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Rational Blanchfield forms, S-equivalence, and null
LP-surgeries

Delphine Moussard

Abstract

Garoufalidis and Rozansky introduced null-moves on the set of pairs (M, K),
where M is an integral homology sphere and K is a knot in M. These null-moves
are suitable to study the Kricker lift of the Kontsevich integral. They defined
a filtration on the space generated by pairs (M, K) up to orientation-preserving
homeomorphism. This filtration splits with respect to the isomorphism classes of
integral Alexander modules equipped with their Blanchfield forms. Null Lagrangian-
preserving surgeries are a generalization of the Garoufalidis and Rozansky null-moves
in the setting of pairs (M, K) composed of a rational homology sphere M and a null-
homologous knot K in M. They are defined as replacements of null-homologous
rational homology handlebodies of M \ K by other such handlebodies with identical
Lagrangian. We prove that two pairs (M, K) can be obtained from one another
by a finite sequence of null Lagrangian-preserving surgeries if and only if they have
isomorphic rational Alexander modules and Blanchfield forms.

MSC: 57M25 57M27 57N10 57N65

Keywords: Alexander module; Blanchfield form; equivariant linking pairing; homol-
ogy sphere; homology handlebody; Lagrangian-preserving surgery; Seifert matrix;
S-equivalence; lift of the Kontsevich integral; null-move; Euler degree of the Kont-
sevich integral.
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1 Introduction

1.1 Context

In [GR|, Garoufalidis and Rozansky studied the rational vector space generated by the
pairs (M, K) modulo orientation-preserving homeomorphism, where M is an integral
homology 3-sphere (ZHS), that is an oriented compact 3-manifold which has the same
homology with integral coefficients as S?, and K is a knot in M. They defined a filtration
on this space by means of null-moves, that are surgeries on claspers whose leaves are
trivial in Hy(M \ K;Z). They studied this filtration with the Kricker lift of the Kontsevich
integral defined in [GK]. The first step in the study of this filtration is the determination of
the classes of pairs (M, K) up to null-moves. As a corollary of results of Matveev in [Ma],
Naik and Stanford in [NS]|, and Trotter in |T|, Garoufalidis and Rozansky established
that two pairs can be obtained from one another by a finite sequence of null-moves if and
only if they admit S-equivalent Seifert matrices, and if and only if they have isomorphic
integral Alexander modules and Blanchfield forms.

In this article, we consider pairs (M, K), where M is a rational homology 3-sphere
(QHS), i.e. an oriented compact 3-manifold which has the same homology with rational
coefficients as S3, and K is a null-homologous knot in M, i.e. a knot whose class in
H,(M;7) is trivial. We define the null Lagrangian-preserving surgeries, which play the
role played by the null-moves in the integral case. We prove that the classes of pairs (M, K)
modulo null Lagrangian-preserving surgeries are characterized by the classes of rational
S-equivalence of their Seifert matrices, and by the isomorphism classes of their rational
Alexander modules equipped with their Blanchfield forms. Null Lagrangian-preserving



surgeries define a filtration of the rational vector space generated by pairs (M, K) modulo
orientation-preserving homeomorphism. This article is a first step in the study of this
filtration, that is useful in the study of equivariant finite type knot invariants.

1.2 Statement of the results

When it does not seem to cause confusion, we use the same notation for a curve and its
homology class.

We first recall the definition of the Alexander module and of the Blanchfield form.
Let (M, K) be a QSK-pair, that is a pair made of a rational homology sphere M and a
null-homologous knot K in M. Let T(K) be a tubular neighborhood of K. The ezterior
of K'is X = M \ Int(T(K)). Consider the projection 7 : m(X) — % = Z, and the
covering map p : X — X associated with its kernel. The covering X is the infinite cyclic
covering of X. The automorphism group of the covering, Aut(f( ), is isomorphic to Z. It
acts on Hy(X;Q). Denoting the action of a generator 7 of Aut(X) as the multiplication
by t, we get a structure of Q[t*!]-module on A(K) = Hy(X;Q). This Q[t*']-module is
the Alezander module of K. Tt is a torsion Q[t*!]-module.

On the Alexander module A(K), one can define the Blanchfield form, or equivariant
linking pairing, ¢x : A(K) x A(K) — Q%(i)l},
linking number of two knots.

as follows. First define the equivariant

Definition 1.1. Let J; and J, be two knots in X such that J; N ™(Jy) = 0 for all
k € Z. Let §(t) be the annihilator of A(K). Then 6(7)J; and §(7).Jy are rationally
null-homologous links. The equivariant linking number of J; and Jy is

Ui (J1, J2) = Zlk 7)J1, 75(3(7) J2) )"
keZ
One can easily see that lk.(Jy, J2) € (Sg—t)(@[til], lke(Jo, J1)(t) = lke(Jy, J2)(t71), and
Ike(P(7)J1, Q(7)Jo)(t) = P()Q(t™Nlko(Jy, J2)(t). Now, if v (resp. 1) is the homology
class of Jy (resp. Jp) in A(K), define ¢ (v,n) by:

br(7,m) = lke(J1, J3) mod Q[tF].

The Blanchfield form is hermitian: ¢x (v, n)(t) = ¢x(n,7)(t 1) and ¢ (P(t)y, Q(t)n)(t) =
PHQ(t™Y) ¢ (v,m)(t) for all v,n € A(K)) and all P,Q € Q[t*!]. Moreover, it is non
degenerate: ¢k (v,n) =0 for all n € A(K) implies v = 0.

We turn to the notion of Seifert matrices. Let ¥ be a Seifert surface of K, i.e. a
compact connected oriented surface in M such that ¥ = K. Such a surface exists since

3



K is null-homologous. Let g be the genus of X. Let (fi)1<i<2, be a symplectic basis of
H,(%;Z), i.e. a basis such that the matrix of the intersection form in (f;)1<i<24 is —J,
where J is made of blocks ((1) _01) on the diagonal, and zeros elsewhere. The Seifert
matriz of K associated with 3 and (f;)1<i<2y is the matrix V' € My, (Q) defined by
Vij = lk(fi, f;r), where f;r is a push-off of f; in the direction of the positive normal of ¥.
This matrix satisfies V' — V! = J. Any rational matrix with this property will be called a
Seifert matriz. In Section 4, we prove that any such matrix is indeed the Seifert matrix
of a QSK-pair (M, K).

Given the Seifert matrix V', one can compute the Alexander module A(K') and the
Blanchfield form ¢g. Let T(X) be a tubular neighborhood of ¥. For 1 < i < 2g, let
e; C 0T(X) be a meridian of f;. The module A(K') can be presented as:

_ @19‘329 Q[til]bi
@1§j§2g Q[til]85j7

where the b; are lifts of the ¢; in X, and the S; are lifts of the [—1, 1] x f;. When the lifts
are suitably chosen, then 05; = 37, ;o (tV — V*);;b;, hence tV — V* is a presentation
matrix of A(K) (see [L, Chapter 6]). Moreover, the computation of the lk.(b;, 05;) shows
that the form ¢ is given by ¢k (b, b;) = (1 —t)((tV — V1), mod Q[t*!] (see Kearton
in [K, §8]).

A(K)

0 0
Definition 1.2. A row enlargement of a matrix V€ My, (Q)isamatrix W= |1 x ¢ |,
0 ¢V
where # € Q et € € Q%. Then the matrix V is a row reduction of W. A column
0 -1 0
enlargement of V is a matrix W = [0 2 &' ], where x € Q et £ € Q%. Then the
0 ¢ V

matrix V is a column reduction of W.

Note that an enlargement or a reduction of a Seifert matrix still is a Seifert matrix.
An enlargement of a Seifert matrix corresponds to the addition of a tube to the Seifert
surface.

Definition 1.3. Two Seifert matrices are rationally S-equivalent if they can be obtained
from one another by a sequence of enlargements, reductions, and invertible rational con-
gruences.



In particular, two Seifert matrices of a QSK-pair (M, K) are rationally S-equivalent
(see [L, Theorem 8.4] for the integral case, which easily generalises). By extension, we
say that two QSK-pairs (M, K) are rationally S-equivalent if they admit rationally S-
equivalent Seifert matrices. In Section 2, we prove that rationally S-equivalent QSK-pairs
have isomorphic Blanchfield forms. The converse easily follows from a result of Trotter in
[T]. In Section 3, we prove the stronger statement:

Proposition 1.4. Let (M, K) and (M', K') be two QSK-pairs whose Blanchfield forms
are isomorphic. Let V and V' be associated Seifert matrices. Then'V and V' can be related
by a finite sequence of enlargements, reductions, and integral unimodular congruences.

We now define homology handlebodies and Lagrangian-preserving surgeries.

Definition 1.5. For g € N, a genus g rational (resp. integral) homology handlebody
(QHH, resp. ZHH) is a 3-manifold which is compact, oriented, and which has the same
homology with rational (resp. integral) coefficients as the standard genus g handlebody.

Such a QHH (resp. ZHH) is connected, and its boundary is necessarily homeomorphic
to the standard genus ¢ surface.

Definition 1.6. The Lagrangian L4 of a QHH A is the kernel of the map
iv: H1(0A; Q) — H1(A;Q)

induced by the inclusion. Two QHH’s A and B have LP-identified boundaries if (A, B)
is equipped with a homeomorphism h : A — 0B such that h.(L4) = Lp.

The Lagrangian of a QHH A is indeed a Lagrangian subspace of H;(0A;Q) with
respect to the intersection form.

Let M be a QHS, let A C M be a QHH, and let B be a QHH whose boundary is
LP-identified with 0A. Set M(Z) = (M \ Int(A))Upa—op B. We say that the QHS M (Z)
is obtained from M by Lagrangian-preserving surgery, or LP-surgery.

Given a QSK-pair (M, K), a null-QHH in M\ K is a QHH A C M \ K such that the
map i, : H1(A;Q) — Hi(M \ K;Q) induced by the inclusion has a trivial image. A null
LP-surgery on (M, K) is an LP-surgery (£) such that A is null in M \ K. The QSK-pair
obtained by surgery is denoted by (M, K)(Z).

In Section 2, we prove that null LP-surgeries preserve the Alexander module and the
Blanchfield form. In Section 4, we finally obtain:

Theorem 1.7. Given two QSK-pairs (M, K) and (M', K'), the following assertions are
equivalent :



1. (M, K) and (M', K") have isomorphic Alexander modules and Blanchfield forms,
2. (M,K) and (M', K') are rationally S-equivalent,

3. (M',K") can be obtained from (M, K) by a finite sequence of null LP-surgeries.
We end the article by proving the following proposition in Section 5.

Proposition 1.8. There are QSK-pairs (M, K) and (M’', K') that can be obtained from
one another by a finite sequence of null LP-surgeries, but not by a single null LP-surgery.

Acknowledgements I would like to sincerely thank my advisor, Christine Lescop, for
her great guidance.

2 Conservation of the Blanchfield form

In this section, we prove that the isomorphism class of the Blanchfield form is preserved
by null LP-surgery (Lemma 2.1) and by rational S-equivalence (Lemma 2.3).

Lemma 2.1. Let (M, K) be a QSK-pair. Let A be a null-QHH in M\ K. Let B be a QHH
whose boundary is LP-identified with OA. Then the QSK-pairs (M, K) and (M, K)(£)
have isomorphic rational Alexander modules and Blanchfield forms.

Proof. Throughout this proof, the homology modules are considered with rational coef-
ficients. Let X (resp. X’) be the infinite cyclic covering associated with (M, K) (resp.
(M',K")). The preimage A of A in X (resp. B of B in X’) is the disjoint union of Z
copies A; of A (resp. B; of B).

Set Y = X \ Int(A). The Mayer-Vietoris sequence associated with X = AUY yields
the exact sequence:

Hy(0A) — Hy(A) @ H(Y) — H (X) — 0.

Since H,(0A) = Hi(A) @ (Q[t,t7'] ® L), we get Hy(X) = %. Similarly,
Hi(X') = Q[t,il%(]};;ﬁg' Since £4 = Lp, the Alexander modules H,(X) and Hy(X') are

canonically identified.

Now consider two null-homologous knots J and J’ in X that do not meet A. Consider
a Seifert surface ¥ of J. Assume that ¥ is transverse to A and J'. Write ¥ = 3; U 3,
where X1 = Y NY and ¥y = XN A. Since J' does not meet Y9, the linking number
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lkg(J,J") is equal to the algebraic intersection number < J',¥; >. Now 0%, is an
integral linear combination of curves o; € L4,. In X , each «; lies in Lp,, so each o
has a multiple that bounds a surface in B;. Thus, there is a surface 33 C B such that
0¥3 = ndX, for some integer n. We have nJ = 9(n¥; U 33), thus:

1
kg (J,J) = =< J ,nEUY; >=< J % >=1kg(J, J).
n
Since any class v in H 1(X ) has a multiple that can be represented by a knot J in Y such
that P(t).J is null-homologous for some P € Qt,¢™!], the Blanchfield form is preserved.
O

Remark: We can work with integers, and define integral null LP-surgeries. Then, the
previous proof still works, with QQ replaced by Z. Thus:

Lemma 2.2. [f two QSK-pairs (M, K) and (M', K") can be obtained from one another by
a finite sequence of integral null LP-surgeries, then they have isomorphic integral Alexan-
der modules and Blanchfield forms.

Lemma 2.3. Let (M, K) and (M', K') be QSK-pairs. If (M, K) and (M', K') are ratio-
nally S-equivalent, then they have isomorphic rational Alexander modules and Blanchfield
forms.

Proof. Let V be a Seifert matrix associated with (M, K). As recalled in the introduction,
there is a family (b;)1<;<2, Of generators of A(K) that yields the presentation matrix
W =tV — V' and the Blanchfield form is given by ¢ (bi,b;) = (1 — t)(W™1);;. Set
b= (bl by ... bgg), and r = (7’1 e ... 7“29) = bW. We have:

B @1§i§29 Qlt, t~1]b;
@19‘99 Qlt, t=r;
Define the same notation with primes for the QSK-pair (M’, K').

First assume that V' = PV P for anjnvertible rational matrix P. Note that W' =
P'WP. Define a Qt, ¢ ']-isomorphism ¢ : @, ,c,, Qlt, ¢t '1bi — @D, <;co, Qlt, ¢ 1|0 by

b(b) = (V'PY);. We have d(rj) = (VP'W); = (r'P71);, thus (@D, ,cp, Qlt, t7']r;) =

A(K)



D1« Qlt, t~']r%. Hence ¢ induces an isomorphism v : A(K) — A(K’). Now, we have:
O (W), (b)) = brr((V'P)s, (V'PY);)
= > papi(1 = (W)
kel

— (1 =n(P'w P YY) P)

ji

= ¢K(bivbj)'
00 0
It remains to treat the case of an enlargement. Assume V = |1 z &' |. Then:
0o &V
0 -1 0
W= |t zt—-1) (t—1)¢
0 (t—1)¢ w’

Thus by is trivial, and b; is a linear combination over Q[t,t!] of the b; for 3 < i < 2g.
Hence there is an isomorphism (A(K), ¢x) = (A(K'), ¢%) which identifies b; with b]_,
for 3 < i < 2g. Proceed similarly for a column enlargement. O

3 Relating Seifert matrices

Proposition 1.4 is a direct consequence of Lemmas 3.1, 3.2, and 3.3 below.

Lemma 3.1. Let (M, K) and (M', K') be two QSK-pairs that have isomorphic Blanchfield
forms. Let 3 and X' be Seifert surfaces of K and K', respectively, and let V' and V' be
two associated Seifert matrices. Then V and V' are rationally S-equivalent.

Proof. If V is non invertible, there exists f; € H;(X;Z), such that lk(f1,7") = 0 for
all v € H{(X;Z). Since the intersection form < .,. >y on X is non degenerate, there
is fo € Hi(X;Z) such that < fi, fo >»= 1. Consider a symplectic basis (f;)s<i<2, Of
the orthogonal of Zf, @ Zfs in Hy(X;7Z) with respect to the intersection form. Then
(fi)i<i<2g is a symplectic basis of H;(X;Z), and the associated Seifert matrix V] is a
row enlargement of a Seifert matrix V5. Since V' and V) are associated with the same
Seifert surface, they are related by a change of basis of Hy(3;Z), i.e. they are congruent.
Hence V' is S-equivalent to the smaller matrix V5. Iterating this process, we see that V'
is S-equivalent to an invertible Seifert matrix W, where we consider that there exists an
empty matrix, which is invertible. Similarly, V"’ is S-equivalent to an invertible Seifert
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matrix W’. The matrices W and W' are invertible Seifert matrices that define isomorphic
Blanchfield forms. Hence, by [T, Proposition 2.12|, they are congruent. U

We now treat the case of rationally congruent Seifert matrices. Consider two Seifert
matrices V and V' such that V' = PV P!, with P rational and invertible. Since V — V! =
V'— (V') = J, we have PJP" = J, i.e. P issymplectic. We shall prove that we can realise
a symplectic rational congruence by a finite sequence of enlargements, reductions, and
integral unimodular symplectic congruences. We first treat a particular type of congruence
matrices.

Lemma 3.2. Let V and W be two Seifert matrices such that A, VA, = W, where n or
% 1S a positive integer, and

[—=
(a]

)

1

Then there are enlargements V of V. and W of W that are integrally unimodularly con-
gruent.

Proof. Assume n is a positive integer.

a b (! n*a b n(
Set V=|c d &|. Then W= | ¢ % L&|. Notethat c=0b+1. Set:

¢ €U n¢ e U

0n 0 —1 0 -1 0 0 0

001 0 0 0 £ ¢ 4} 1o

1 0n O ) 0 £ a b| ¢

p=| 010 o0 L v=|o 4 ¢ a| & |,
0 I 0 l¢ ¢ ¢| U




0 0 0 0 0

1 a na ¢ ¢t
i 0 na n*a b | nl
andW=|0 ¢ ¢ 4| 1i¢
0 ¢ nC | U

The matrix P is integral unimodular and symplectic, and we have W = PV P".
Since A1 = At the case = € N\ {0} follows. O

Lemma 3.3. Any symplectic rational matrix P can be written as a product of integral
unimodular symplectic matrices and matrices A, or A1 for positive integers n.

Proof.

Step 1: There is no loss in assuming that the first column of P is
0
Denote by d a common denominator for the terms of the first column of P. The matrix
PAy has integral coefficients in its first column. Denote by 4 their ged. The terms of the
first column of PAdA% are coprime integers. There is an integral unimodular symplectic

matrix () with the same first column. The matrix Q 'PAZA 1 has the required first
column.

10
01
Step 2: We can assume that the first two columns of P are 0

00
The matrix P~! has the same first column as P. Since it is symplectic, its second

10



columnis | : |, with 9 = 1. Set:
Tog
1 I —T4 T3 ... —Tyg Tog—1
0 1 0 0
0 T3 1
Q=" 0
- 0
0 Tag 1

Since () has the same first two columns as P!, the matrix PQ has the required first
two columns. Now, if n is a common denominator for all the x;, the matrix A, QA : has
integral coefficients, and is symplectic.

Step 3: Induction.

We have P = % S) Since P is symplectic, R = 0 and @ is symplectic. Thus we
can conclude by induction on g. O

4 'Topological realization of matrix relations

In this section, we conclude the proof of Theorem 1.7. Lemma 3.1 implies (1 = 2). Since
(2= 1) and (3 = 1) were proved in Section 2, it suffices to show (1 = 3). The proof of
this implication will be based on Proposition 1.4.

Lemma 4.1. Let M be a QHS (resp. ZHS). Let 3 be a genus g closed connected surface
embedded in M. Then M \ 3 has exactly two connected components, whose closures are
QHH'’s (resp. ZHH’s) of genus g.

Proof. Any point of M \ ¥ can be joined to a point of ¥ x [—1,1] in M \ 3. Since
(¥ x [-1,1]) \ ¥ has two connected components, M \ ¥ contains at most two connected
components. Let x; and x2 be points of (X x [—1, 1])\ X, one in each connected component.
If there were a path from x; to x5 in M \ 3, we could construct a closed curve in M which
would meet > exactly once. Since M is a QHS, this is not possible. Hence M \ X
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has exactly two connected components. Let A; and A, be their closures. Note that
0A; = 0Ay = ¥ (up to orientation).

For i = 1,2, we have H3(A;;Z) = 0 and Hy(A;;Z) = Z. The Mayer-Vietoris sequence
associated with M = A; U A, yields the exact sequence:

Hy(M: Z) —25 Hy(557) —s Hy(ArsZ) @ Hy(Ap 7) —s 0.
The map 0 is an isomorphism that identifies the fondamental classes. Thus Hy(Ay;Z) =
Hy(Ay;7Z) = 0. It follows that A; and Ay are QHH’s. Their genus is given by their
boundary.
Assume M is a ZHS. The Mayer-Vietoris sequence associated with M = A; U A,
yields an isomorphism H,(3;Z) = Hy(Ay;Z) ® Hi(As2;Z). Hence, for i = 1,2, H(A;;Z)
is torsion-free, thus A; is a ZHH. O

Lemma 4.2. If two QSK-pairs (M, K) and (M', K') have a common Seifert matriz, then
they can be obtained from one another by a null LP-surgery.

Proof. Let ¥ and ¥’ be Seifert surfaces of K and K’, with the same associated Seifert
matrix V', with respect to symplectic bases (f1,..., fog) of Hi(3,Z) and (fy,..., f3,) of
H,(X',Z). Let T(X) be a regular neighborhood of ¥, and set A = M \ Int(T(X)). Note
that 7'(X) is homeomorphic to the standard genus 2¢g handlebody. By Lemma 4.1, A is a
QHH, which is clearly null in M \ K. We have a similar decomposition M’ = A’ UT(¥').

For 1 <i < 2g, let e; be a meridian of f; on 0T (X). The Lagrangian L4 is generated
by homology classes a; = f;" — Zfi Viie; € Hi(0A; Q). Similarly, define curves €] in
0A" and homology classes « in H1(0A’;Q). There is a homeomorphism from 7'(¥) to
T(3') that sends f; to f/ and e; to e;. The associated isomorphism in homology sends
a; to af. Thus we have M' = A/ UT(Y) = M(AZ,), and the replacement of A by A’ is
Lagrangian-preserving. 0

Lemma 4.3. Let (M, K) be a QSK-pair. Let ¥ be a Seifert surface of K, and let V' be
the associated Seifert matriz with respect to a basis (f1, ..., fag) of Hi(X,Z). Let W be
an enlargement of V.. Then W is a Seifert matriz of a QSK-pair (M', K') that can be
obtained from (M, K) by a null LP-surgery.

Proof. We have

00 0 0 -1 0
W=112a2 &) or [0 2 &
0 ¢V 0 £ V

We want to add a tube to 3, whose linking numbers with the f; are given by £. This may
not be possible in M, so we first modify M by null LP-surgeries.
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Set & = |, where the ¢; and d; are integers, and d; > 0. Consider trivial knots J;,

disjoint from %2:] such that lk(J;, f;) = d;;¢;. For each i, consider a tubular neighborhood
T(J;) of J;. By [M2, Lemma 1.5], there are rational homology tori A; that satisfy:

o H(0A;;72) = Loy @ ZB;, with < «y, 5; >=1,

e (; =d;v; in Hi(A;;Z), where v, is a curve in A;,

o Hi(Aj;Z) =Zy; @ d%ai.

Let N be the manifold obtained from M by the null LP-surgeries (%), where the
identifications 9T'(J;) = 0A; identify a; with a meridian of J;, and f; with a parallel of
J; that does not link J;. We get (k(vy;, f;) = 5ij2—2.

In N, consider a ball B disjoint from X and all the A;. Consider a rational homology
ball B’ that contains a curve v, with self-linking x mod Z. Set M' = N(%), and K’ = K.

- = /
1 ’y

{0}x[0,1]

v 2

[0,1]>x{0}

Figure 1: Adding a tube to X

Define a curve 4/ in M’ as a band sum of the ~; for 0 < i < 2¢, with bands outside
Y. Consider a disk D in ¥, and two distinct points p and ¢ in D. Consider an embedded
band [0, 1] x [0, 1] in M’ such that [0, 1] x {0} = ([0,1] x [0,1]) N3 is a curve from p to ¢
in D, [0,1] x {1} = ([0, 1] x [0,1]) N+, and the vector tangent to {0} x [0,1] at {0} x {0}
is the positive normal vector of X if W is a row enlargement of V', and the negative one if
it is a column enlargement. Figure 1 represents the first case. Now set v = (7' U09(][0, 1] x
[0,1]))\ (0, 1[x{1}), and construct a surface X' by adding a tube around ~\ ([0, 1] x {0})
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to 3. The surface ' is a Seifert surface for K’. On Y, consider a meridian fy541 of the
tube and a parallel fo;15 of v such that < fogi1, fogr2 >swv= 1 and lk(fag42,7) = . Note
that the orientation of the meridian depends on the type of enlargement. The Seifert
matrix associated with ¥’ with respect to the basis (fagi1, fogra, f1,- .-, fog) s W.

Since the different QHH replaced by surgery are disjoint, they can be connected by
tubes. Thus (M’ K') can be obtained from (M, K') by one surgery on a genus 2g QHH. O

Lemma 4.4. For any matriz V € My, (Q), with g > 0, satisfying V — V' = J, there
exists a QSK-pair (M, K) that admits V' as a Seifert matriz.

Proof. Set V' = (v;;)1<i j<2g- By |[M1, Corollary 2.13|, there is a QHS M and pairwise

} (J2s) (Fas) (Faos1)

’f?s

l l

\%

f2s—1
l(st—l)

f25 f25+1

L
e

f2s

disjoint simple closed framed curves f;, 1 < i < 2g, in M, such that lk(f;, f;) = v;; for
j < 1. Consider bands around the f;, that are images of embeddings h; : [—1,1] x ST — M
such that h;({0} x S') = fi, and h;({1} x S') = I(f;). Connecting these bands as

f%\ 251

Figure 2: Gluing bands
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indicated in Figure 2, we get a surface bounded by a knot K which satisfies the required
conditions. O

Proof of (1 = 3) in Theorem 1.7. By Proposition 1.4, Seifert matrices associated with
QSK-pairs which have isomorphic Blanchfield forms can be related by a finite sequence
of enlargements, reductions, and integral unimodular congruences. If two QSK-pairs
(M, K) and (M’, K') have integrally unimodularly congruent Seifert matrices V' and V'
respectively, then V' is a Seifert matrix for (M, K), obtained from V' by a change of basis
of the first homology module with integral coefficients of the Seifert surface. Hence Lemma
4.2 shows that (M, K) and (M’, K') are related by a null LP-surgery. Enlargements are
realised by Lemma 4.3. Now, null LP-surgeries are invertible. Since a reduced Seifert
matrix always corresponds to a QSK-pair (M, K) by Lemma 4.4, Lemma 4.3 also realises
reductions. OJ

5 Sequences of LP-surgeries

In this section, we prove Proposition 1.8.

Lemma 5.1. There exist two knots in S® which have isomorphic rational Blanchfield
forms, and different integral Alexander modules.

Proof. In S3, consider a knot K with Seifert matrix <_11 (2)), and a knot K’ with Seifert

2 0 t 2t—2

and <3t -3 - 2). Both have Alexander polynomial A(t) = (2t — 1)(2 — t). Since it

matrix (3 1). Their Alexander modules have presentation matrices (1 -t - )

2t—1 0
is the product of two dual non symmetric prime polynomials, their rational Blanchfield
forms are isomorphic (see [M1, Lemma 3.6]). But K has integral Alexander module

Z&g);], whereas the integral Alexander module of K’ has a non trivial second elementary

ideal (the k-th elementary ideal associated with K is the ideal of Z[t,t™!] generated by
the minors of size 2g — k + 1 of the presentation matrix, see [L, Chapter 6]). Indeed, this
ideal is generated by (¢ —2) and (2t — 1) in Z[t,t], so the evaluation at ¢ = —1 maps it
onto 3Z. O

Proof of Proposition 1.8. Consider the QSK-pairs (5%, K) and (S®, K’) of Lemma 5.1.
By Theorem 1.7, (53, K’) can be obtained from (53, K) by a finite sequence of null LP-
surgeries. Suppose we can restrict to a single surgery (%). Then A and B would be

15



QHH’s embedded in a ZHS. It follows from Lemma 4.1 that A and B would be ZHH’s.
Thus, by Lemma 2.2, the surgery would preserve the integral Alexander module. 0
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