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Let M be a triangulable compact manifold. We prove that, among closed subgroups of Homeo 0 (M ) (the identity component of the group of homeomorphisms of M ), the subgroup consisting of volume preserving elements is maximal.

Introduction

The theory of of groups acting on the circle is very rich (see in particular the monographs [START_REF] Ghys | Groups acting on the circle[END_REF][START_REF] Navas | Grupos de difeomorfismos del círculo[END_REF]). The theory is far less developed in higher dimension, where it seems difficult to discover more than some isolated islands in a sea of chaos. In this note, we are interested in the closed subgroups of the group Homeo 0 (M ), the identity component of the group of homeomorphisms of some compact topological n-dimensional manifold M . We will show that, when n ≥ 2, for any good (nonatomic and with total support) probability measure µ, the subgroup of elements that preserve µ is maximal among closed subgroups.

Let us recall some related results in the case when M is the circle. De La Harpe conjectured that P SL(2, R) is a maximal closed subgroup ( [Bes]). Ghys proposed a list of closed groups acting transitively, asking whether, up to conjugacy, the list was complete ( [START_REF] Ghys | Groups acting on the circle[END_REF]); the list consists in the whole group, SO(2), P SL(2, R), the group Homeo k,0 (S 1 ) of elements that commutes with some rotation of order k, and the group P SL k (2, R) which is defined analogously. The first conjecture was solved by Giblin and Markovic in [START_REF] Giblin | Classification of continuously transitive circle groups[END_REF]. These authors also answered Ghys's question affirmatively, under the additional hypothesis that the group contains some non trivial arcwise connected component. Thinking of the two-sphere with these results in mind, one is naturally led to the following questions.

Question 1. Let G be a proper closed subgroup of Homeo 0 (S 2 ) acting transitively. Assume that G is not a (finite dimensional) Lie group. Is G conjugate to one of the two subgroups: (1) the centralizer of the antipodal map x → -x, (2) the subgroup of area-preserving elements?

Note that the centralizer of the antipodal map is the group of lifts of homeomorphisms of the projective plane; it is the spherical analog of the groups Homeo k,0 (S 1 ).

Question 2. Is P SL(2, C) maximal among closed subgroups of Homeo 0 (S 2 )?

On the circle the group of measure-preserving elements coincides with SO(2). It is not a maximal closed subgroup since it is included in P SL(2, R). In contrast, we propose to prove that the closed subgroup of area-preserving homeomorphisms of the two-sphere is maximal. To put this into a general context, let M be a compact topological manifold whose dimension is greater or equal to 2. We assume that M is triangulable and (for simplicity) without boundary. Let us equip M with a probability measure µ which is assumed to be good: this means that every finite set has measure zero, and every non-empty open set has positive measure. We consider the group Homeo 0 (M ) of homeomorphisms of M that are isotopic to the identity, and the subgroup Homeo 0 (M, µ) of elements that preserve the measure µ. According to the famous Oxtoby-Ulam theorem ([OU41, GP75], see also [START_REF] Fathi | Structure of the group of homeomorphisms preserving a good measure on a compact manifold[END_REF]), if µ ′ is another good probability measure on M then it is homeomorphic to µ, meaning that there exists an element h ∈ Homeo 0 (M ) such that h * µ = µ ′ . In particular the subgroup Homeo 0 (M, µ ′ ) is isomorphic to Homeo 0 (M, µ). We equip these transformation groups with the topology of uniform convergence, which turns them into topological groups. The subgroup Homeo 0 (M, µ) is easily seen to be closed in Homeo 0 (M ). Note that according to Fathi's theorem (first theorem in [START_REF] Fathi | Structure of the group of homeomorphisms preserving a good measure on a compact manifold[END_REF]), Homeo 0 (M, µ) coincides with the identity component in the group of measure preserving homeomorphisms. The aim of the present note is to prove the following.

Theorem. The group Homeo 0 (M, µ) is maximal among closed subgroups of the group Homeo 0 (M ).

In what follows we consider some element f ∈ Homeo 0 (M ) that does not preserves the measure µ, and we denote by G f the subgroup of Homeo 0 (M ) generated by {f } ∪ Homeo 0 (M, µ).

Our aim is to show that the group G f is dense in Homeo 0 (M ).

Localization

In this section we show how to find some element in G f that has small support and contracts the volume of some given ball.

Good balls A ball is any subset of M which is homeomorphic to a euclidean ball in R n , where n is the dimension of M . We will need to consider balls which are locally flat and whose boundary has measure zero. More precisely, let us denote by B r (0) the euclidean ball with radius r and center 0 in R n . A ball B will be called good if µ(∂B) = 0 and if there exists a topological embedding (continuous one-to-one map) γ : B 2 (0) → M such that γ(B 1 (0)) = B. Note that, due to countable additivity, if γ : B 1 (0) → M is any topological embedding, then for almost every r ∈ (0, 1) the ball γ(B r (0)) is good.

Oxtoby-Ulam theorem We will need the following consequence of the Oxtoby-Ulam theorem. Let B 1 , B 2 be two good balls in the interior of some manifold M ′ , with or without boundary (what we have in mind is either M ′ = M or M ′ is a euclidean ball). Let µ ′ be a good probability measure on M ′ which assigns measure zero to the boundary ∂M ′ . Denote by Homeo 0 (M ′ , µ ′ ) the identity component of the group of homeomorphisms of M ′ which are supported in the interior of M ′ and preserve µ ′ . Assume µ ′ (B 1 ) = µ ′ (B 2 ). Then there exists φ ∈ Homeo 0 (M ′ , µ ′ ) such that φ(B 1 ) = B 2 . To construct φ, we first choose a good ball B in the interior of M ′ that contains B 1 , B 2 in its interior. According to the annulus theorem ([Kir69, Qui82]), we may find a homeomorphism φ ′ supported in the ball B that sends B 1 onto B 21 . A first use of the Oxtoby-Ulam theorem provides a homeomorphism φ 1 supported in B 2 and sending the measure

(φ ′ * µ ′ ) |B 2 to the measure µ ′ |B 2 .
A second use of the same theorem gives a homeomorphism φ 2 supported in B \ B 2 and sending the measure (φ ′ * µ ′ ) |B\B 2 to the measure µ ′ |B\B 2 . Then φ is obtained as φ 2 φ 1 φ ′ . Note that, since φ is supported in the ball B, Alexander's trick ( [START_REF] Alexander | On the deformation of an n-cell[END_REF]) provides an isotopy from the identity to φ within the homeomorphisms of B that preserves the measure µ ′ , which shows that φ belongs to Homeo 0 (M ′ , µ ′ ).

Triangulations We will also need triangulations which have good properties with respect to the measure µ. We begin with any triangulation T of M . We would like the (n -1)-skeleton of T to have measure zero, but some (n -1)dimensional simplices may have positive measure. We fix this as follows. Each n-dimensional simplex s of T is homeomorphic to the standard n-dimensional simplex ; let µ s be a probability measure on s which is the homeomorphic image of the Lebesgue measure on the standard simplex. The measure

µ ′ = 1 N µ s
(where N denotes the number of n-dimensional simplices of T ) is a good probability measure on M for which the n-1-dimensional simplices have measure zero. We apply the Oxtoby-Ulam theorem to get a homeomorphism h of M sending µ ′ to µ. Then we consider the image triangulation T 0 = h * (T ), whose (n -1)skeleton has measure zero. In addition to this, all the simplices of T 0 have the same mass. Using successive barycentric subdivisions we get a sequence (T p ) p≥0 of nested triangulations with both properties: the (n -1)-skeleton have no mass and all the simplices have the same mass. Denote by m p the common mass of the simplices of T p , and by d p the supremum of the diameters of the simplices of T p (for some metric which is compatible with the topology on M ). Then the sequences (m p ) and (d p ) tends to zero.

Here is a useful consequence. Let O be any open subset of M . We define inductively O p as the set of all the n-dimensional open simplices of T p that are included in O but not in some s ∈ O p-1 . The elements of O := ∪O p are pairwise disjoint and their closures cover O. Since the (n-1)-skeleton of our triangulations have no mass, we have the equality

µ(O) = U ∈O µ(U ) (1).
We call a (closed) simplex of some T p good if it is a good ball in M . We notice that for every p > 0, all the n-dimensional simplices that are disjoint from the (n -1)-skeleton of T 0 are good2 . Thus equality (1) still holds if, in the definition of the O p 's, we replace the simplices by the simplices whose closure is good. As a consequence, if two probability measures µ, µ ′ give the same mass to all the good simplices of T p for every p, then they are equal.

In the first Lemma we look for elements of the group G f that do not preserve the measure and have small support.

Lemma 2.1. For every positive ε there exists a good ball B of measure less than ε and an element g ∈ G f which is supported in B and does not preserve the measure µ.

Proof. By hypothesis the probability measures µ and f * µ are not equal. According to the discussion preceding the Lemma, there exists some p > 0 and some simplex of the triangulation T p whose closure B 1 is a good ball, and such that µ(B 1 ) = µ(f -1 (B 1 )). To fix ideas let us assume that

µ(f -1 (B 1 )) > µ(B 1 ).
This implies the same inequality for at least one of the simplices of T p+1 that are included in B 1 ; thus, by induction, we see that we may choose p to be arbitrarily large. Note that we have µ(f -1 (M \B 1 )) < µ(M \B 1 ). Thus the same reasoning, applied to M \ B 1 , provides a (closed) simplex B 2 of some T p ′ , disjoint from B 1 , such that µ(f -1 (B 2 )) < µ(B 2 ).

Again, by induction, we may assume that p ′ = p and this is an arbitrarily large integer. In particular B 1 and B 2 are good balls with the same mass. Let B ′ be a ball whose interior contains B 1 and B 2 . Since B 1 and B 2 have the same measure, by the above mentioned version of the Oxtoby-Ulam theorem there exists φ ∈ Homeo 0 (M, µ) supported in B ′ and sending B 1 onto B 2 . Now we consider the element

g = f -1 φf of the group G f . It has support in the ball B = f -1 (B ′ ). It sends the ball f -1 (B 1 ) to the ball f -1 (B 2
), and we have

µ(f -1 (B 1 )) > µ(B 1 ) = µ(B 2 ) > µ(f -1 (B 2 ))
so that g does not preserve the measure µ, as required by the Lemma. It remains to see that in the above construction we may have chosen B to be a good ball of arbitrarily small measure. Since µ has no atom, for every ε > 0 there exists some η > 0 such that every subset of M of diameter less than η has measure less than ε. Thus by choosing p = p ′ large enough we may require that

µ(f -1 (B 1 )) + µ(f -1 (B 2 )) < ε.
Then we choose B as a ball whose interior contains f -1 (B 1 ) and f -1 (B 2 ) and which still has measure less than ε. Finally we shrink B a little bit to turn it into a good ball. This completes the proof of the Lemma.

We subdivide the euclidean unit ball B 1 (0) of R n into the half-balls

B - 1 = B 1 (0) ∩ {x ≤ 0} and B + 1 = B 1 (0) ∩ {x ≥ 0}. Let Σ be the disk B - 1 ∩ B +
1 that separates the half-balls. We consider a given ball B and some homeomorphism g supported in B. For every homeomorphism γ : B 1 (0) → B we let γ ± = γ(B ± 1 ); we say that γ is thin if γ(Σ) has measure zero. We now consider the set I(γ, g) of all the numbers of the type

µ(g(γ + )) -µ(γ + )
where γ is thin.

Lemma 2.2. If g does not preserve the measure µ then I(γ, g) contains an interval [a -, a + ] with a -< 0 < a + .

Proof. First we want to prove that there exists some γ : B 1 (0) → B which is thin and such that µ(g(γ + )) = µ(γ + ). Since g does not preserve the measure µ, we may find some good ball b in the interior of B such that µ(b) = µ(f -1 (b)). To fix ideas we assume that µ(b) < µ(f -1 (b)). Thanks to the Oxtoby-Ulam theorem we may identify B with a euclidean ball in R n , b with another euclidean ball inside B, and µ with the restriction of the Lebesgue measure on R n . All our balls are centered at the origin. Let b ′ be a ball slightly greater than b, and T be a thin tube in B \ b ′ connecting the boundary of B and that of b ′ . There exists a homeomorphism γ : B 1 (0) → B such that γ + = T ∪ b ′ . The construction may be done so that the (Lebesgue) measure of γ + is arbitrarily close to that of b, and then we have µ(γ + )) < µ(g -1 (γ + )), as wanted.

We can find a continuous family (R t ) t∈[0,1] of rotations of B 1 (0) such that R 0 is the identity and R 1 is a rotation that exchanges B - 1 and B + 1 . Setting

γ t := γ • R t , we have γ + 1 = γ - 0 = γ -.
Note that it may happen that γ t (Σ) has positive measure for some t. To remedy for this we consider γ ′ = φ • γ, where φ : B → B is a homeomorphism that fixes γ(Σ), such that the image under γ ′ of the Lebesgue measure on B 1 (0) is equivalent to the restriction of µ to the ball B, in the sense that both measures share the same measure zero sets; such a φ is provided by the Oxtoby-Ulam theorem. This ensures that γ ′

t := γ ′ • R t is thin for every t. Note that γ ′ 0 ± = γ ± 0 and γ ′ 1 ± = γ ± 1 . We have µ(g(γ ′ 1 + )) -µ(γ ′ 1 + ) = µ(g(γ ′ 0 -)) -µ(γ ′ 0 -) = (1 -µ(g(γ ′ 0 + ))) -(1 -µ(γ ′ 0 + )) = -(µ(g(γ ′ 0 + )) -µ(γ ′ 0 + )) = 0.
Thus the set I(γ, g) contains the interval

{µ(g(γ ′ t + )) -µ(γ ′ t + ), t ∈ [0, 1]}
is to use corollary 2.3 to progressively transfer some mass from the simplices s whose mass is larger than the mass of their image under g -1 , to those for which the opposite holds.

Here are some details. Given a triangulation T for which the (n -1)-skeleton has zero measure, we choose two n-dimensional simplices s, s ′ of T , and some positive ε less than µ(s); let us explain how to transfer a mass ε from s to s ′ . First assume that s and s ′ are adjacent. Then we may choose an embedding γ : B 1 (0) → s ∪ s ′ with γ(Σ) ⊂ s ∩ s ′ , γ + ⊂ s and γ -⊂ s ′ , and we apply corollary 2.3. Thus we get an element h ∈ G f , supported in s ∪ s ′ , such that µ(h(s)) = µ(s)ε, and consequently µ(h(s ′ )) = µ(s ′ ) + ε. Now consider the general case, when s and s ′ are not adjacent. Since M is connected, there exists a sequence s 0 = s, . . . , s ℓ = s ′ of simplices of T in which two successive elements are adjacent. As described before we may transfer mass ε from s 0 to s 1 , then from s 1 to s 2 , and so on. Thus by successive adjacent transfers of mass we get some element in h ∈ G f that transfers mass ε from s to s ′ . Note that the masses of all the other elements do not change, that is, µ(h(σ)) = µ(σ) for every simplex σ of T different from s and s ′ . Now we go back to our triangulation T 0 , and we construct g ′ the following way. If each simplex s has the same measure as its inverse image g -1 (s) then there is nothing to do. In the opposite case there exists some simplex s of T 0 such that µ(s) > µ(g -1 (s)). We also select some other simplex s ′ such that µ(s ′ ) = µ(g -1 (s ′ )), and we use the previously described construction of a homeomorphism g 1 ∈ G f that transfers the mass µ(s)-µ(g -1 (s)) from the simplex s to the simplex s ′ . After doing so the number of simplices g 1 (s) ∈ g 1 * T 0 whose mass differs from the mass of g -1 (s) has decreased by at least one compared to T 0 . We proceed recursively until we get an element g ′ ∈ G f such that µ(g ′ (s)) = µ(g -1 (s)) for every simplex s in T 0 , as wanted for this first step.

For the second and last step we consider the triangulations (g -1 ) * (T 0 ) and g ′ * (T 0 ). The homeomorphism g ′ g sends the first one to the second one, and each simplex g -1 (s) ∈ (g -1 ) * (T 0 ) has the same measure as its image g ′ (s) ∈ g ′ * (T 0 ). We apply Oxtoby-Ulam theorem independently on each g ′ (s) to get a homeomorphism Φ s : g ′ (s) → g ′ (s), which is the identity on ∂g ′ (s), and which sends the measure (g ′ g) * (µ |g -1 (s) ) to the measure µ |g ′ (s) . The homeomorphism Φ := s Φ s g ′ g preserves the measure µ. Furthermore by Alexander's trick each Φ s is isotopic to the identity, thus Φ is isotopic to the identity, and belongs to the group Homeo 0 (M, µ). Now the homeomorphism g ′′ = g ′-1 Φ belongs to the group G f and for each simplex s of the triangulation T 0 we have g ′′-1 (s) = g -1 (s). We may have chosen the triangulation T 0 so that each simplex has diameter less than some given ε. Every point x in M belongs to some n-dimensional closed simplex g -1 (s) of the triangulation (g -1 ) * T 0 , and since both g(x) and g ′′ (x) belong to s they are a distance less than ε apart. In other words the uniform distance from g to g ′′ is less than ε. This proves that g belongs to the closure of G f , and completes the proof of the theorem.

One may probably avoid the use of the annulus theorem here, since the ball B may be constructed explicitly by gluing the two good balls B1 and B2 to a piecewise linear tube connecting them.

Note that there may be simplices in T0 that fail to be good balls if T0 is a triangulation but not a PL-triangulation.

which contains both a positive and a negative number, as required by the lemma.

Corollary 2.3. Let γ 0 : B 1 (0) → M be a topological embedding in M with µ(γ 0 (Σ)) = 0, let B 0 = γ 0 (B 1 (0)), and let ε > 0 be less than the measure of γ + 0 . Then there exists some element g ∈ G f , supported in B 0 , such that

In the situation of the corollary we will say that g transfers a mass ε from γ + 0 to γ - 0 .

Proof. Lemma 2.1 provides some element g ′ ∈ G f that does not preserve the measure µ, and which is supported on a good ball B whose measure is less than the minimum of µ(γ + 0 )ε and µ(γ - 0 ). Then Lemma 2.2 provides some homeomorphism γ : B 1 (0) → B which is thin and such that g ′ transfers some mass a from γ + to γ -:

Since such a number a may be chosen freely in an open interval containing 0, we may assume that a = ε N for some positive integer N . Choose some homeomorphism Φ 1 ∈ Homeo 0 (M, µ) that sends B inside B 0 , γ + inside γ + 0 and γ -inside γ - 0 . Such a Φ 1 is provided by Oxtoby-Ulam theorem, thanks to the fact that we have chosen the measure of B to be small enough and that µ(γ(Σ)) = µ(γ 0 (Σ)) = 0. Now the conjugate g 1 = Φ 1 g ′ Φ -1 1 transfers a mass a from γ + 0 to γ - 0 :

We repeat the process with γ 1 = g 1 • γ 0 instead of γ 0 , getting an element g 2 ∈ G f that tranfers a mass a from γ + 1 to γ - 1 :

We repeat the process N times, and get the final homeomorphism g as a composition of the N homeomorphisms g N , . . . , g 1 .

Proof of the theorem

We consider as before some element f ∈ Homeo 0 (M ) \ Homeo 0 (M, µ). Let g be some other element in Homeo 0 (M ). In order to prove the theorem we want to approximate g with some element in the group G f generated by f and Homeo 0 (M, µ). We fix a triangulation T 0 for which the (n -1)-skeleton has zero measure. The first step of the proof consists in finding an element g ′ ∈ G f satisfying the following property: for every simplex s of T 0 , the measure of g ′ (s) coincides with the measure of g -1 (s). To achieve this, the (very natural) idea