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Rational Blanchfield forms, S-equivalence, and null

LP-surgeries

Delphine Moussard

Abstract

Garoufalidis and Rozansky introduced null-moves on the set of pairs (M,K),
where M is an integral homology sphere and K is a knot in M . These null-moves

are suitable to study the Kricker lift of the Kontsevich integral. They defined

a filtration on the space generated by pairs (M,K) up to orientation-preserving

homeomorphism. This filtration splits with respect to the isomorphism classes of

integral Alexander modules equipped with their Blanchfield forms. Null Lagrangian-

preserving surgeries are a generalization of the Garoufalidis and Rozansky null-moves

in the setting of pairs (M,K) composed of a rational homology sphere M and a null-

homologous knot K in M . They are defined as replacements of null-homologous

rational homology handlebodies of M \K by other such handlebodies with identical

Lagrangian. We prove that two pairs (M,K) can be obtained from one another

by a finite sequence of null Lagrangian-preserving surgeries if and only if they have

isomorphic rational Alexander modules and Blanchfield forms.
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1 Introduction

1.1 Context

In [GR], Garoufalidis and Rozansky studied the rational vector space generated by the
pairs (M,K) modulo orientation-preserving homeomorphism, where M is an integral
homology 3-sphere (ZHS), that is an oriented compact 3-manifold which has the same
homology with integral coefficients as S3, and K is a knot in M . They defined a filtration
on this space by means of null-moves, that are surgeries on claspers whose leaves are
trivial in H1(M \K;Z). They studied this filtration with the Kricker lift of the Kontsevich
integral defined in [GK]. The first step in the study of this filtration is the determination of
the classes of pairs (M,K) up to null-moves. As a corollary of results of Matveev in [Ma],
Naik and Stanford in [NS], and Trotter in [T], Garoufalidis and Rozansky established
that two pairs can be obtained from one another by a finite sequence of null-moves if and
only if they admit S-equivalent Seifert matrices, and if and only if they have isomorphic
integral Alexander modules and Blanchfield forms.

In this article, we consider pairs (M,K), where M is a rational homology 3-sphere
(QHS), i.e. an oriented compact 3-manifold which has the same homology with rational
coefficients as S3, and K is a null-homologous knot in M , i.e. a knot whose class in
H1(M ;Z) is trivial. We define the null Lagrangian-preserving surgeries, which play the
role played by the null-moves in the integral case. We prove that the classes of pairs (M,K)
modulo null Lagrangian-preserving surgeries are characterized by the classes of rational
S-equivalence of their Seifert matrices, and by the isomorphism classes of their rational
Alexander modules equipped with their Blanchfield forms. Null Lagrangian-preserving
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surgeries define a filtration of the rational vector space generated by pairs (M,K) modulo
orientation-preserving homeomorphism. This article is a first step in the study of this
filtration, that is useful in the study of equivariant finite type knot invariants.

1.2 Statement of the results

When it does not seem to cause confusion, we use the same notation for a curve and its
homology class.

We first recall the definition of the Alexander module and of the Blanchfield form.
Let (M,K) be a QSK-pair, that is a pair made of a rational homology sphere M and a
null-homologous knot K in M . Let T (K) be a tubular neighborhood of K. The exterior

of K is X = M \ Int(T (K)). Consider the projection π : π1(X) → H1(X;Z)
torsion

∼= Z, and the

covering map p : X̃ → X associated with its kernel. The covering X̃ is the infinite cyclic
covering of X. The automorphism group of the covering, Aut(X̃), is isomorphic to Z. It
acts on H1(X̃ ;Q). Denoting the action of a generator τ of Aut(X̃) as the multiplication
by t, we get a structure of Q[t±1]-module on A(K) = H1(X̃ ;Q). This Q[t±1]-module is
the Alexander module of K. It is a torsion Q[t±1]-module.

On the Alexander module A(K), one can define the Blanchfield form, or equivariant

linking pairing, φK : A(K) × A(K) → Q(t)
Q[t±1]

, as follows. First define the equivariant
linking number of two knots.

Definition 1.1. Let J1 and J2 be two knots in X̃ such that J1 ∩ τk(J2) = ∅ for all
k ∈ Z. Let δ(t) be the annihilator of A(K). Then δ(τ)J1 and δ(τ)J2 are rationally
null-homologous links. The equivariant linking number of J1 and J2 is

lke(J1, J2) =
1

δ(t)δ(t−1)

∑

k∈Z

lk(δ(τ)J1, τ
k(δ(τ)J2))t

k.

One can easily see that lke(J1, J2) ∈ 1
δ(t)

Q[t±1], lke(J2, J1)(t) = lke(J1, J2)(t
−1), and

lke(P (τ)J1, Q(τ)J2)(t) = P (t)Q(t−1)lke(J1, J2)(t). Now, if γ (resp. η) is the homology
class of J1 (resp. J2) in A(K), define φK(γ, η) by:

φK(γ, η) = lke(J1, J2) mod Q[t±1].

The Blanchfield form is hermitian: φK(γ, η)(t) = φK(η, γ)(t
−1) and φK(P (t)γ,Q(t)η)(t) =

P (t)Q(t−1)φK(γ, η)(t) for all γ, η ∈ A(K)) and all P,Q ∈ Q[t±1]. Moreover, it is non
degenerate: φK(γ, η) = 0 for all η ∈ A(K) implies γ = 0.

We turn to the notion of Seifert matrices. Let Σ be a Seifert surface of K, i.e. a
compact connected oriented surface in M such that ∂Σ = K. Such a surface exists since
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K is null-homologous. Let g be the genus of Σ. Let (fi)1≤i≤2g be a symplectic basis of
H1(Σ;Z), i.e. a basis such that the matrix of the intersection form in (fi)1≤i≤2g is −J ,

where J is made of blocks

(

0 −1
1 0

)

on the diagonal, and zeros elsewhere. The Seifert

matrix of K associated with Σ and (fi)1≤i≤2g is the matrix V ∈ M2g(Q) defined by
Vij = lk(fi, f

+
j ), where f+

j is a push-off of fj in the direction of the positive normal of Σ.
This matrix satisfies V − V t = J . Any rational matrix with this property will be called a
Seifert matrix. In Section 4, we prove that any such matrix is indeed the Seifert matrix
of a QSK-pair (M,K).

Given the Seifert matrix V , one can compute the Alexander module A(K) and the
Blanchfield form φK . Let T (Σ) be a tubular neighborhood of Σ. For 1 ≤ i ≤ 2g, let
ei ⊂ ∂T (Σ) be a meridian of fi. The module A(K) can be presented as:

A(K) =

⊕

1≤i≤2g Q[t±1]bi
⊕

1≤j≤2g Q[t±1]∂Sj

,

where the bi are lifts of the ei in X̃, and the Sj are lifts of the [−1, 1]× fj. When the lifts
are suitably chosen, then ∂Sj =

∑

1≤i≤2g(tV − V t)ijbi, hence tV − V t is a presentation
matrix of A(K) (see [L, Chapter 6]). Moreover, the computation of the lke(bi, ∂Sj) shows
that the form φK is given by φK(bi, bj) = (1− t)((tV − V t)−1)ji mod Q[t±1] (see Kearton
in [K, §8]).

Definition 1.2. A row enlargement of a matrix V ∈M2g(Q) is a matrixW =





0 0 0
1 x ξt

0 ξ V



,

where x ∈ Q et ξ ∈ Q2g. Then the matrix V is a row reduction of W . A column

enlargement of V is a matrix W =





0 −1 0
0 x ξt

0 ξ V



, where x ∈ Q et ξ ∈ Q2g. Then the

matrix V is a column reduction of W .

Note that an enlargement or a reduction of a Seifert matrix still is a Seifert matrix.
An enlargement of a Seifert matrix corresponds to the addition of a tube to the Seifert
surface.

Definition 1.3. Two Seifert matrices are rationally S-equivalent if they can be obtained
from one another by a sequence of enlargements, reductions, and invertible rational con-
gruences.
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In particular, two Seifert matrices of a QSK-pair (M,K) are rationally S-equivalent
(see [L, Theorem 8.4] for the integral case, which easily generalises). By extension, we
say that two QSK-pairs (M,K) are rationally S-equivalent if they admit rationally S-
equivalent Seifert matrices. In Section 2, we prove that rationally S-equivalent QSK-pairs
have isomorphic Blanchfield forms. The converse easily follows from a result of Trotter in
[T]. In Section 3, we prove the stronger statement:

Proposition 1.4. Let (M,K) and (M ′, K ′) be two QSK-pairs whose Blanchfield forms
are isomorphic. Let V and V ′ be associated Seifert matrices. Then V and V ′ can be related
by a finite sequence of enlargements, reductions, and integral unimodular congruences.

We now define homology handlebodies and Lagrangian-preserving surgeries.

Definition 1.5. For g ∈ N, a genus g rational (resp. integral) homology handlebody
(QHH, resp. ZHH) is a 3-manifold which is compact, oriented, and which has the same
homology with rational (resp. integral) coefficients as the standard genus g handlebody.

Such a QHH (resp. ZHH) is connected, and its boundary is necessarily homeomorphic
to the standard genus g surface.

Definition 1.6. The Lagrangian LA of a QHH A is the kernel of the map

i∗ : H1(∂A;Q) → H1(A;Q)

induced by the inclusion. Two QHH’s A and B have LP-identified boundaries if (A,B)
is equipped with a homeomorphism h : ∂A → ∂B such that h∗(LA) = LB.

The Lagrangian of a QHH A is indeed a Lagrangian subspace of H1(∂A;Q) with
respect to the intersection form.

Let M be a QHS, let A ⊂ M be a QHH, and let B be a QHH whose boundary is
LP-identified with ∂A. Set M(B

A
) = (M \ Int(A))∪∂A=∂BB. We say that the QHS M(B

A
)

is obtained from M by Lagrangian-preserving surgery, or LP-surgery.
Given a QSK-pair (M,K), a null-QHH in M \K is a QHH A ⊂M \K such that the

map i∗ : H1(A;Q) → H1(M \K;Q) induced by the inclusion has a trivial image. A null
LP-surgery on (M,K) is an LP-surgery (B

A
) such that A is null in M \K. The QSK-pair

obtained by surgery is denoted by (M,K)(B
A
).

In Section 2, we prove that null LP-surgeries preserve the Alexander module and the
Blanchfield form. In Section 4, we finally obtain:

Theorem 1.7. Given two QSK-pairs (M,K) and (M ′, K ′), the following assertions are
equivalent :
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1. (M,K) and (M ′, K ′) have isomorphic Alexander modules and Blanchfield forms,

2. (M,K) and (M ′, K ′) are rationally S-equivalent,

3. (M ′, K ′) can be obtained from (M,K) by a finite sequence of null LP-surgeries.

We end the article by proving the following proposition in Section 5.

Proposition 1.8. There are QSK-pairs (M,K) and (M ′, K ′) that can be obtained from
one another by a finite sequence of null LP-surgeries, but not by a single null LP-surgery.

Acknowledgements I would like to sincerely thank my advisor, Christine Lescop, for
her great guidance.

2 Conservation of the Blanchfield form

In this section, we prove that the isomorphism class of the Blanchfield form is preserved
by null LP-surgery (Lemma 2.1) and by rational S-equivalence (Lemma 2.3).

Lemma 2.1. Let (M,K) be a QSK-pair. Let A be a null-QHH in M \K. Let B be a QHH
whose boundary is LP-identified with ∂A. Then the QSK-pairs (M,K) and (M,K)(B

A
)

have isomorphic rational Alexander modules and Blanchfield forms.

Proof. Throughout this proof, the homology modules are considered with rational coef-
ficients. Let X̃ (resp. X̃ ′) be the infinite cyclic covering associated with (M,K) (resp.
(M ′, K ′)). The preimage Ã of A in X̃ (resp. B̃ of B in X̃ ′) is the disjoint union of Z
copies Ai of A (resp. Bi of B).

Set Y = X̃ \ Int(Ã). The Mayer-Vietoris sequence associated with X̃ = Ã ∪ Y yields
the exact sequence:

H1(∂Ã) → H1(Ã)⊕H1(Y ) → H1(X̃) → 0.

Since H1(∂Ã) ∼= H1(Ã) ⊕ (Q[t, t−1] ⊗ LA), we get H1(X̃) ∼=
H1(Y )

Q[t, t−1]⊗ LA

. Similarly,

H1(X̃
′) ∼=

H1(Y )

Q[t, t−1]⊗ LB

. Since LA = LB, the Alexander modules H1(X̃) and H1(X̃
′) are

canonically identified.
Now consider two null-homologous knots J and J ′ in X̃ that do not meet Ã. Consider

a Seifert surface Σ of J . Assume that Σ is transverse to ∂Ã and J ′. Write Σ = Σ1 ∪ Σ2,
where Σ1 = Σ ∩ Y and Σ2 = Σ ∩ Ã. Since J ′ does not meet Σ2, the linking number
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lkX̃(J, J
′) is equal to the algebraic intersection number < J ′,Σ1 >. Now ∂Σ2 is an

integral linear combination of curves αi ∈ LAi
. In X̃ ′, each αi lies in LBi

, so each αi

has a multiple that bounds a surface in Bi. Thus, there is a surface Σ3 ⊂ B̃ such that
∂Σ3 = n∂Σ2 for some integer n. We have nJ = ∂(nΣ1 ∪ Σ3), thus:

lkX̃′(J, J
′) =

1

n
< J ′, nΣ1 ∪ Σ3 >=< J ′,Σ1 >= lkX̃(J, J

′).

Since any class γ in H1(X̃) has a multiple that can be represented by a knot J in Y such
that P (t).J is null-homologous for some P ∈ Q[t, t−1], the Blanchfield form is preserved.

Remark: We can work with integers, and define integral null LP-surgeries. Then, the
previous proof still works, with Q replaced by Z. Thus:

Lemma 2.2. If two QSK-pairs (M,K) and (M ′, K ′) can be obtained from one another by
a finite sequence of integral null LP-surgeries, then they have isomorphic integral Alexan-
der modules and Blanchfield forms.

Lemma 2.3. Let (M,K) and (M ′, K ′) be QSK-pairs. If (M,K) and (M ′, K ′) are ratio-
nally S-equivalent, then they have isomorphic rational Alexander modules and Blanchfield
forms.

Proof. Let V be a Seifert matrix associated with (M,K). As recalled in the introduction,
there is a family (bi)1≤i≤2g of generators of A(K) that yields the presentation matrix
W = tV − V t, and the Blanchfield form is given by φK(bi, bj) = (1 − t)(W−1)ji. Set
b =

(

b1 b2 . . . b2g
)

, and r =
(

r1 r2 . . . r2g
)

= bW . We have:

A(K) =

⊕

1≤i≤2g Q[t, t−1]bi
⊕

1≤j≤2g Q[t, t−1]rj
.

Define the same notation with primes for the QSK-pair (M ′, K ′).
First assume that V ′ = P tV P for an invertible rational matrix P . Note that W ′ =

P tWP . Define a Q[t, t−1]-isomorphism ψ̃ :
⊕

1≤i≤2g Q[t, t−1]bi →
⊕

1≤i≤2g Q[t, t−1]b′i by

ψ̃(bi) = (b′P t)i. We have ψ̃(rj) = (b′P tW )j = (r′P−1)j , thus ψ̃(
⊕

1≤j≤2g Q[t, t−1]rj) =
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⊕

1≤j≤2g Q[t, t−1]r′j . Hence ψ̃ induces an isomorphism ψ : A(K) → A(K ′). Now, we have:

φK ′(ψ(bi), ψ(bj)) = φK ′((b′P t)i, (b
′P t)j)

=
∑

k,l

pikpjl(1− t)((W ′)−1)lk

= (1− t)(P (P−1W−1(P−1)t)P t)
ji

= φK(bi, bj).

It remains to treat the case of an enlargement. Assume V =





0 0 0
1 x ξt

0 ξ V ′



. Then:

W =





0 −1 0
t x(t− 1) (t− 1)ξt

0 (t− 1)ξ W ′



 .

Thus b2 is trivial, and b1 is a linear combination over Q[t, t−1] of the bi for 3 ≤ i ≤ 2g.
Hence there is an isomorphism (A(K), φK) ∼= (A(K ′), φ′

K) which identifies bi with b′i−2

for 3 ≤ i ≤ 2g. Proceed similarly for a column enlargement.

3 Relating Seifert matrices

Proposition 1.4 is a direct consequence of Lemmas 3.1, 3.2, and 3.3 below.

Lemma 3.1. Let (M,K) and (M ′, K ′) be two QSK-pairs that have isomorphic Blanchfield
forms. Let Σ and Σ′ be Seifert surfaces of K and K ′, respectively, and let V and V ′ be
two associated Seifert matrices. Then V and V ′ are rationally S-equivalent.

Proof. If V is non invertible, there exists f1 ∈ H1(Σ;Z), such that lk(f1, γ
+) = 0 for

all γ ∈ H1(Σ;Z). Since the intersection form < ., . >Σ on Σ is non degenerate, there
is f2 ∈ H1(Σ;Z) such that < f1, f2 >Σ= 1. Consider a symplectic basis (fi)3≤i≤2g of
the orthogonal of Zf1 ⊕ Zf2 in H1(Σ;Z) with respect to the intersection form. Then
(fi)1≤i≤2g is a symplectic basis of H1(Σ;Z), and the associated Seifert matrix V1 is a
row enlargement of a Seifert matrix V2. Since V and V1 are associated with the same
Seifert surface, they are related by a change of basis of H1(Σ;Z), i.e. they are congruent.
Hence V is S-equivalent to the smaller matrix V2. Iterating this process, we see that V
is S-equivalent to an invertible Seifert matrix W , where we consider that there exists an
empty matrix, which is invertible. Similarly, V ′ is S-equivalent to an invertible Seifert
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matrix W ′. The matrices W and W ′ are invertible Seifert matrices that define isomorphic
Blanchfield forms. Hence, by [T, Proposition 2.12], they are congruent.

We now treat the case of rationally congruent Seifert matrices. Consider two Seifert
matrices V and V ′ such that V ′ = PV P t, with P rational and invertible. Since V −V t =
V ′−(V ′)t = J , we have PJP t = J , i.e. P is symplectic. We shall prove that we can realise
a symplectic rational congruence by a finite sequence of enlargements, reductions, and
integral unimodular symplectic congruences. We first treat a particular type of congruence
matrices.

Lemma 3.2. Let V and W be two Seifert matrices such that ∆nV∆n = W , where n or
1
n

is a positive integer, and

∆n =















n
1
n

0
1

0
. . .

1















.

Then there are enlargements Ṽ of V and W̃ of W that are integrally unimodularly con-
gruent.

Proof. Assume n is a positive integer.

Set V =





a b ζ t

c d ξt

ζ ξ U



. Then W =





n2a b nζ t

c d
n2

1
n
ξt

nζ 1
n
ξ U



. Note that c = b+ 1. Set:

P =





















0 n 0 −1
0 0 1 0
1 0 n 0
0 1 0 0

0

0 I





















, Ṽ =





















0 −1 0 0 0
0 d

n2

c
n

d
n

1
n
ξt

0 c
n

a b ζ t

0 d
n

c d ξt

0 1
n
ξ ζ ξ U





















,
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and W̃ =





















0 0 0 0 0
1 a na c

n
ζ t

0 na n2a b nζ t

0 c
n

c d
n2

1
n
ξt

0 ζ nζ 1
n
ξ U





















.

The matrix P is integral unimodular and symplectic, and we have W̃ = P Ṽ P t.
Since ∆ 1

n
= ∆−1

n , the case 1
n
∈ N \ {0} follows.

Lemma 3.3. Any symplectic rational matrix P can be written as a product of integral
unimodular symplectic matrices and matrices ∆n or ∆ 1

n
for positive integers n.

Proof.

Step 1: There is no loss in assuming that the first column of P is











1
0
...
0











.

Denote by d a common denominator for the terms of the first column of P . The matrix
P∆d has integral coefficients in its first column. Denote by δ their gcd. The terms of the
first column of P∆d∆ 1

δ
are coprime integers. There is an integral unimodular symplectic

matrix Q with the same first column. The matrix Q−1P∆d∆ 1

δ
has the required first

column.

Step 2: We can assume that the first two columns of P are















1 0
0 1
... 0
...

...
0 0















.

The matrix P−1 has the same first column as P . Since it is symplectic, its second
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column is







x1
...
x2g






, with x2 = 1. Set:

Q =

























1 x1 −x4 x3 . . . −x2g x2g−1

0 1 0 . . . . . . . . . 0
0 x3 1
...

...
. . . 0

...
...

. . .
...

... 0
. . .

0 x2g 1

























.

Since Q has the same first two columns as P−1, the matrix PQ has the required first
two columns. Now, if n is a common denominator for all the xi, the matrix ∆nQ∆ 1

n
has

integral coefficients, and is symplectic.

Step 3: Induction.

We have P =

(

I2 R

0 Q

)

. Since P is symplectic, R = 0 and Q is symplectic. Thus we

can conclude by induction on g.

4 Topological realization of matrix relations

In this section, we conclude the proof of Theorem 1.7. Lemma 3.1 implies (1 ⇒ 2). Since
(2 ⇒ 1) and (3 ⇒ 1) were proved in Section 2, it suffices to show (1 ⇒ 3). The proof of
this implication will be based on Proposition 1.4.

Lemma 4.1. Let M be a QHS (resp. ZHS). Let Σ be a genus g closed connected surface
embedded in M . Then M \ Σ has exactly two connected components, whose closures are
QHH’s (resp. ZHH’s) of genus g.

Proof. Any point of M \ Σ can be joined to a point of Σ × [−1, 1] in M \ Σ. Since
(Σ× [−1, 1]) \ Σ has two connected components, M \ Σ contains at most two connected
components. Let x1 and x2 be points of (Σ×[−1, 1])\Σ, one in each connected component.
If there were a path from x1 to x2 in M \Σ, we could construct a closed curve in M which
would meet Σ exactly once. Since M is a QHS, this is not possible. Hence M \ Σ
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has exactly two connected components. Let A1 and A2 be their closures. Note that
∂A1 = ∂A2 = Σ (up to orientation).

For i = 1, 2, we have H3(Ai;Z) = 0 and H0(Ai;Z) = Z. The Mayer-Vietoris sequence
associated with M = A1 ∪ A2 yields the exact sequence:

H3(M ;Z)
∂

−−−→ H2(Σ;Z) −→ H2(A1;Z)⊕H2(A2;Z) −→ 0.

The map ∂ is an isomorphism that identifies the fondamental classes. Thus H2(A1;Z) =
H2(A2;Z) = 0. It follows that A1 and A2 are QHH’s. Their genus is given by their
boundary.

Assume M is a ZHS. The Mayer-Vietoris sequence associated with M = A1 ∪ A2

yields an isomorphism H1(Σ;Z) ∼= H1(A1;Z)⊕H1(A2;Z). Hence, for i = 1, 2, H1(Ai;Z)
is torsion-free, thus Ai is a ZHH.

Lemma 4.2. If two QSK-pairs (M,K) and (M ′, K ′) have a common Seifert matrix, then
they can be obtained from one another by a null LP-surgery.

Proof. Let Σ and Σ′ be Seifert surfaces of K and K ′, with the same associated Seifert
matrix V , with respect to symplectic bases (f1, . . . , f2g) of H1(Σ,Z) and (f ′

1, . . . , f
′
2g) of

H1(Σ
′,Z). Let T (Σ) be a regular neighborhood of Σ, and set A = M \ Int(T (Σ)). Note

that T (Σ) is homeomorphic to the standard genus 2g handlebody. By Lemma 4.1, A is a
QHH, which is clearly null in M \K. We have a similar decomposition M ′ = A′ ∪ T (Σ′).

For 1 ≤ i ≤ 2g, let ei be a meridian of fi on ∂T (Σ). The Lagrangian LA is generated
by homology classes αi = f+

i −
∑2g

j=1 Vjiej ∈ H1(∂A;Q). Similarly, define curves e′i in
∂A′ and homology classes α′

i in H1(∂A
′;Q). There is a homeomorphism from T (Σ) to

T (Σ′) that sends fi to f ′
i and ei to e′i. The associated isomorphism in homology sends

αi to α′
i. Thus we have M ′ = A′ ∪ T (Σ′) ∼= M(A

′

A
), and the replacement of A by A′ is

Lagrangian-preserving.

Lemma 4.3. Let (M,K) be a QSK-pair. Let Σ be a Seifert surface of K, and let V be
the associated Seifert matrix with respect to a basis (f1, . . . , f2g) of H1(Σ,Z). Let W be
an enlargement of V . Then W is a Seifert matrix of a QSK-pair (M ′, K ′) that can be
obtained from (M,K) by a null LP-surgery.

Proof. We have

W =





0 0 0
1 x ξt

0 ξ V



 or





0 −1 0
0 x ξt

0 ξ V



 .

We want to add a tube to Σ, whose linking numbers with the fi are given by ξ. This may
not be possible in M , so we first modify M by null LP-surgeries.
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Set ξ =







c1
d1
...

c2g
d2g






, where the ci and di are integers, and di > 0. Consider trivial knots Ji,

disjoint from Σ, such that lk(Ji, fj) = δijci. For each i, consider a tubular neighborhood
T (Ji) of Ji. By [M2, Lemma 1.5], there are rational homology tori Ai that satisfy:

• H1(∂Ai;Z) = Zαi ⊕ Zβi, with < αi, βi >= 1,

• βi = diγi in H1(Ai;Z), where γi is a curve in Ai,

• H1(Ai;Z) = Zγi ⊕
Z
diZ
αi.

Let N be the manifold obtained from M by the null LP-surgeries ( Ai

T (Ji)
), where the

identifications ∂T (Ji) = ∂Ai identify αi with a meridian of Ji, and βi with a parallel of
Ji that does not link Ji. We get lk(γi, fj) = δij

ci
di

.
In N , consider a ball B disjoint from Σ and all the Ai. Consider a rational homology

ball B′ that contains a curve γ0 with self-linking x mod Z. Set M ′ = N(B
′

B
), and K ′ = K.

p q

D

γ

γ′

[0,1]×{0}

{0}×[0,1]

D

γ

f2g+2

f2g+1

Figure 1: Adding a tube to Σ

Define a curve γ′ in M ′ as a band sum of the γi for 0 ≤ i ≤ 2g, with bands outside
Σ. Consider a disk D in Σ, and two distinct points p and q in D. Consider an embedded
band [0, 1]× [0, 1] in M ′ such that [0, 1]× {0} = ([0, 1]× [0, 1])∩Σ is a curve from p to q
in D, [0, 1]×{1} = ([0, 1]× [0, 1])∩ γ′, and the vector tangent to {0}× [0, 1] at {0}× {0}
is the positive normal vector of Σ if W is a row enlargement of V , and the negative one if
it is a column enlargement. Figure 1 represents the first case. Now set γ = (γ′∪∂([0, 1]×
[0, 1])) \ (]0, 1[×{1}), and construct a surface Σ′ by adding a tube around γ \ ([0, 1]×{0})
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to Σ. The surface Σ′ is a Seifert surface for K ′. On Σ′, consider a meridian f2g+1 of the
tube and a parallel f2g+2 of γ such that < f2g+1, f2g+2 >Σ′= 1 and lk(f2g+2, γ) = x. Note
that the orientation of the meridian depends on the type of enlargement. The Seifert
matrix associated with Σ′ with respect to the basis (f2g+1, f2g+2, f1, . . . , f2g) is W .

Since the different QHH replaced by surgery are disjoint, they can be connected by
tubes. Thus (M ′, K ′) can be obtained from (M,K) by one surgery on a genus 2g QHH.

Lemma 4.4. For any matrix V ∈ M2g(Q), with g > 0, satisfying V − V t = J , there
exists a QSK-pair (M,K) that admits V as a Seifert matrix.

Proof. Set V = (vij)1≤i,j≤2g. By [M1, Corollary 2.13], there is a QHS M and pairwise

f2s−1

l(f2s−1)
f2s

l(f2s)

f2s−1

f2s

f2s

l(f2s)

f2s+1

l(f2s+1)

f2s f2s+1

Figure 2: Gluing bands

disjoint simple closed framed curves fi, 1 ≤ i ≤ 2g, in M , such that lk(fi, fj) = vij for
j ≤ i. Consider bands around the fi, that are images of embeddings hi : [−1, 1]×S1 →֒ M

such that hi({0} × S1) = fi, and hi({1} × S1) = l(fi). Connecting these bands as
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indicated in Figure 2, we get a surface bounded by a knot K which satisfies the required
conditions.

Proof of (1 ⇒ 3) in Theorem 1.7. By Proposition 1.4, Seifert matrices associated with
QSK-pairs which have isomorphic Blanchfield forms can be related by a finite sequence
of enlargements, reductions, and integral unimodular congruences. If two QSK-pairs
(M,K) and (M ′, K ′) have integrally unimodularly congruent Seifert matrices V and V ′

respectively, then V ′ is a Seifert matrix for (M,K), obtained from V by a change of basis
of the first homology module with integral coefficients of the Seifert surface. Hence Lemma
4.2 shows that (M,K) and (M ′, K ′) are related by a null LP-surgery. Enlargements are
realised by Lemma 4.3. Now, null LP-surgeries are invertible. Since a reduced Seifert
matrix always corresponds to a QSK-pair (M,K) by Lemma 4.4, Lemma 4.3 also realises
reductions. �

5 Sequences of LP-surgeries

In this section, we prove Proposition 1.8.

Lemma 5.1. There exist two knots in S3 which have isomorphic rational Blanchfield
forms, and different integral Alexander modules.

Proof. In S3, consider a knot K with Seifert matrix

(

−1 0
1 2

)

, and a knot K ′ with Seifert

matrix

(

3 1
2 0

)

. Their Alexander modules have presentation matrices

(

1− t −1
t 2t− 2

)

and

(

3t− 3 t− 2
2t− 1 0

)

. Both have Alexander polynomial ∆(t) = (2t − 1)(2 − t). Since it

is the product of two dual non symmetric prime polynomials, their rational Blanchfield
forms are isomorphic (see [M1, Lemma 3.6]). But K has integral Alexander module
Z[t,t−1]
(∆(t))

, whereas the integral Alexander module of K ′ has a non trivial second elementary

ideal (the k-th elementary ideal associated with K is the ideal of Z[t, t−1] generated by
the minors of size 2g− k+ 1 of the presentation matrix, see [L, Chapter 6]). Indeed, this
ideal is generated by (t− 2) and (2t− 1) in Z[t, t−1], so the evaluation at t = −1 maps it
onto 3Z.

Proof of Proposition 1.8. Consider the QSK-pairs (S3, K) and (S3, K ′) of Lemma 5.1.
By Theorem 1.7, (S3, K ′) can be obtained from (S3, K) by a finite sequence of null LP-
surgeries. Suppose we can restrict to a single surgery (B

A
). Then A and B would be
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QHH’s embedded in a ZHS. It follows from Lemma 4.1 that A and B would be ZHH’s.
Thus, by Lemma 2.2, the surgery would preserve the integral Alexander module. �
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