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Crumpling and folding of paper are at first sight very different ways of confining thin sheets
in a small volume : the former one is random and stochastic whereas the latest one is regular and
deterministic. Nevertheless, certain similarities exist. Crumpling is surprisingly inefficient: a typical
crumpled paper ball in a waste-bin consists of as much as 80% air. Similarly, if one folds a sheet of
paper repeatedly in two, the necessary force becomes so large that it is impossible to fold it more
than 6 or 7 times. Here we show that the stiffness that builds up in the two processes is of the same
nature, and therefore simple folding models allow to capture also the main features of crumpling.
An original geometrical approach shows that crumpling is hierarchical, just as the repeated folding.
For both processes the number of layers increases with the degree of compaction. We find that for
both processes the crumpling force increases as a power law with the number of folded layers, and
that the dimensionality of the compaction process (crumpling or folding) controls the exponent of
the scaling law between the force and the compaction.

PACS numbers: 46.25.-y, 46.32.+x, 46.70.-p, 62.20.-x

FIG. 1. Hierarchical folding of a sheet in different dimension-
alities. (a) a 1d-like sheet folded in 1d; (b) a 1d-like sheet
folded in 2d; (c) a 2d-like sheet folded in 3d. The three types
of folding processes are referred to as 1d, 2d and 3d com-
pactions.

It is easy to verify that the maximum number of times
one can fold a sheet of paper is only 6 or 7, which surpris-
ingly is independent of the initial size of the sheet. Quan-
titatively, elasticity theory allows to write the relation
between the compaction force and the number of times
one can repeatedly fold a piece of paper in two. This fol-
lows from the scaling of the bending rigidity B with the
thickness h of the folded sheet [1], B = Eh3/12(1− ν2),
where E is the Young modulus and ν the Poisson ratio.
For a sheet of initial size D ×D folded in one direction
by exerting a pressure P on the surface of area D2 (cor-
responding to a force F = PD2), the compression energy
related to the variation of volume of the order of D3 is
Ecomp ∼ P ·D3 ∼ FD, which should be compared to the

typical elastic energy Eel of the folded sheet. Since most
of the folded sheet remains flat and the region which is
irreversibly deformed is straight (i.e. its gaussian curva-
ture is equal to zero ; See Fig. 1), the energy dissipated in
the fold can be estimated from the elastic bending energy
concentrated in a region of length D and width h with a
curvature 1/h [1]; this leads to Eel ∼ BhD/h2 = BD/h.
Equating the compression energy for compaction with
the elastic energy for folding leads to F ∼ B/h. When
the sheet is folded n times repeatedly leading to the hier-
archical creation of folds, its effective thickness and bend-
ing rigidity become hn → 2nh and Bn → 23nB assuming
no slip between layers. Consequently, for a sheet folded
n times, the energy balance gives

F (n) ∼ Bn/hn ∼ F022n . (1)

where F0 ∼ B/h is the elementary force needed to create
a unique fold. Thus the force is independent of the initial
size of the sheet and grows exponentially with the number
of folding events n. The exponential dependence is the
reason why one cannot fold a sheet indefinitely by hand or
by applying a finite force; a simple estimate can be made
taking typical values E = 109Pa, h = 10−4m, leading
to a prefactor F0 ≈ 1Newton. Then, F becomes of the
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order of kiloNewtons already for n = 6, which is larger
than the maximal force any person can exert and then
sets a limit on the number of successive foldings that can
be achieved.

Repeated folding in two is of course not the only pos-
sible way to fold; here we consider three basic regular
processes (Fig. 1), which can be seen as prototypical fold-
ings in various dimensionalities. In cases (a) and (b), the
sheet can be thought of as a 1d-like sheet, since it is
folded along one direction only. However compaction of
case (a) is not isotropic, contrary to case (b). The lat-
ter can be seen as isotropic compaction within a disk,
whereas the former can be seen as unidirectional com-
paction inside an elongated rectangle such as in [2]. Fi-
nally, for case (c) the sheet is a truly two-dimensional
object that is compacted in a sphere. The number of
folded layers N = hn/h after n folding events and the
related compaction ratio φ (defined as φ ≡ D/∆, where
D and ∆ are the initial and final size of the sheet) then
depends on the precise geometry and dimensionality of
the compaction process. Folding a d-dimensional sheet
in (d + 1)-dimensional space, N = 2n, whereas for the
1d–1d case (a), N = n. Also, for foldings (a) and (b),
N = φ, whereas in the 3d-like folding (c), N = φ2. Using
similar arguments leading to Eq. (1), one finds a generic
power law relation between the force F , the compaction
φ and the number of folded layers N :

1d compaction, case (a) : F (N) = F0N ∼ F0φ (2)

2d compaction, case (b) : F (N) = F0N
2 ∼ F0φ

2 (3)

3d compaction, case (c) : F (N) = F0N
2 ∼ F0φ

4 (4)

It is important to note that we described folds as the re-
sult of an irreversible process occurring in a small region
of size h and characterized by a zero gaussian curvature.
Consequently, energy scalings are different from those ob-
tained for singular ridges [3, 4] for which irrreversible
process are not taken into account. One may wonder to
which extent our models for regular folding describe our
crumpling measurements and whether crumpling process
can be viewed as arising from successive folding events.

To compare the regular folding with the crumpling of
paper, we first show experimentally that here the force
also increases as a power law with the degree of com-
paction, with exponents in accordance with predictions
dependant on the dimensionalities of the compaction.
For this purpose, a sheet of paper of characteristic size
D, is placed into a rigid cylindrical cell, in which a piston
connected to a force transducer that compacts the sheet
into a pancake at constant speed (Fig. 2a). The experi-
mental force-distance curves show a very strong increase
of the force upon compaction (Fig. 2b), for both ’virgin’
sheets (sheets crumpled for the first time) and ’trained’
sheets (sheets crumpled for the second or third time).
For the latter the force-compaction curves turn out to be
independent of the initial preparation of the sheet inside
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FIG. 2. (a) Schematic of the setup used to measure the
force F (∆) during crumpling compaction. (b) Typical force-
distance curves obtained from crumpling experiments, with
Kraft paper of size D = 15cm in a cylindrical cell of diam-
eter 6cm. The three curves result from the 1st (blue cir-
cles), 2nd (green squares) and 3rd (red diamonds) crumpling
rounds (only 1 out of each 100 experimental points are drawn
for clarity). Inset: Same data as a function of compaction
F (∆/D) shifted with respect to each other for clarity on a
log-log scale. The lines are the fits to a power law (Eq. 5):
the fitted values (α, β) are (3.74Newton, 1.1), (1.90Newton,
1.4) and (1.43Newton, 1.5) for the 1st, 2nd and 3rd crum-
pling rounds respectively. (c) Exponent β of the power law
fit (Eq. 5) as a function of the paper size D for the 2nd (green)
and 3rd (red) crumpling rounds. Inset: The probability dis-
tribution function of β. (d) Characteristic force scale α of the
power law crumpling force as a function of the paper size D.
Inset: The probability distribution function of α. For (c) and
(d) we averaged over many experimental realizations (Kraft
and regular printing paper) for constant values of D; the error
bars give the spread.

the cylinder to within the experimental accuracy. Then,
the measured curves for different types of paper, differ-
ent sheet sizes, cells and compaction speeds can all be
described by a power law:

F (∆) = α

(
∆

D

)−β

= αφβ , (5)

where α is a characteristic force scale and ∆ is the gap
between the piston and the bottom of the cell (Fig. 2a).
The exponent β associated with the power law divergence
is found to be β ≈ 1.3 (Fig. 2c), a value between those
expected for ordered folding in 1d and 2d. We argue be-
low that this is due to the anisotropy of the compaction
process in our experiment. Effectively, compaction here
is quasi 1d, since loading is applied mainly in one di-
rection. However, the setup also allows for compaction
in the perpendicular direction, which would rather be a
2d process. Moreover, we find the characteristic force
scale α to be independent of size D and equal on av-
erage to 2Newton (Fig. 2d) which is of the same order
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FIG. 3. (a) Picture of a crumpled cross-section; the white lines
represent two orthogonal directions used to extract the num-
ber of folded layers N . (b) Picture of a piece of an unfolded
cross-section and its segmented edge. Scale bars are 10mm.
(c) Number of folded layers N as a function of compaction
D/∆ for crumpled balls of Kraft paper (circles) and printing
paper (triangles). The solid line is the curve N = (D/∆)2.
(d) Probability density function ρ(`) of the lengths of seg-
ments on a log-log scale for a Kraft paper sheet crumpled in
a ball of diameter ∆ ≈ 80mm and compaction φ ≈ 6. ρ(`) is
compared to a log-normal distribution (continuous line) and
a Gamma distribution (dashed line) with the same mean and
variance as the empirical data. The error bars δ` and δρ of
the experimental pdf’s are given by the bin width δ` and the
estimated standard deviation δρ = ρ/

√
n of the corresponding

histograms n(`).

of magnitude as the characteristic force, F0 ≈ 1Newton,
calculated above for the folding.

A second step towards understanding the analogy be-
tween crumpling and folding is to establish the relation
between the degree of compaction and the number of
folds. To achieve this, we characterize the geometry
of the crumpled paper, using an original approach that
makes use of the properties of folds and facets in cross-
sections of crumpled samples. Sheets of different paper
types and sizes D are crumpled into hand-made balls at
different degrees of compaction. A cross-section is ob-
tained by cutting the crumpled ball in two with a slowly
moving hot wire [5]. The overall size of the crumpled
configuration, ∆, is defined as the largest diameter of the
resulting cross-sectional area. In this cross-section, the
number of paper layers is measured in two orthogonal
directions passing through the center (Fig. 3a), and sub-
sequently averaged to obtain the mean number of folded
layers N in the crumpled configuration. By this method,
we ensure that N is defined as in the folding model in-
troduced above (N = hn/h). The number of folded
layers N can be described by a power two dependance
N ' (D/∆)2 = φ2 on the degree of compaction, with a
prefactor close to 1 (Fig. 3c). This important result is ex-

actly the same as that observed for 3d folding (Fig. 1c)
showing that the geometry of folding and crumpling is
the same.

A possible difference between the two situations is that
while the repeated folding is a hierarchical process, this is
not at all clear for crumpling. To investigate whether the
crumpling is also hierarchical, we characterize the lengths
of folds and facets in cross-sections of crumpled samples.
For this purpose, the cut crumpled sheet is reopened care-
fully. Several uncrumpled pieces, with possibly several
holes, are obtained and scanned (Fig. 3b). The edges
of their boundaries and holes are detected automatically
and broken down into segments delimited by kinks [6],
by using a ‘Split and Merge’ algorithm [7] for the seg-
mentation. The planar two-dimensional cross-section of
the crumpled sheet bears information on the full three-
dimensional crumpled configuration: the ensemble of seg-
ments samples the facets delimited by folds, so that its
length distribution can be related to a characteristic dis-
tance between folds or equivalently to the characteristic
size of the facets. We can use this to asses the nature
of the crumpling. To do so, we compare the distribu-
tion of lengths ρ(`) with a log-normal distribution and
a Gamma distribution; the former characterizes a hier-
archical process [3, 6, 8], whereas the latter accounts for
random processes [3, 6, 8]. More precisely, a log-normal
distribution describes a fragmentation process in which
all pieces are broken successively into two parts, such that
any new fragment is further broken into two pieces where
the breaking point being uniformly distributed along the
fragment [6, 9, 10]. In contrast, the Gamma distribu-
tion emerges from a fragmentation process where all the
breaking points are uniformly distributed along the un-
broken line, prior to the breaking that happens simul-
taneously for all points. Fig. 3d shows that both dis-
tributions reasonably well describe the rapid decay of
the tail of the distribution, but the Gamma distribution
seriously overestimates the probability density at small
lengths. This originates from the fact that a hierarchi-
cal fragmentation process tends to generate less small
fragments than a random one. A more rigorous test is
done through the statistical χ2 test for goodness-of-fit,
which confirms that the log-normal describes better the
data. We checked that this description is robust with
respect to the chosen value of the threshold used in the
segmentation procedure. The log-normal distribution ac-
curately describes all the experimental data sets, and so
the crumpling is hierarchical rather than random. Ear-
lier simulations [11] of crumpled sheets and experiments
on unfolded sheets [12] found a similar agreement with a
log-normal distribution.

The conclusion is that folding and crumpling are very
similar in nature and the crumpling process can be
viewed as arising from successive folding events. For or-
dered folding, simple models allow for predictions of the
relations between force, compaction and number of folds.
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TABLE I. A summary of various results for the power-law
variation of the force F ∝ (D/∆)β for different cases of the
compaction of an x-dimensional object in (x+1)-dimensional
space. We provide measured values of β from the literature
and our theoretical prediction β? of the crumpliness expo-
nent. The latter follows from the dimension x? that is given
by the geometry of compaction. For some cases, topologi-
cal constraints and the material properties also influence the
value of the exponent. The first set corresponds to results
that can be approached by a mixture of case (a) and (b) of
Fig. 1. The second and third sets correspond to cases (b) and
(c) respectively.

Crumpled Object and Ref. x x? β β?

Paper (this work) 2 1 < x? < 2 1.3 1 < β? < 2
Mylar [15] 2 1 < x? < 2 1.89 1 < β? < 2
Tethered Membrane [16] 2 x? . 2 1.85 β? . 2
Rods [17] 1 1 2 2
Rods [18] 1 1 2.05 2
Linearly Elastic Sheet [11] 2 2 4 4
Aluminum Foil [19] 2 2 5.13 6
Phantom Sheet [11] 2 2 2.66 2.5

Surprisingly, these are found to capture the main proper-
ties of crumpling also, in particular the hierarchical struc-
ture of the folds and the power law relation between the
force and the compaction. The analogy with folding then
allows to define the ’crumpliness exponent’ β for various
forms of crumpling. Previous experiments and simula-
tions have reported such exponents β for the power-law
dependence of the force on the compaction. It follows
that also these cases can be explained in a satisfactory
way using our arguments, i.e., solely by considering the
dimensionality of the compaction process, the topologi-
cal constraints and the mechanical properties of the ma-
terial. Table I summarizes various exponents β found in
the literature, detailed below.

For the first set of data, Matan et al. [15] used a com-
paction set-up similar to the one used here, and found an
exponent of β ≈ 1.89 (this is the inverse of their exponent
α). The aspect ratio of their cylinder (height/diameter)
is much smaller than ours; we thus anticipate that the
compaction is more 2d in nature, and hence one would
expect a crumpliness exponent closer two 2 than in our
experiment, which is indeed observed. The value of this
exponent can again be understood as a compaction pro-
cess lying between 1d and 2d. The simulations of [16] on
tethered membranes that are compacted found a value
of β ≈ 1.85. Except that loading is now biaxial, the
compaction process is in fact similiar to that of case
(a) since the ”height” fluctuations of the membrane are
small. If the two directions were independent we recover
a number of folds given by N ∝ (D/∆)2 and thus force
F = NF0 ∝ (D/∆)2. However, folding in one direction
is inhibited by folding in the other direction. This ef-
fect will decrease the total number of folds leading to a
crumpliness exponent β? . 2.

For the second set, the analogy with case (b) is com-

plete and both experimental, theoretical and numerical
results are in agreement with the simple argument for
hierarchical folding predicting a crumpliness exponent
β? = 2.

The third set deals with experiments and simulations
of 2d sheets crumpled inside 3d spheres. The linearly
elastic sheet [11] is a perfect example of case (c) for which
the crumpliness exponent β? = 4, in agreement with
the simulations. The aluminum foil represents sheets
with plastic deformations [19] and the phantom sheet
is a sheet that in the simulations can cross itself [11].
These are somewhat more complicated cases; however
we can provide an estimate of the exponent β for these
two cases also. For the aluminum foil, because of their
plasticity one has to modify the estimate of the elas-
tic energy Eel of a folded sheet. Again, most of the
folded sheet remains flat but the elastic energy is now
concentrated in a region of length D and width 1/κc
with a curvature κc, which is a material constant: the
curvature scale at which the material yields. This is the
main difference with the purely elastic case for which
the thickness h sets the scale over which the sheet is
curved. Using the same arguments, for the plastic case
the balance of the compression energy related to the
external pressure and the elastic energy then leads to
P ·D3 ∼ F ·D ∼ BnDκc ∼ Eh3nκcD. As N = hn/h = φ,
one consequently finds F (N) ∼ N3F0 ∼ F0φ

6 leading
to an estimated value β? = 6, which is in fair agreement
with experimental results [19]. For the simulations of the
phantom sheets, the absence of steric interactions implies
that F (N) ∼ NF0 which is similar to the 1d case. The
number of folded layers N is then related to the com-
paction through N ∼ D2/ < S >∼ V/Vf , where < S >
is the mean facet size and Vf '< S > h is the average
volume occupied by the sheet. For high compactions, it

is known that Vf ∼ R
df
g where Rg is the radius of gyra-

tion and df is the fractal dimension [20]. Thus we find
F ∝ N ∼ φβ?

, with β? = df ' 2.5 [20, 21].
Finally, these arguments allow also to explain why a

wastebucket fills up so quickly when waste paper is crum-
pled into a ball. Using the equivalence between crum-
pling and folding, the wasted volume ∆V/V can be esti-
mated from the folded case. In the 3d case, this is given
by

∆V

V
' ∆3 −Nh∆2

∆3
= 1− h

D
N3/2 . (6)

For N = 26 and typical paper (h = 10−4m, D = 0.2m),
one has ∆V/V ≈ 75%, which is an excellent estimate for
the experimental observation that crumpling is a very
inefficient compaction process. In conclusion, the obser-
vations presented here demonstrate a non-trivial relation
between the force of compaction and the geometry of the
crumpled configuration. A potential application of this
result would be to invert this problem, and deduce the
force through analyzing cross sections of crumpled sheets.
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Since the arguments presented are generic, they should
hold also at the nano-scale and could provide a simple
framework to understand crumpled graphene structures,
such as graphene-based supercapacitors [13, 14].
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