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Proofs as Cryptography:
a new interpretation of the Curry-Howard isomorphism
for software certificates

K. Amrit!, P.-A. Fouque?, T. Genet?® and M. Tibouchi*
Abstract

The objective of the study is to provide a way to delegate a proof of a property to a possibly untrusted
agent and have a small certificate guaranteeing that the proof has been done by this (untrusted) agent. The
key principle is to see a property as an encryption key and its proof as the related decryption key. The
protocol then only consists of sending a nonce ciphered by the property. If the untrusted agent can prove
the property then he has the corresponding proof term (A-term) and is thus able to decrypt the nonce in
clear. By sending it back, he proves that the property has been proven without showing the proof. Expected
benefits include small certificates to be exchanged and the zero-knowledge proof schema which allows the
proof term to remain secret. External agents can only check whether a proof exists without having any
information about it. It can be of interest if the proof contains some critical information about the code
structure for instance.
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1 Introduction

The objective of this study is to provide a mechanism by which a host system can determine with certainty
that it is safe to execute a program supplied by a source. For this to be possible, the code producer might
need to convince the consumer that the source code or the program satisfies certain required properties.
These properties can very well be the requirement that the program preserves certain invariants. One way
to achieve the goal is to make use of Proof-Carrying Code technique aka PCC | ]: the code producer
supplies with the code a safety proof that attests to the code’s adherence to a previously defined safety
policy. The code consumer can then easily and quickly validate the proof. This technique doesn’t rely on
any cryptographic system.

An alternative way to achieve the goal could be to provide a way to delegate the proof of a property to
a possibly untrusted agent and have a small certificate guaranteeing that the proof has been done by the
agent. This technique is useful in cases where no predefined safety policy is required and the code producer
doesn’t have to prove the property on his own and hence speeds up the process at the code producer’s end.”
Being in the same setting as the PCC, the code producer and the code consumer could agree on a predefined
policy (property) and the code producer after writing the program proves the property but it doesn’t send
it along with the native source code. Another very important aspect of this mechanism is that it provides a
new interpretation of the Curry-Howard isomorphism for software certificates. In both the mechanisms we
rely on the analogy between proofs (safety proofs) and types. The analogy carries over to proof validation
and type checking.

This technique relies on cryptographic mechanisms and implements a zero-knowledge proof of the fact
that the proof in the hand of the prover is a correct proof of the property in question. The property to be
proven is seen as an encryption key while the proof-term is the corresponding secret key. Compared to PCC
technique which eventually is more of a code consumer friendly mechanism, the one that we have studied is
more of a code producer friendly technique as he doesn’t need to send the proof which could be of enormous
size.

This internship report starts with an introduction to propositional logic and a discussion on Curry-
Howard isomorphism and then it makes a detour from Proof Carrying Code technique to our technique
as an improved alternative to PCC. As a proof is done in the framework of typed SKI combinatorial
calculus which is different from the one considered in the discussion of PCC, a complete section is devoted
on its presentation. Last but not least, a considerable amount of time was spent searching the appropriate
cryptographic system and hence a treatment of Functional encryption (initially thought to be useful) is left
in appendix.

2 Propositional logic

In mathematical logic, a propositional calculus or logic (also called sentential calculus or sentential logic)
is a formal system in which formulas of a formal language may be interpreted as representing propositions.
A system of inference rules and axioms allows certain formulas to be derived, called theorems; which may
be interpreted as true propositions. The series of formulas which is constructed within such a system is
called a derivation and the last formula of the series is a theorem, whose derivation may be interpreted as a
proof of the truth of the proposition represented by the theorem. Truth-functional propositional logic is a
propositional logic whose interpretation limits the truth values of its propositions to two, usually true and
false. Truth-functional propositional logic and systems isomorphic to it are considered to be zeroth-order
logic.

5. We suppose that the producer and the consumer have no prior communication and the consumer upon receiving a program
(written by a certain producer) wants to verify the validity of a certain property on the program.



2.1 Background

Every logic comprises a (formal) language for making statements about objects and reasoning about
properties of these objects. This view of logic is very general and actually we restrict our attention to
mathematical objects, programs, and data structures in particular. Statements in logical language are
constructed according to a predefined set of formation rules (depending on the language) called syntaz rules.

A logical language can be used in different ways. For instance, a language can be used as a deduction
system (or a proof system); that is, to construct proofs or refutations. This use of a logical language is called
proof theory. In this case, a set of facts called axioms and a set of deduction rules (inference rules) are given,
and the object is to determine which facts follow from the axioms and the rules of inference. While using
logic as a proof system, one is not concerned with the meaning of the statements that are manipulated, but
with the arrangement of these statements, and specially, whether proofs or refutations can be constructed.
In this sense, statements in the language are viewed as cold facts and the manipulations involved are purely
mechanical, to the point that they could be carried out by a computer. This does not mean that finding a
proof for a statement does not require creativity, but that the interpretation of the statements is irrelevant.

However, the statements expressed in a logical language often have an intended meaning. The second
use of a formal language is for expressing statements that receive a meaning when they are given what is
called an interpretation. In this case, the language of logic is used to formalize properties of structures, and
determine when a statement is true of a structure. This use of logical language is called model theory.

One of the interesting aspects of model theory is that it forces us to have a precise and rigorous definition
of the concept of truth in a structure. Depending on the interpretation that one has in mind, truth may have
quite a different meaning. For instance, whether a statement is true or false may depend on parameters. A
statement true under all interpretations of the parameters is said to be valid. A useful (and quite reasonable)
mathematical assumption is that the truth of a statement can be obtained from the truth (or falsity) of its
parts (sub-statements). From a technical point of view, this means that the truth of a statement is defined
by recursion on the syntactical structure of the statement.

The two aspects of logic described above are actually not independent, and it is the interaction between
the model theory and proof theory that makes logic an interesting and effective tool. One might say that
model theory and proof theory form a couple in which the individuals complement each other. To summarize,
a logical language has a certain syntaz, and the meaning or semantics of statements expressed in this language
is given by an interpretation in a structure. Given a logical language and its semantics, one usually has one
or more proof systems for this logical system.

A proof system is acceptable only if every provable formula is indeed valid. In this case, we say that
the proof system is sound. Then, one tries to prove that the proof system is complete. A proof system is
complete if every valid formula is provable. Depending on the complexity of the semantics of a given logic,
it is not always possible to find a complete proof system for that logic. This is the case, for instance, for
second-order logic. However, there are complete proof systems for propositional logic and first-order logic.
In the first-order case, this only means that a procedure can be found such that, if the input formula is valid,
the procedure will halt and produce a proof. But this does not provide a decision procedure for validity.
Indeed, as a consequence of a theorem of Church, there is no procedure that will halt for every input formula
and decide whether or not a formula is valid.

There are many ways of proving the completeness of a proof system. Oddly, most proofs establishing
completeness only show that if a formula A is valid, then there exists a proof of A. However, such arguments
do not actually yield a method for constructing a proof of A (in the formal system). Only the existence of
a proof is shown.

Propositional logic is the system of logic with the simplest semantics. Yet, many of the concepts and
techniques used for studying propositional logic generalize to first-order logic.

2.2 Generic Description

In general terms, a calculus is a formal system that consists of a set of syntactic expressions (well-formed
formulas), a distinguished subset of these expressions (axioms), plus a set of formal rules that define a specific



binary relation, intended to be interpreted as logical equivalence on the space of expressions. A propositional
calculus is a formal system £ = L(A,$, Z,7) where :

— The set of alphabet A is a finite set of elements called propositional symbols or propositional variables.
Syntactically speaking, these are the most basic elements of the formal language £ otherwise referred
to as atomic formulas or terminal elements.

— ) is the set of a finite number of logical connectives. The set (2 is partitioned into disjoint subsets as :

Q=0QUQ ... UQ;...UQ,

The set ; is the set of all operators of arity j. In the more familiar propositional calculi €2 is typically
partitioned as follows:
Qo = {J-v T}

O ={-}
QQ = {\/, N, —>}

— The set Z is a finite set of transformation rules that are called inference rules when they acquire logical
applications.
— The set Z is the set of axioms in this language.

2.2.1 A Simplified Axiom System

We consider a propositional calculus £ = L(A,Q, Z,T) where :

— We consider the set A to be large enough that would suffice the needs of our discussion. For example
A={p,q,r, s,t,u,v}

— We take : Q1 = {=} and Qy = {—}.

— The set Z is taken to be singleton, the rule being : if p and p — ¢ are true then we can infer that ¢
is also true.

— The set Z is the set of axioms in this language and consists precisely of the following ones:
- (p—=(—0p)
~(p=(g=r)=((p=q9) = (—r1))
= ((=p = ~q) = (¢ = p))

2.2.2 Natural Deduction System

We consider a propositional calculus £ = L(A,Q, Z,7) where :

— The set A is supposed to be large enough that would suffice the needs. For example A = {p, q,7, s,t, u,v}.
— We consider : Qg ={L, T}, Q ={-} and Qs = {V,A, =}
The set Z is a defined in Figure 1, the transformation rules are intended to be interpreted as the
inference rules of so called natural deduction system.

— The system presented here has just one axiom that says p — p.

Here we use the sequent notation Ay, Ao, ..., A, F B to represent judgements in natural deduction. The
standard semantics of a judgement in natural deduction is that it asserts that whenever Ay, A5 ..., A, are
all true, B will also be true.

2.3 Classical, Intuitionistic & Minimal Logic

The logics presented above are classical logic and in general they are characterized by a number of
equivalent axioms :

Proof by contradiction
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Figure 1: Inference rules of natural deduction

Law of the Excluded Middle
Double-Negation Elimination
Pierce’s Law (A — B) - A) —» A

We can define two other logical frameworks depending on the presence or absence of certain rules. To be
precise we are interested in Minimal and Intuitionistic logic. Defined in [ ] and developed by Ingebrigt
Johansson, minimal logic is a sub-logic of intuitionistic logic which means that set of provable propositions
in minimal logic is a proper subset of the corresponding set in intuitionistic logic.
In all the three logics we have two rules corresponding to negation:
— Elimination of negation : If we can prove a proposition A and its negation —A, then we have a
contradiction noted L.
— Introduction of negation : If a proposition A leads to a contradiction then —A is valid. The rule
can even be formulated as the definition of negation : =4 := A4 — 1.

The three logics differ on the consequence drawn by a contradiction.

— Classical logic uses reductio ad absurdum and deduces from —=A — L that A is valid. This is in fact
the elimination rule for double negation because =A — L is the synonym of ——A.

— Intuitionistic logic deduces any proposition from a contradiction: | — B which is the rule ex falso
quodlibet aka the principle of explosion.

— Minimal logic treats L as any other proposition and hence has no particular significance.

2.4 Examples from Minimal Logic

Example 1: (-AA-B < —(AV B))

We suppose that we have -A A =B and prove that —=(A V B) i.e. the hypothesis A V B leads to a
contradiction. We have two cases : if A is valid then it is in contradiction with the hypothesis = A similarly
for B. So, in any case, we have a contradiction.

Conversely, we suppose that we have —(A V B) and we prove —A i.e. A leads to contradiction. But if
A is valid then A V B is valid which contradicts the hypothesis. Similarly for B. However, we only have




(mAV =B + —(A A B)). The converse is valid only in classical logic.

Example 2: A — ——A We suppose A then the supplementary hypothesis —A results in a contradiction.
Hence we have the result. The converse is not valid in minimal logic and neither in intuitionistic logic.
However we have =——=A4 — —A.

Example 3: We can show that in minimal logic -—(A — B) — (-—A — ——B) . But the converse is
valid both in intuitionistic and classical logic but not in minimal logic.

Example 4: For the contra-positive argument : we can show that in minimal logic we have (A —
B) - (-B —- —-A), (A - -B) - (B - —A) and (WA — —-B) — (B — ——A) but we don’t have
(mA — =B) = (B — A) which is a variant of reductio ad absurdum.

3 Curry-Howard Isomorphism

In programming language theory and proof theory, the Curry-Howard isomorphism is the direct relation-
ship between computer programs and proofs. It is a generalization of a syntactic analogy between systems of
formal logic and computational calculi. The Curry-Howard isomorphism is the observation that two families
of formalisms—mnamely, the proof systems on one hand, and the models of computations on the other—are
in fact structurally the same kind of objects. In other words, a proof is a program, the formula it proves is
a type for the program.

In its more general formulation, the Curry-Howard isomorphism is a correspondence between formal
proof calculi and type systems for models of computations. In particular, it splits into two correspondences.
One at the level of formulas and types that is independent of which particular proof system or model of
computation is considered, and one at the level of proofs and programs which, this time, is specific to the
particular choice of proof system and model of computation considered.

At the level of formulas and types, the correspondence says that implication behaves as a function
type, conjunction as a product type (this may be called a tuple, a struct, a list, or some other term
depending on the language), disjunction as a sum type (this may be called a union), a false formula as the
empty type and a true formula as the singleton type (whose sole member is the null object). Quantifiers
correspond to dependent function space or products (as appropriate). The following table summarizes the
above discussion:

Logic side Programming side
universal quantification generalized function space(]]) type
existential quantification | generalized cartesian product (>_) type
implication function type
conjunction product type
disjunction sum type
true formula unit type
false formula empty type

3.1 Correspondence between Hilbert-style Deduction Systems and Combina-
tory Logic

According to Curry: the simplest types for the basic combinators K and S of combinatory logic surpris-
ingly correspond to the respective axiom schemes a« — (8 — «) and (« = (8 = 7)) = ((a = B) = (@ = 7))
noted ¢ in Figure 2 used in Hilbert-style deduction systems. A complete section is devoted on this calculus
as it is used to express formulas or properties of a program in our technique. We obtain a similar correspon-
dence where both the columns are in one-to-one correspondence.
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Figure 2: Typed combinatory logic

Seen at a more abstract level, the correspondence can be restated as shown in the following table.

Logic side Programming side
assumption variable
axioms combinators
modus ponens application

3.2 Proof as program : applications

As seen above proofs act as programs and that a proof 7 of a property ¢ is equivalent to saying that the
type of the A-term associated with the proof is ¢. This equivalence is useful in proof validation where one
has to validate a proof 7 of a property (or a formula) ¢.

This is useful in applications where users need to be convinced that a free software developed by an
untrusted agent satisfies a certain property. This trust problem is specific for free software because : they
are not always developed by well-known companies (that users may trust), such software developments rely
on a large community of authors for development/ proofs or these developers cannot afford code signing by
a certifying authority.

Now the question that stands is how exactly a user can be convinced that a software (or a program) is
safe to use without relying on reputation or any certifying authority. There are several possibilities :

— using the Proof-Carrying Code framework | ]

— probabilistic checking of the proof | ]

— checking that the poof has been constructed using zero-knowledge protocols and Curry-Howard iso-

morphism.

4 SKI Combinatorial Calculus

The logical framework in which we are working is not the same as the one used in the PCC | ]
Our framework is that of a propositional calculus with a simplified axiomatic system. In the literature this
logic is called SKI(SK) Combinatorial Calculus. The following sections present the features of this logical
framework.

4.1 Presentation

We use the definition presented in subsection 2.2 to define SKI calculus as an example of propositional
logic and in fact as the implicational fragment of any intuitionistic logic.




4.1.1 Definition

SKI calculus is obtained for the following instance of the sets:
- A= {p,q,7,s,t,u,v} or any such finite set. Another way of defining the alphabet would be to take
A={S,K,I(,)}
— QQ = {—)}
— The rule of modus ponens : if p and p — q are true then we can infer that ¢ is also true.
— The set Z being the set containing;:
S: (p— (g —p))
K: (p—=(qg=7)—=(p=a9—=(—r))
L (p—p)

4.1.2 Terms and Derivations

The set T of terms is defined recursively as follows:
1. S,K.I are terms.
2. If 1y and 75 are terms, then (7172) is also a term.

3. Nothing is a term unless required to be by the rules 1 and 2.

A derivation is a finite sequence of terms satisfying the following rules:

1. If A is a derivation ending in the term «((K5)v)(, then A followed by «5( is also a derivation.
2. If A is a derivation ending in the term «(I3)(, then A followed by ¢ is also a derivation.
3. If Ais a derivation ending in the term a(((S5)7)d)¢, then A followed by a((8)(9)) is also a derivation.

4.2 Properties

The ceremony above captures much of the conventional style in which logicians present the combinator
calculus. But the conventional ceremony describing the combinator calculus does not match the natural
binary structure of the formal system. It is much more natural to understand the calculus as operating on
binary tree-structured terms with the symbols S, K, I at the leaves. The parentheses are in some sense only
there to indicate the tree structure, and shouldn’t be regarded as part of the abstract alphabet.

Informally, and using programming language jargon, a tree (zy) can be thought of as a “function” z
applied to an “argument” y. When “evaluated”, the tree “returns a value” , i.e. transforms into another
tree. Of course, all three of the “function”, the “argument” and the “value” are either combinators, or binary
trees, and if they are binary trees they too may be thought of as functions whenever the need arises. The
evaluation operation is defined as follows :

I returns its argument :
Ix=x

K when applied to any argument z, yields a one-argument constant function Kx, which, when applied
to any argument, returns x.
Kry==x

S is a substitution operator. It takes three arguments and then returns the first argument applied to the
third, which is then applied to the result of the second argument applied to the third. More clearly :

Swyz = (xz)(y2)



4.2.1 Computations

Example 1: SKSK evaluates to KK(SK) by the S-rule. Then if we evaluate KK(SK), we get K by
the K-rule. As no further rule can be applied, the computation halts there.

Example 2: For all trees a and 8, SKaf will always evaluate to 8 in two steps, Kf(afB) = S, so the
ultimate result of evaluating SKa will always equal the result of evaluating 8. We say that SKa and I are
“functionally” equivalent because they always yield the same result when applied to any .

Example 3: Self-application SII is an expression that takes an argument and applies that argument
to itself:

SIla =Ia(Ia) = ax

Example 4: Recursion We can write a function that applies something to the self application of
something else:

(S(Ka)(SID))B = Kaf(SIIB) = a(SIIB) = a(BP)

This function can be used to achieve recursion. If 8 is the function that applies to the self application of
something else, then self-applying 8 performs « recursively on 85. More clearly, if § = S(Ka)(SII) then :

SIIp =B = a(Bp) = ala(BB)) = ...
Example 5: Reverser S(K(SI))K reverses the terms in af:
S(K(SI))Kap — K(ST)a(Ka)f — SI(Ka)p — IB(Kaf) = Ifa — fa

Using example 2 it can be shown that SKI calculus is not the minimum system that can fully perform the
computations of lambda calculus, as all occurrences of I in any expression can be replaced by SKK or SKS
or SK and the resulting expression will yield the same result. So, I is merely syntactic sugar.

4.2.2 Universal Qualities of SKI

The combinator calculus was designed precisely to be universal in the sense that it can accomplish every
conceivable rearrangement of sub-terms just by means of applying terms to them. That is, given a rule for
rearranging n symbols into the shape of a term (allowing copying and deleting of individual symbols), there
is a term that can be applied to each choice of n symbols so that several derivation steps will accomplish
that rearrangement. The examples of SII as a repeater and S(K(SI))K as a reverser suggest how this
works. This particular quality of a formal system is called combinatory completeness. Every formal system
that contains something acting like S and something like K is combinatorialy complete.

Rearrangement arise in formal systems whenever we substitute symbols with variables. The combinator
calculus was designed specifically to show that substitution for variables can be reduced to more primitive
looking operations.

By accident, the combinator calculus turns out to be universal in a much more powerful sense than
combinatory completeness. The combinator calculus is a universal programming system—its derivation can
accomplish everything than can be accomplished by computation. That is, terms can be understood as
programs, and every program that we can write in every programming language can be written also as a
term in the combinator calculus. Since formal systems are the same thing as computing systems, every
formal system can be described as an interpretation of the terms in the combinator calculus. In short, the
combinator calculus is Turing complete. Last but not least, SKI calculus generates the implication fragment
of intuitionistic logic.

As seen above the combinators S, K, I are functions and hence as the lambda calculus terms they are
equivalent to :

10



- S:= Ax Ay Az(x2)(yz)
- Ki= Az \y.x
- I:= X2

Using the typing rules defined in Figure 2 we can talk about typed SKI calculus. We observe that not
all the terms in the calculus are typable. One of the example is the term in the example 3 of 4.2.1. From
now on, SKI calculus refers to the typed SKI calculus.

5 Proofs as Cryptography

This section presents our alternative to the PCC technique where we use cryptographic techniques to
implement a zero-knowledge proof of the validity of a proof of a given property. We should note that
we have not been able to make the technique completely functional. Part of this section presents the goal
and the steps that we have taken to tackle the different problems that we have faced and highlights some of
these which remain unresolved.

There are several ways to present the communication model between the user and the developer, hitherto
called consumer and producer respectively. This change in nomenclature is in consonance with the different
possible models. One of the possible model implementing this technique could be: instead of proving a
property of a program on the developer’s side, we delegate the proof to an untrusted agent and we receive
a small certificate guaranteeing that the proof has been done by this agent. We can even generalize this
mechanism where the communication is done on a broadcast communication network, where terminals on
the other end are provers and the user is the verifier. Upon receiving a program, the user might need to
verify if a property holds for the program and so he gets in touch with provers (in broadcast network) and
verifies if any of the provers has a valid proof.

We can even have a model where the user and the developer have no prior communication on the property
and the user upon receiving a program (written by a certain developer) wants to verify the validity of a certain
property on the program. He then looks for a zero-knowledge proof of the validity of the proof.

Another possible model could follow the same route as the PCC technique where the user and the
developer agree on a property and then after writing the program the developer proves the property on the
program and then sends the program (not the proof) to the user. The user then verifies the validity of the
proof and ultimately forwards it to the waiting process. The following subsection discusses the latter one
which remains in tune with the PCC except the fact that the proof term (A-term) corresponding to the proof
is not sent along with the program.

5.1 Communication Protocol

In fact, the protocol can be conceived in the following way and a schematic representation is given by
Figure 3. The user and the developer agree on a property ¢ that a program must satisfy. The developer
writes a program P, proves the property ¢ on P and sends it to the user. The user then uses cryptographic
means to verify the validity of the proof. The property gives the encryption key while a proof term 7 (A-term
corresponding to the proof) gives a secret key. He then encrypts a nonce using the property and sends it
to the developer, if the developer has a valid proof, he has a decryption algorithm (eventually depending
on the A-term corresponding to the proof) which can decrypt the nonce and the developer then sends the
decrypted nonce to the user. The user verifies the exactitude of the nonce sent and the nonce received. This
zero-knowledge proof conception makes our principle far more simpler and efficient compared to PCC.

5.2 Encryption

The predefined property ¢ is expressed in the (typed) SKI combinatorial calculus discussed in section 4.
We give a recursive definition to the way a nonce {n} is encrypted under a property (a formula) ¢. For that
we define or initialize keys for each atomic terms like p, g, used to define the alphabet A, and we denote

11
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Figure 3: Communication Protocol

them by K, K,, K,. We then define the key K, ,, as {K }x, to be read as the key K, encrypted under
the key K,. Finally, encryption of a nonce {n} under any formula A — B is the set {Ka,{n}x,}. The
following examples encrypt a nonce {n} under the axioms of the SKI calculus.

Example I: We encrypt a nonce {n} under I as {n},,, which is the set K, {n}x,.

Example S: {n} under S is {n}(q—p)) which is the set {K,,{n}s-,} and which eventually is the set
{Kp, K, {n} i, }

Example K: {n} under K is {n}((p—(q—r))—((p—q)— (p—r))) Which is:

{Kps @ it osg—wont = {Eeort i, Kpsg {n}pr}
= {{K:}x, i, {Ko} K, Kp, {n}k, }

5.3 Provable-Decryptable Equivalence

Loosely speaking, decryption of a nonce {n} encrypted under a formula F is actually an algorithm that
(at each instant) makes a choice from the available keys and a key encrypted under this key or eventually
the nonce under the chosen key. If the property is provable in the SKI calculus, the process terminates with
the decrypted nonce. Before delving in the problem of proving the fact that having a proof is equivalent to
having a decryption algorithm, we can see that the examples taken in the previous subsection proves the
fact that the encryption process has the soundness property. The Provable-Decryptable equivalence can even
be expressed by saying that one cannot decrypt a nonce encrypted under a formula that is not provable in
the SKI calculus.

5.3.1 Decryptable implies Provable

The only operator in our logic is implication —, two rules of natural deduction that correspond to
introduction and elimination of — are :

I,AF B
TFAo B

r-A r-A—B
I'-B

(=) introduction (—) elimination
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The introduction rule corresponds to the axiom I while the elimination rule corresponds to the inference
rule of modus ponens in our logic.® We observe that the encryption algorithm implements a recursive —
elimination which is to ascend upwards in the (—) introduction rule and that at any stage of the derivation
tree (corresponding to the proof) and for any sequent Ay, As, ..., A, - B the encryption at this stage gives
{Ka,,Ka,,...,Ka,,{n}p}. Thus the antecedent correspond to the keys while the succedent gives the
encryption of the nonce under the key corresponding to it. The process terminates when the succedent is an
atomic term (a formula devoid of the operator —).

The decryption process starts by searching the key corresponding to the atomic term under which the
nonce is encrypted or any available encryption of the key. The decryption of this key might require decryption
of other keys. Each decryption (of either a key or eventually the nonce) mirrors into the application of
(=) elimination rule. For instance, {K,, {Ky}x,,{n}x,} corresponds to the encryption using the sequent
p,(p — ¢) F g, which is precisely the (—) elimination. In general if Kr decrypts {n}x, then T' - A.
Decryptability implies the existence of a function 7 such that 7(Kr) = K4. The function 7 in fact implements
a recursive application of modus ponens and hence implements (—) elimination rule. So, if encryption is
ascending upwards (away from the root) 7 in the derivation tree, decryption is descending downwards (towards
the root) in the derivation tree and hence is equivalent to building the proof tree. This proves that decryptable
implies provable.

5.3.2 Provable implies Decryptable

This part of the implication is non-trivial and hence requires careful observation via examples.
Example 1 p — ((p — ¢q) — q) Encryption of a nonce n under the formula gives :

{n}ps=a—a) = {Ep {nt(p=a)—a)}
= {Kpa Kysq, {n}Kq}
= {Kp, { Ko}k, {n}k,}

p,(p—=q)Fp  p =gk (-9
p,(p—q) Fq
pFp—q) —q
Fp—((p—4q) —q)

Encryption termination step

Proof 1: Proof tree

We use the available key K, to retrieve K, and ultimately n.
To be more formal we can use the proof-term corresponding to Proof 1 to decrypt the nonce. The proof-term
corresponding to the above formula is : Az.Af. fx and captures the idea of typing rules: if x is of type p and
f is of type p — g then fx is of type g.

The corresponding decryption algorithm would be Az.\f.Ac.c(fx) and works in the following way :

Az A fxe.c(fe){ntpopoq)—q) = Az Af A ec(fo) Kp{K bk, {n}K,
=A{n}x, {K¢}lx,Kp)

= {”}KqKq
=n

6. Using the soundness of — wrt : if ' —+ A, then I' - A, and completeness of — wrt - : if ' - A, then I" — A.
7. root being the formula to be proven
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Example 2 ((p—q) = q) = p

{ntp—a—a—p = {Kpsg—e {0k, }
= {K iK1, ), b

As no free key is available it seems we cannot decrypt n and this is exactly what we expect (if we hope
that provability implies decryptability) because the above formula is not provable in our logic. We can check
different formulations of contra-positive argument :

Example 3.1 (p —>q) — ((¢—=7r)—> (p—1))

{n}(p—>q)—>((q—>r)—>(p—>r)) = {{Kq}Kp» {KT}Kq»Kp» {n}k,}
Example 3.2 (p = (¢g—r)) = (g— (p—>1))

(N} oo (aom) =@ r) = B Y, by Ky Kp {nf i}
Example 3.3 (p—71)—>(¢—7r) = (g—((p—7r) —=71))

1} (=) = UK K b g 1 Ko B b, Andr
Example 3.4 ((p—71)—= (¢—71)) = (¢ —Dp)

oo tam o = {HE 1 00 b 1o Ko {0, |

The first three decryptions are obvious and follow the same pattern as in the first example. But the
fourth encryption cannot be reversed and again the reason should be the fact that the last formula is not
provable in our logic (subsection 2.4).

Example 4 F ((p—q) = 1) = (¢g—7)
Encryption of a nonce n gives

Y posayor—an = Uik, 1 Ko {ndw, )

At the first sight the above nonce does not seem to be decryptable but here we note that the formula is
provable and a derivation tree is given in Proof 2.

p,q,(p—q) =rhkgq
=9 —r-pP—q =g —2rEpP—og —or
g, (p—q) —>rkr
(p—q)—=>rk(g—r)
F(p—=q) —=r)—=(g—r)

Encryption termination step

Proof 2: Proof tree

A careful observation would reveal that to decrypt the nonce the developer either needs the key K, or
{K,} k, while knowing K,. The second case is realizable because the developer can ask the user to encrypt
K, under the key K, (that he doesn’t have). A number of questions on security might arise but it seems to
be a legitimate demand on the part of developer. And if we permit such queries the decryption is automatic.
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From the perspective of the proof term :

AHAHo.H(A_z . Hy)

Kp Ky
—_—

KP‘”Z

if z is of type p, Hy of type ¢ and H of type (p — ¢) — r, then the type of the initial formula is given by
the A-term given above. In terms of encryption keys, the decryption algorithm substitutes = by K,, Hy by
K, and so Ax.Hy by K. So, a decryption algorithm would indeed need the key K, ,, = {K,}k, in order
to decrypt the nonce. We observe that in the proof term H is applied to a A-term which is not the case in
the previous examples.

Example 5.1 ((p—=7)—r) = ((g—=r)—=71r) = (((p—=q) —1r)—>71)
A nonce n encrypts to :

{n}(>r)=r) > (aor =)= (=0 —r)—r) = E(sr)—r—asm)—m) ANt o= —r

= {{K(q—y”)_}T}K(p%T)HT7 {KT}K;,_W? {n}K'r‘}

= {{{Kr}{{m}xq}}{{KT}HKT}KP}}, 1K o), ) {"}KT}
Once again formula not being provable implies that the nonce cannot be retrieved.

Example 5.2 ((p—>q) —r)—=r) = ((p—>7)—=7r) = (g—71)—>71))
A nonce n encrypted under the formula is given as :

{n} (=0 —m=((r=r)=1) = (a=r) =) = {TE (p=a)—r)—m I (o) >r) = (@) —m)
= {K((p—m)—)r)—ﬂ"v K(p—>r)—>r7 {n}(q—>r)—>r}
= KD (00 0 b S IR 1 )0 A0 o) )

= HE (Y gy 0 1 U, 1 A b A e, )

Before analyzing an encrypted nonce under this formula which is the converse of the implication in the
previous example, we observe that a proof does exist and is given by the derivation tree in Proof 3.
If we have a look at the proof term

AH AHo \Hy.H(AHy.Ho(AHs.Hy( Hy Hs)))
—~ —~~
KP"(I KP

it says that if : H is of type ((p — ¢) = r) = r, Hp is of type (p — r) — r and H; of type ¢ — r
then : the type of the initial formula is given by the A-term. Here the types of Hs and Hs are p and p — ¢
respectively. In the decryption algorithm, they should be substituted by keys K, and K,_,, which are not
available to the developer. Here again we observe that H applies on a A-term as in Example 4.

The above example seems to be a threat to the proposition Provability implies Decryptability and remains
unresolved.

. N pabtp
Encryption termination step TFoop) {n}eoop) = {Kq, Kp, {n}k,}

Fq— (p—p)

Proof 4: Proof tree
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Iyy,pkp TobFp—gq

Io,phgq Lo,pFg—r
I'o,pbr
Tobp—r IoF(p—r)—>r
I

——

Ni,p—=qkr

LEp—oq) —r LiE((p—=q) —r)—=r
Iy

(p—=r)—=>r),((p—=q) —r)—>rqg—rbr

p—=r)=r(p—=q —r)=>rk(g—r)—>r
(p=2g2r)=2rE((p=r)=2r) = (gor) )

Fllp—=ag)=r)=r)={p=r)—=r)=(g—=r) =)

Encryption termination step

Proof 3: Proof tree

A quick observation of the encryption process leads us to remark that the encryption algorithm is precisely
moving upwards in the proof-tree and the algorithm terminates when the succedent at the indicated step
becomes an atomic term which is L in Proof 3, r in Proof 2 and ¢ in Proof 1. So, encryption is not exactly
building the proof itself though in some cases, they might precisely be the same; for example this happens
for the property ¢ — (p — p), Proof 4. In the worst case, the size of the encrypted nonce can be linear in
the size of the proof.

5.4 Remarks

We consider the two deduction rules (and the only ones in fact) taken from sequent calculus that act on
implications.

INA+B
I'rA— B

This rule says that if one can decrypt {n}a_, g using the key Kr then one is able to decrypt {n}x, if
one has the keys K4 and Kt and vice-versa. This is true because by definition {n}ap = {{n}k,, Ka}
and the nonce can be decrypted iff Kt and K4 yield Kp and this suffices to decrypt {n}k, as well.

'-AC IBFEC
rA—-B~FC

In the same tune, the above rule says if keys Kr and Ka,p = {Kp}k, can decrypt {n}k. then Kr
must be able to decrypt {n}x, and Kr, Kp must be able to decrypt {n} k. and vice-versa. To be precise
Kr must yield K4 (neglecting the trivial case where it yields K¢). For this we might suppose to have a
function f that serve this purpose.

If we have some way to define such a function then the problem would be solved and then encryption
under a formula is equivalent to applying the first rule and terminate at the point where the succedent is an
atomic term. The decryption would be to apply the second rule or the first one to build the complete tree
if possible.
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6 Applications

As suggested in the paper [Nec97], PCC technique can be used to implement “safe network packet
filters”. It remains in the experimental stage. Many modern operating systems provide a facility for allowing
application programs to receive packets directly from the network device. Typically, an application is not
interested in receiving every packet from the network, but only a small fraction that exhibit a specific
property (e.g. an application might want only TCP packets destined for a Telnet port. In such cases, it is
highly profitable to allow application program to specify a boolean function on network packets, and then
have this filter run within kernel’s address space. The kernel can then avoid delivering uninteresting packets
to the application, thereby saving the cost of many unnecessary context switches. Our technique can prove
to be an alternative to PCC for such applications ( if our technique could provide a sufficient condition i.e.
provable implies decryptable).

Another possible application could be in the implementation of a program checker. A user upon receiving
a program wants to verify whether the terminal executing the program has properly evaluated the program
on a particular input. Another possible variant could be that : we suppose that an independent software
vendor publishes a program with a signature and a user wants to execute the program on an input (possibly
via an agent) and wants some sort of a proof or a signature derived from the original one that attests to the
fact that it was exactly the same program that was evaluated on the input.

7 Conclusion and Future work

Until now, proofs have been seen as programs, the following table explains this with an example :

Property Proof
Type ¢ A-term 7 : ¢
p=(A—= (A= B))—= B | 7=z \f.fzx

We observe that from any proof w4 of A, we can construct a proof m4_,p of A — B and using m we can
construct a proof mg of B.

TTATAB = (ATAfAf2)TATA B = TABTA =TB

With the help of the technique presented in this report we try to see proofs as cryptography and try to
extend the Curry-Howard isomorphism to cryptography though we are successful in only one direction (i.e.
a decryption algorithm 7 for a nonce encrypted under a property ¢ gives a proof of the property).

Property Proof
Type ¢ A-term 7 : ¢

Use of cryptography to implement zero-knowledge proof makes the implementation more efficient com-
pared to that of PCC and hence the user is no longer forced to send the proof with the code which might
contain informations that the user should not have access to. In the PCC framework, the VC predicate is
computed twice : once to prove it and the other time to verify it. This might be a waste of time. The
other point to note is that the verification process might be long and difficult; in our case it is just a string
comparison of the nonce sent and the nonce received. In all these contexts, our technique proves to provide
an upper hand to both the user and the developer.

The Proof-Carrying Code is considered to be intrinsically safe: most attempts to tamper with either code
or the proof results in a validation error. In the few cases, when the code and the proof are modified such
that validation still succeeds, the new code is also safe. But, in this case, the modified program might not
be the one that the consumer is waiting for. Our technique rejects the result of any possible tamper either
with the property or with the program and this is made possible by the intrinsic cryptographic system.
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A further observation reveals that the encryption of a nonce under a property is building a part of the
proof tree (in the worst case building it completely) and decryption is to finish the rest of the tree. The
future work would be to prove that Provability implies Decryptability which might require a complete shift
from the encryption algorithm. And then we could try to extend the logical framework and search for an
efficient encryption scheme that can be implemented in first-order constructive logic (such that it deals with
the quantifiers) and reduces the size of the encrypted nonce (which is sending a nonce under an atomic
formula with several keys). Another line of work would be to make empirical tests on the application of this
technique while reducing the size of the information passed to the developer.
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