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Abstract

Let M be a triangulable compact manifold. We prove that, among closed
subgroups of Homeo0(M) (the identity component of the group of homeo-
morphisms of M), the subgroup consisting of volume preserving elements is
maximal.

AMS classification. 57S05 (57M60, 37E30).

1 Introduction

The theory of of groups acting on the circle is very rich (see in particular the
monographs [Ghy01, Nav07]). The theory is far less developed in higher dimen-
sion, where it seems difficult to discover more than some isolated islands in a sea
of chaos. In this note, we are interested in the closed subgroups of the group
Homeo0(M), the identity component of the group of homeomorphisms of some
compact topological n-dimensional manifold M . We will show that, when n ≥ 2,
for any good (nonatomic and with total support) probability measure µ, the sub-
group of elements that preserve µ is maximal among closed subgroups.

Let us recall some related results in the case whenM is the circle. De La Harpe
conjectured that PSL(2,R) is a maximal closed subgroup ([Bes]). Ghys proposed
a list of closed groups acting transitively, asking whether, up to conjugacy, the list
was complete ([Ghy01]); the list consists in the whole group, SO(2), PSL(2,R),
the group Homeok,0(S

1) of elements that commutes with some rotation of order k,
and the group PSLk(2,R) which is defined analogously. The first conjecture was
solved by Giblin and Markovic in [GM06]. These authors also answered Ghys’s
question affirmatively, under the additional hypothesis that the group contains
some non trivial arcwise connected component. Thinking of the two-sphere with
these results in mind, one is naturally led to the following questions.

Question 1. Let G be a proper closed subgroup of Homeo0(S
2) acting transitively.

Assume that G is not a (finite dimensional) Lie group. Is G conjugate to one
of the two subgroups: (1) the centralizer of the antipodal map x 7→ −x, (2) the
subgroup of area-preserving elements?

Note that the centralizer of the antipodal map is the group of lifts of home-
omorphisms of the projective plane; it is the spherical analog of the groups
Homeok,0(S

1).
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Question 2. Is PSL(2,C) maximal among closed subgroups of Homeo0(S
2)?

On the circle the group of measure-preserving elements coincides with SO(2).
It is not a maximal closed subgroup since it is included in PSL(2,R). In contrast,
we propose to prove that the closed subgroup of area-preserving homeomorphisms
of the two-sphere is maximal. To put this into a general context, let M be
a compact topological manifold whose dimension is greater or equal to 2. We
assume that M is triangulable and (for simplicity) without boundary. Let us
equip M with a probability measure µ which is assumed to be good : this means
that every finite set has measure zero, and every non-empty open set has positive
measure. We consider the group Homeo0(M) of homeomorphisms of M that
are isotopic to the identity, and the subgroup Homeo0(M,µ) of elements that
preserve the measure µ. According to the famous Oxtoby-Ulam theorem ([OU41,
GP75], see also [Fat80]), if µ′ is another good probability measure on M then
it is homeomorphic to µ, meaning that there exists an element h ∈ Homeo0(M)
such that h∗µ = µ′. In particular the subgroup Homeo0(M,µ′) is isomorphic
to Homeo0(M,µ). We equip these transformation groups with the topology of
uniform convergence, which turns them into topological groups. The subgroup
Homeo0(M,µ) is easily seen to be closed in Homeo0(M). Note that according
to Fathi’s theorem (first theorem in [Fat80]), Homeo0(M,µ) coincides with the
identity component in the group of measure preserving homeomorphisms. The
aim of the present note is to prove the following.

Theorem. The group Homeo0(M,µ) is maximal among closed subgroups of the
group Homeo0(M).

In what follows we consider some element f ∈ Homeo0(M) that does not
preserves the measure µ, and we denote by Gf the subgroup of Homeo0(M)
generated by

{f} ∪Homeo0(M,µ).

Our aim is to show that the group Gf is dense in Homeo0(M).

2 Localization

In this section we show how to find some element in Gf that has small support
and contracts the volume of some given ball.

Good balls A ball is any subset of M which is homeomorphic to a euclidean
ball in R

n, where n is the dimension of M . We will need to consider balls which
are locally flat and whose boundary has measure zero. More precisely, let us
denote by Br(0) the euclidean ball with radius r and center 0 in R

n. A ball
B will be called good if µ(∂B) = 0 and if there exists a topological embedding
(continuous one-to-one map) γ : B2(0) → M such that γ(B1(0)) = B. Note that,
due to countable additivity, if γ : B1(0) → M is any topological embedding, then
for almost every r ∈ (0, 1) the ball γ(Br(0)) is good.
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Oxtoby-Ulam theorem We will need the following consequence of the
Oxtoby-Ulam theorem. Let B1, B2 be two good balls in the interior of some
manifold M ′, with or without boundary (what we have in mind is either M ′ = M

or M ′ is a euclidean ball). Let µ′ be a good probability measure on M ′ which
assigns measure zero to the boundary ∂M ′. Denote by Homeo0(M

′, µ′) the iden-
tity component of the group of homeomorphisms of M ′ which are supported in
the interior of M ′ and preserve µ′. Assume µ′(B1) = µ′(B2). Then there exists
φ ∈ Homeo0(M

′, µ′) such that φ(B1) = B2. To construct φ, we first choose a
good ball B in the interior of M ′ that contains B1, B2 in its interior. Accord-
ing to the annulus theorem ([Kir69, Qui82]), we may find a homeomorphism φ′

supported in the ball B that sends B1 onto B2
1. A first use of the Oxtoby-Ulam

theorem provides a homeomorphism φ1 supported in B2 and sending the measure
(φ′

∗µ
′)|B2

to the measure µ′
|B2

. A second use of the same theorem gives a home-

omorphism φ2 supported in B \ B2 and sending the measure (φ′
∗µ

′)|B\B2
to the

measure µ′
|B\B2

. Then φ is obtained as φ2φ1φ
′. Note that, since φ is supported

in the ball B, Alexander’s trick ([Ale23]) provides an isotopy from the identity to
φ within the homeomorphisms of B that preserves the measure µ′, which shows
that φ belongs to Homeo0(M

′, µ′).

Triangulations We will also need triangulations which have good properties
with respect to the measure µ. We begin with any triangulation T of M . We
would like the (n − 1)-skeleton of T to have measure zero, but some (n − 1)-
dimensional simplices may have positive measure. We fix this as follows. Each
n-dimensional simplex s of T is homeomorphic to the standard n-dimensional
simplex ; let µs be a probability measure on s which is the homeomorphic image
of the Lebesgue measure on the standard simplex. The measure

µ′ =
1

N

∑

µs

(where N denotes the number of n-dimensional simplices of T ) is a good proba-
bility measure on M for which the n−1-dimensional simplices have measure zero.
We apply the Oxtoby-Ulam theorem to get a homeomorphism h of M sending
µ′ to µ. Then we consider the image triangulation T0 = h∗(T ), whose (n − 1)-
skeleton has measure zero. In addition to this, all the simplices of T0 have the
same mass. Using successive barycentric subdivisions we get a sequence (Tp)p≥0

of nested triangulations with both properties: the (n− 1)-skeleton have no mass
and all the simplices have the same mass. Denote by mp the common mass of
the simplices of Tp, and by dp the supremum of the diameters of the simplices
of Tp (for some metric which is compatible with the topology on M). Then the
sequences (mp) and (dp) tends to zero.

Here is a useful consequence. Let O be any open subset of M . We define
inductively Op as the set of all the n-dimensional open simplices of Tp that are
included in O but not in some s ∈ Op−1. The elements of O := ∪Op are pairwise

1One may probably avoid the use of the annulus theorem here, since the ball B may be con-

structed explicitly by gluing the two good balls B1 and B2 to a piecewise linear tube connecting

them.
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disjoint and their closures cover O. Since the (n−1)-skeleton of our triangulations
have no mass, we have the equality

µ(O) =
∑

U∈O

µ(U) (1).

We call a (closed) simplex of some Tp good if it is a good ball in M . We notice
that for every p > 0, all the n-dimensional simplices that are disjoint from the
(n− 1)-skeleton of T0 are good2. Thus equality (1) still holds if, in the definition
of the Op’s, we replace the simplices by the simplices whose closure is good. As a
consequence, if two probability measures µ, µ′ give the same mass to all the good
simplices of Tp for every p, then they are equal.

In the first Lemma we look for elements of the group Gf that do not preserve
the measure and have small support.

Lemma 2.1. For every positive ε there exists a good ball B of measure less than
ε and an element g ∈ Gf which is supported in B and does not preserve the
measure µ.

Proof. By hypothesis the probability measures µ and f∗µ are not equal. Accord-
ing to the discussion preceding the Lemma, there exists some p > 0 and some
simplex of the triangulation Tp whose closure B1 is a good ball, and such that
µ(B1) 6= µ(f−1(B1)). To fix ideas let us assume that

µ(f−1(B1)) > µ(B1).

This implies the same inequality for at least one of the simplices of Tp+1 that are
included in B1 ; thus, by induction, we see that we may choose p to be arbitrarily
large. Note that we have µ(f−1(M \B1)) < µ(M \B1). Thus the same reasoning,
applied to M \B1, provides a (closed) simplex B2 of some Tp′ , disjoint from B1,
such that

µ(f−1(B2)) < µ(B2).

Again, by induction, we may assume that p′ = p and this is an arbitrarily large
integer. In particular B1 and B2 are good balls with the same mass. Let B′

be a ball whose interior contains B1 and B2. Since B1 and B2 have the same
measure, by the above mentioned version of the Oxtoby-Ulam theorem there
exists φ ∈ Homeo0(M,µ) supported in B′ and sending B1 onto B2. Now we
consider the element

g = f−1φf

of the group Gf . It has support in the ball B = f−1(B′). It sends the ball
f−1(B1) to the ball f−1(B2), and we have

µ(f−1(B1)) > µ(B1) = µ(B2) > µ(f−1(B2))

so that g does not preserve the measure µ, as required by the Lemma.
It remains to see that in the above construction we may have chosen B to be

a good ball of arbitrarily small measure. Since µ has no atom, for every ε > 0

2Note that there may be simplices in T0 that fail to be good balls if T0 is a triangulation but

not a PL-triangulation.
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there exists some η > 0 such that every subset of M of diameter less than η has
measure less than ε. Thus by choosing p = p′ large enough we may require that

µ(f−1(B1)) + µ(f−1(B2)) < ε.

Then we choose B as a ball whose interior contains f−1(B1) and f−1(B2) and
which still has measure less than ε. Finally we shrink B a little bit to turn it into
a good ball. This completes the proof of the Lemma.

We subdivide the euclidean unit ball B1(0) of Rn into the half-balls B−
1 =

B1(0) ∩ {x ≤ 0} and B+
1 = B1(0) ∩ {x ≥ 0}. Let Σ be the disk B−

1 ∩ B+
1 that

separates the half-balls. We consider a given ball B and some homeomorphism g

supported in B. For every homeomorphism γ : B1(0) → B we let γ± = γ(B±
1 );

we say that γ is thin if γ(Σ) has measure zero. We now consider the set I(γ, g)
of all the numbers of the type

µ(g(γ+))− µ(γ+)

where γ is thin.

Lemma 2.2. If g does not preserve the measure µ then I(γ, g) contains an
interval [a−, a+] with a− < 0 < a+.

Proof. First we want to prove that there exists some γ : B1(0) → B which is thin
and such that µ(g(γ+)) 6= µ(γ+). Since g does not preserve the measure µ, we
may find some good ball b in the interior of B such that µ(b) 6= µ(f−1(b)). To
fix ideas we assume that µ(b) < µ(f−1(b)). Thanks to the Oxtoby-Ulam theorem
we may identify B with a euclidean ball in R

n, b with another euclidean ball
inside B, and µ with the restriction of the Lebesgue measure on R

n. All our balls
are centered at the origin. Let b′ be a ball slightly greater than b, and T be a
thin tube in B \ b′ connecting the boundary of B and that of b′. There exists a
homeomorphism γ : B1(0) → B such that γ+ = T ∪ b′. The construction may be
done so that the (Lebesgue) measure of γ+ is arbitrarily close to that of b, and
then we have µ(γ+)) < µ(g−1(γ+)), as wanted.

We can find a continuous family (Rt)t∈[0,1] of rotations of B1(0) such that

R0 is the identity and R1 is a rotation that exchanges B−
1 and B+

1 . Setting
γt := γ ◦ Rt, we have γ+1 = γ−0 = γ−. Note that it may happen that γt(Σ) has
positive measure for some t. To remedy for this we consider γ′ = φ ◦ γ, where
φ : B → B is a homeomorphism that fixes γ(Σ), such that the image under γ′

of the Lebesgue measure on B1(0) is equivalent to the restriction of µ to the ball
B, in the sense that both measures share the same measure zero sets; such a φ

is provided by the Oxtoby-Ulam theorem. This ensures that γ′t := γ′ ◦Rt is thin
for every t. Note that γ′0

± = γ±0 and γ′1
± = γ±1 . We have

µ(g(γ′1
+
))− µ(γ′1

+
) = µ(g(γ′0

−
))− µ(γ′0

−
)

= (1− µ(g(γ′0
+
))) − (1− µ(γ′0

+
))

= −(µ(g(γ′0
+
))− µ(γ′0

+
)) 6= 0.

Thus the set I(γ, g) contains the interval

{µ(g(γ′t
+
))− µ(γ′t

+
), t ∈ [0, 1]}
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which contains both a positive and a negative number, as required by the lemma.

Corollary 2.3. Let γ0 : B1(0) → M be a topological embedding in M with
µ(γ0(Σ)) = 0, let B0 = γ0(B1(0)), and let ε > 0 be less than the measure of γ+0 .
Then there exists some element g ∈ Gf , supported in B0, such that

µ(g(γ+0 )) = µ(γ+0 )− ε.

In the situation of the corollary we will say that g transfers a mass ε from γ+0
to γ−0 .

Proof. Lemma 2.1 provides some element g′ ∈ Gf that does not preserve the
measure µ, and which is supported on a good ball B whose measure is less
than the minimum of µ(γ+0 ) − ε and µ(γ−0 ). Then Lemma 2.2 provides some
homeomorphism γ : B1(0) → B which is thin and such that g′ transfers some
mass a from γ+ to γ−:

µ(g′(γ+))− µ(γ+) = a.

Since such a number a may be chosen freely in an open interval containing 0, we
may assume that a = ε

N
for some positive integer N . Choose some homeomor-

phism Φ1 ∈ Homeo0(M,µ) that sendsB insideB0, γ
+ inside γ+0 and γ− inside γ−0 .

Such a Φ1 is provided by Oxtoby-Ulam theorem, thanks to the fact that we have
chosen the measure of B to be small enough and that µ(γ(Σ)) = µ(γ0(Σ)) = 0.
Now the conjugate g1 = Φ1g

′Φ−1
1 transfers a mass a from γ+0 to γ−0 :

µ(g1(γ
+
0 )) = µ(γ+0 )− a.

We repeat the process with γ1 = g1 ◦γ0 instead of γ0, getting an element g2 ∈ Gf

that tranfers a mass a from γ+1 to γ−1 :

µ(g2g1(γ
+
0 )) = µ(g2(γ

+
1 ))

= µ(γ+1 )− a

= µ(g1(γ
+
0 ))− a

= µ(γ+0 )− 2a.

We repeat the process N times, and get the final homeomorphism g as a compo-
sition of the N homeomorphisms gN , . . . , g1.

3 Proof of the theorem

We consider as before some element f ∈ Homeo0(M) \ Homeo0(M,µ). Let
g be some other element in Homeo0(M). In order to prove the theorem we
want to approximate g with some element in the group Gf generated by f and
Homeo0(M,µ). We fix a triangulation T0 for which the (n− 1)-skeleton has zero
measure. The first step of the proof consists in finding an element g′ ∈ Gf sat-
isfying the following property: for every simplex s of T0, the measure of g′(s)
coincides with the measure of g−1(s). To achieve this, the (very natural) idea
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is to use corollary 2.3 to progressively transfer some mass from the simplices s

whose mass is larger than the mass of their image under g−1, to those for which
the opposite holds.

Here are some details. Given a triangulation T for which the (n− 1)-skeleton
has zero measure, we choose two n-dimensional simplices s, s′ of T , and some
positive ε less than µ(s); let us explain how to transfer a mass ε from s to s′.
First assume that s and s′ are adjacent. Then we may choose an embedding
γ : B1(0) → s ∪ s′ with γ(Σ) ⊂ s ∩ s′, γ+ ⊂ s and γ− ⊂ s′, and we apply
corollary 2.3. Thus we get an element h ∈ Gf , supported in s ∪ s′, such that
µ(h(s)) = µ(s) − ε, and consequently µ(h(s′)) = µ(s′) + ε. Now consider the
general case, when s and s′ are not adjacent. Since M is connected, there exists
a sequence s0 = s, . . . , sℓ = s′ of simplices of T in which two successive elements
are adjacent. As described before we may transfer mass ε from s0 to s1, then
from s1 to s2, and so on. Thus by successive adjacent transfers of mass we get
some element in h ∈ Gf that transfers mass ε from s to s′. Note that the masses
of all the other elements do not change, that is, µ(h(σ)) = µ(σ) for every simplex
σ of T different from s and s′.

Now we go back to our triangulation T0, and we construct g′ the following
way. If each simplex s has the same measure as its inverse image g−1(s) then
there is nothing to do. In the opposite case there exists some simplex s of T0 such
that µ(s) > µ(g−1(s)). We also select some other simplex s′ such that µ(s′) 6=
µ(g−1(s′)), and we use the previously described construction of a homeomorphism
g1 ∈ Gf that transfers the mass µ(s)−µ(g−1(s)) from the simplex s to the simplex
s′. After doing so the number of simplices g1(s) ∈ g1∗T0 whose mass differs from
the mass of g−1(s) has decreased by at least one compared to T0. We proceed
recursively until we get an element g′ ∈ Gf such that µ(g′(s)) = µ(g−1(s)) for
every simplex s in T0, as wanted for this first step.

For the second and last step we consider the triangulations (g−1)∗(T0) and
g′∗(T0). The homeomorphism g′g sends the first one to the second one, and
each simplex g−1(s) ∈ (g−1)∗(T0) has the same measure as its image g′(s) ∈
g′∗(T0). We apply Oxtoby-Ulam theorem independently on each g′(s) to get a
homeomorphism Φs : g′(s) → g′(s), which is the identity on ∂g′(s), and which
sends the measure (g′g)∗(µ|g−1(s)) to the measure µ|g′(s). The homeomorphism

Φ :=

(

∏

s

Φs

)

g′g

preserves the measure µ. Furthermore by Alexander’s trick each Φs is isotopic
to the identity, thus Φ is isotopic to the identity, and belongs to the group
Homeo0(M,µ). Now the homeomorphism g′′ = g′−1Φ belongs to the group Gf

and for each simplex s of the triangulation T0 we have g′′−1(s) = g−1(s). We
may have chosen the triangulation T0 so that each simplex has diameter less than
some given ε. Every point x in M belongs to some n-dimensional closed simplex
g−1(s) of the triangulation (g−1)∗T0, and since both g(x) and g′′(x) belong to
s they are a distance less than ε apart. In other words the uniform distance
from g to g′′ is less than ε. This proves that g belongs to the closure of Gf , and
completes the proof of the theorem.
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