are close to the experimental values, except for the roll-
in values in sections 1 and 2 that are poorly predicted after final
hemming. Even if the increase of roll-in due to the lowering of the
roller is well predicted during pre-hemming, it is observed that the
roll-out is overestimated after hemming. This could be linked to
either a discrepancy of the roller path between experimental and
numerical procedures or to a wrong predicted strain state in this
region after pre-hemming. Hill48-Mixed model does not improve
the results. Despite the strain path changes observed in Fig. 8, the
kinematic hardening is not so significant for this material, leading
to small differences in terms of roll-in whatever the model used
during pre-hemming.

In the case of classical hemming, Svensson and Mattiasson
(2002) demonstrated the influence of taking into account the
prestrain linked to forming operations in the numerical simula-
tion of the process. The roll-in is systematically reduced during
pre-hemming by taking into account the prestrain state, but can
decrease or increase if the hemmed edge is in a shrink or a stretch
strain state. Here, the objective is to study this influence for roller
hemming. The forming operations concerned are biaxial expansion,
trimming, as well as the flanging phase. A numerical simulation
was thus carried out without considering the previous operations
by importing the sample mesh at the end of the flanging calcula-
tion. The refining history of the mesh is kept without taking into
account the stress and strain states obtained during the prelimi-
nary operations, nor the sheet thickness evolution. The goal is to
obtain the approximation carried out for the simulation directly on
the already flanged samples, without taking the strain history into
account.

Figs. 13 and 14 show the need of taking into account the pre-
strain history in the numerical simulation. During pre-hemming,
the roll-in is 30% overestimated when the strain history was
not considered. The roll-in obtained during hemming for both
simulations shows also significant gaps, of the order of 100%
when prestrain is not taken into account. In fact, the plastic
strain is located in the flanging radius and creates a substantially
hardened area around which the sheet rolls up. Less significant
roll-in is thus obtained, which has values that are closer to the
experimental ones when the flanging step is taken into con-
sideration during the numerical simulation. This justifies taking
preliminary forming operations into account, notably for the pre-
diction of wrinkling and roll-in values.
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Fig. 15. Comparison of the shape of the bent medium section obtained by roller

hemming and by classical hemming.

5.3. Comparison of classical and roller hemming

The small influence of models on roll-in prediction tends to indi-
cate that the main factor that governs roll-in is the kinematics of
the material points in the bent area. Roll-in values in classical hem-
ming, for the same material and sample geometry, vary in between
1.3 and 1.7 mm and are much lower in roller hemming. Fig. 15
shows profiles extracted from numerical simulations of both pro-
cesses in the center of the specimen. It can be observed that the
main difference occurs during the pre-hemming step. In classi-
cal hemming, roll-in increases drastically in the pre-hemming step
and then decreases. This phenomenon occurs only slightly in roller
hemming for which there is a smooth and rather regular increase
of roll-in during the pre-hemming and hemming.

6. Conclusion

Roller hemming tests were carried out for aluminium alloy sam-
ples with a curved geometry having both a curved surface and
an in-plane curved edge. The samples were prestrained by biaxial
expansion to obtain a strain history before flanging and hemming.
The choice of the geometry studied and the imposed prestrain
before flanging comes from the study of geometries which cause
problems during hemming for opening parts of automobiles. The
main results are:
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• the experimental characterization of the aluminium alloy
AA6016, done through tensile and simple shear tests, has shown
that the material has a low variation of the flow stress in the sheet
plane, as well as only a slight Bauschinger effect. The identifi-
cation of an anisotropic elastic-plastic mixed-hardening model
has nevertheless given the best description of the mechanical
behavior.

• the numerical simulation shows good correlation of the wrinkles
which appear on the samples during pre-hemming. The fact of
taking into account the anisotropy and Bauschinger effect of the
material has little influence on the roll-in prediction. It has been
shown that the strain history, linked to the preliminary forming
operations, significantly increases roll-in during pre-hemming,
as well as the appearance of wrinkles on the edge of the sample.
It is therefore essential to integrate all of the preliminary steps
into the numerical simulation of roller hemming.

• the order of magnitude of roll-in in classical and roller hemming
is different (around 1.5 mm in classical and 0.6 mm in roller hem-
ming) that comes mainly from a more regular movement of the
material points located in the bent area in roller hemming than
in classical hemming.
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