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In order to overcome the myopia problem, routing strategies must be based on formal 

representations of flow that automatically account for modifications in the values of 

parameters of interest and in the model itself. This work addresses this problem and 

discusses how to automatically incorporate resources (e.g. workstations/ transportation 

devices/ storages) in a Petri Net derived model of flow that is modifiable at runtime to 

reflect and influence the routing in a manufacturing line. The modelling approach takes 

into consideration scalability needs and was experimentally validated. The applicability 

of the models is shown for PN-based dynamic scheduling.  

 

  

1. Introduction 

Frequent changes in production demand and the continuously increasing time-to-

market pressure command manufacturing line modifications that are sometimes 

subject to critical deadlines. The required adjustments range from PLC-level program 

changes to machine/robot replacements and sometimes even reorganization of the 

entire line.  

The clear separation between the set of actions that modify the state of the 

world (the process), the view that the outside world has of this set of actions (the 

encapsulation of the process as a service) and the physical equipment where a process 

executes (the resource) has been recognized to have a huge potential to address these 

problems (Delamer and Lastra, 2007). The technology of Web Services (WS) 

deploying Service Oriented Architecture (SOA) offers the necessary infrastructure to 

abstract a manufacturing system as a set of service encapsulations of provided and 

requested processes (equipment skills and product needs). This type of infrastructure 

allows both changes in the values of parameters of interest (online equipment 
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modifications) and the flow itself (variations in product type demand order) to be 

recognized and responded to in a natural way. 

In an agile world, the capability to change rapidly is a desirable property of 

manufacturing systems. However, this capability alone does not guarantee a good 

overall performance. Good support of reconfigurability and adaptability through WS 

technology is ensured only if dynamic decision taking mechanisms rely on formal 

flow representations that continuously reflect the situation in the line. 

The main objective of this research is to develop a methodology to 

automatically modify the model of Web Services orchestration itself in order to 

account for elements and events newly introduced to or retrieved from the represented 

world. The discussed results are an extension of previous work (Popescu et. al, 2009). 

This paper discusses how to automatically incorporate resources (e.g. workstations/ 

transportation devices/ storages) in a Petri Net derived model of flow that is 

modifiable at runtime to reflect and influence the routing in a manufacturing line. A 

method to automatically associate context information of each pallet with the 

elements of the formal model of flow is also presented. Context information is 

appended to elements in the model automatically, while the model is constructed, and 

the added data influences the firing rules of the transitions in the model, during the 

scheduling search.  

The paper is organized as follows: Section 2 discusses the background of this 

work: the terminology used (‘service oriented manufacturing systems’), related work 

on modelling and scheduling, and the formalism chosen for modelling. Section 3 

discusses the modelling of resources in a modular, typed and composable way. 

Section 4 introduces an incremental approach to automatically modify the model of 

flow in manufacturing systems that use Web Services to implement the Service-
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Oriented-Architecture pattern. Section 5 discusses scheduling on variable-size PN 

models of flow and presents the proposed approach to embed context information in 

the model. Section 6 gives implementation details and describes the experiments to 

validate the proposed modelling approach.  Section 7 draws the conclusions and 

discusses future challenges. Appendix A gives details on the conflict detection and 

resolution mechanisms utilized during the scheduling search presented in Section 5. 

2. Background 

2.1. Service Oriented Manufacturing Systems 

Service-oriented manufacturing systems are manufacturing systems that use Web 

Services as a technology to implement the Service Oriented Architecture pattern. The 

term ‘service-oriented’ refers to the specific architecture and technology that are used 

to implement the middleware of this type of systems.  

Dedicated Manufacturing Systems, Flexible Manufacturing Systems and 

Reconfigurable Manufacturing Systems can be encapsulated as services if a minimal 

set of implementation constraints is respected. This set is the Devices Profile for Web 

Services Specification (DPWS), which is an extension of the Web Services protocol 

suite. Initially published in May 2004 and submitted for standardization to OASIS in 

July 2008, DPWS defines a minimal set of implementation constraints to enable 

secure Web Service description, messaging, dynamic discovery and publish/subscribe 

eventing at device level. DPWS is built around a group of Web Services standards: 

WSDL, XML Schema, SOAP, WS-Addressing, WS-Metadata Exchange, WS-

Transfer, WS-Policy, WS-Security, WS-Discovery and WS-Eventing. 

The adoption of DPWS has been supported by several European research 

projects. Implementations of DPWS in embedded devices have been achieved in the 

ITEA-SIRENA (SIRENA), and ITEA-SODA (SODA) projects. DPWS-enabled 
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devices were implemented and tested in pilot prototypes in the industrial domain 

(FP6-SOCRADES).  

Services are encapsulations of processes and can be thought of as interfaces. A 

service provides a clear separation between the way the encapsulated process is 

executed and the view other entities have of the process from the outside. Services are 

loosely coupled (e.g. the technical details of two collaborating applications are hidden 

from each other) and can be (de)composed to whichever level of granularity may be 

required (the highest level focuses on business processes). Additionally, if annotated 

semantically, a service may be automatically discovered, invoked and composed.  

From an SOA perspective, a manufacturing system is seen as a set of service 

encapsulations of provided and requested processes. The provided processes are the 

equipment skills. The requested processes are the product needs. Each product can be 

described in terms of its orchestrator. The orchestrator specifies the order of 

execution (the flow) of its needs, i.e. the services that should operate upon the raw 

material to obtain a final product.  

In a system there can be as many orchestrators as users with needs (i.e. as 

pallets with raw products that should circulate through the line to be processed). The 

orchestrated services are those needed (requested) by the users. In the case of a 

manufacturing line, the users are the pallets circulating through the line. The needs are 

the services that should be performed on the raw material to obtain a final product. 

Once the needs of a user are transferred to the system, the system will translate these 

needs into a desired orchestration. 

Following the SOA pattern, pallets (service requestors) search and locate the 

needed services in the order specified by their corresponding orchestrators. The 

devices (the service providers) publish the processes they can offer. Selections of each 
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device to operate upon a pallet are made gradually, as the orchestrator executes. Each 

time a device is selected for execution, the transportation services needed to carry the 

pallet to its chosen destination are subjected to discovery and selection as well. These 

steps take place for each service specified in the orchestrator of a pallet, until all 

product needs are satisfied and the pallet exits the line. 

2.2. Incremental Modeling of Flow 

Wang and Deng (1999) present an incremental multi-levelled modelling and 

verification methodology based on Time Petri Nets (TPN) and Real Time 

Computational Tree Logic (RTCTL). TPNs are used to manually represent 

component behavior and connections. RTCTL is used to describe time critical 

constraints as formulas over communication ports (each port represents an atomic 

proposition, which is true at the moment that a token arrives in the port). 

An incremental Petri Net-based modeling approach of production sequences 

for logic control design is presented in (Castelnuovo, A. et. al, 2007). Subnets are 

progressively added to a partial model until all specifications have been included. The 

approach is based on a generic feedforward connection rule and on specifications of 

the logic behavior of sets of transitions (Binary Firing Patterns). The used nets 

(feedforward Petri Nets - FFPNs) are very similar to the workflow nets of (Aalst). In 

order to obtain recipe models holding the minimum requirement for system 

correctness (boundedness, liveness and reversibility), the authors describe a well-

definiteness property to be achieved at each stage of the modeling procedure, as the 

model is incremented (the property is similar to the concept of soundness (Aalst, 

1999)). It is not clear whether it is possible to also easily remove blocks from an 

FFPN. 
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No approach known to the author exists that represents automatically a Petri Net -

derived model of mixed sequences of operations that accounts for (additions/removals 

of) resources and possible disruptions (machine failures/ urgent orders / unload 

operations), to continuously and accurately reflect the situation in the line during the 

scheduling search. 

2.3. Scheduling 

Finding an optimal schedule in a distributed system is in almost all realistic scenarios 

an NP complete problem, i.e. computationally intractable (Kopetz, 1997). To account 

for the effects of the numerous factors influencing the factory floor, schedulers should 

aim to obtain a reasonable load on the shop rather than optimized sequences (Silva 

and Vallete, 1989). The experimental findings of Lawrence and Sewell (1997) support 

this claim: the study compares optimal seeking algorithms versus heuristic methods 

applied to 53 standard job shop scheduling problems, when processing times are 

uncertain. As processing time uncertainty increases, the results indicate convergence 

in the performances of fixed optimal sequences and fixed heuristic sequences. The 

best performance is obtained with dynamically updated heuristic schedules. Matsuura 

and colleagues (1993) refine the analysis by categories of uncertainties, and report a 

better performance of sequencing versus dispatching (for small machine breakdowns) 

and of dispatching versus sequencing (for specification changes and rush jobs). To 

take these findings into account, they propose a switching approach between 

sequencing and dispatching according to the manufacturing situation. 

Research is needed to input real time information collected from the 

factory/plant to product routing /asset management algorithms, to assist the 

devices/resources cooperate (optimally) while reducing waste caused by loss of 

energy/material and inefficient processes. 
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2.4. Timed Net Condition Event Systems 

The Timed Net Condition Event Systems (TNCES) (Rausch and Hanisch, 1995; 

Hanisch et al., 1997) formalism enhances the expression capabilities of Petri Nets 

(Murata, 1989) with typed modularity, and adds to the originally defined elements of 

a PN the notions of event arcs and condition arcs. Event arcs report changes in the 

state of the system, while condition arcs carry state information. TNCES can model 

simultaneous start, has a clear notion of interfaces (event inputs/outputs and condition 

inputs/outputs) and a modular hierarchy.  

An example of a simple TNCES module of name ‘Example TNCES Module’ 

and type ‘tnces_module_example’ is depicted in Figure 1.  

 

Figure 1 Example TNCES Module 

 

Apart from sets of places ({p1, p2, p3, p4, p5}), transitions ({t1,t2,t3,t4}) and 

flowarcs ({(p1,t2), (t1,p1), (p2,t1), (t2, p2), (p4,t3), (t2, p4), (p5,t4), (t3, p5), (p3, t2), 

(t4, p3)}), which are present in any PN, this TNCES module has event inputs ({ei1}), 

event outputs ({eo1}) , condition inputs ({ci1}) and condition outputs ({co1}). Event 

arcs ({(ei1, t2), (t4, eo1),) link event inputs to transitions / transitions to event outputs. 

Condition arcs ({(ci1, t1), (p3, co1)}) link condition inputs to transitions / places to 

condition outputs. 

Figure 2 presents a composition of two TNCES modules, of names and types 

B and R.  

 

Figure 2. Example of condition arc (a) / event arc (b) interconnection between 

TNCES modules 
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Two possible types of module interconnections may exist in a TNCES model: 

condition arcs (e.g. Figure 2a: {(B.co1, R.ci1)}) and event arcs (e.g. Figure 2b: 

{(B.eo1, R.ei1)}).  

Condition and event arcs influence the firing rules in a TNCES module. A 

transition that is marking enabled (i.e. has at least one token in each of its input 

places) may fire at any point in time in case it is also condition enabled. A condition 

enabled transition that is not also marking enabled may not fire. Considering the 

example in Figure 2a: transition R.t1 may fire at any point in time if there is at least 

one token in the place R.p1 (i.e. the transition is marking enabled) and if there is one 

token in the place B.p2 (i.e. the transition is condition enabled through the module 

condition arc (B.co1, R.ci1)). A transition that is marking enabled will fire 

immediately if it is also event enabled. An event enabled transition that is not marking 

enabled will not fire. In the module depicted in Figure 2b, transition R.t1 fires 

immediately if there is at least one token in place R.p1 and once transition R.t2 fires 

(change in state signalled through the module event arc (B.eo1, R.ei1)). 

TNCES modules may be associated delay times with flowarcs outgoing from 

places. 

3. Modelling Resources 

This section gives details on the construction procedures of modular and composable 

TNCES models for three main types of resources: processing workstations (machines 

or robots), transportation devices (robots or conveyors) and storages.  

Each resource is associated exactly one status-typed TNCES module, to 

describe its state (i.e. idle/busy/unloading). Additionally, a resource is associated as 

many usage-typed TNCES modules as necessary, to describe location and invocation 
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of the resource by service requestors, according to the Service-Oriented-Architecture 

pattern.  

The interface of status (respectively usage) –typed modules is the same, 

irrespective of the type of modelled resource (Figure 3). 

Figure 3 status and usage typed modules – interfaces 

 

status –typed modules have three event inputs (invoked/finished/transfer_finished) 

and three condition outputs (available/orch_for_transfer/to_next). usage-typed 

modules have two condition inputs (available and orch_for_transfer) and two event 

outputs (invoked and finished). The inner elements are defined per resource type, and 

can be generated automatically (Popescu et al., 2009). 

3.1. Processing Workstations(robots / machines) 

The internal elements of the TNCES typed status and usage modules used to describe 

a processing workstation are shown in Figures 4 and 5.  

Figure 4 Representing processing workstations: TNCES module of type ‘status’ 

 

Figure 5 Representing processing workstations: TNCES module of type ‘usage’ 

 

There can be exactly one status and as many usage modules as necessary per resource 

in the overall flow model. A usage module is added to the overall model each time a 

device is identified as potential provider for a requested service. Time constraints are 

associated to the (p2 t2) flowarc of the usage module, to account for multiple 

processing capabilities associated with a device. 

Figure 6 illustrates the model of a resource that is located and possibly 

invoked once. In case the resource is idle (i.e., there is one token in place 

resource_status.p1 (m(resource_status.p1)=1) and identified as potential provider of 

service for a particular requestor/pallet (m(resource_usage.p1)=1), transition 
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resource_usage.t1 may fire at any time (condition-enabled transitions may fire at any 

point in time as long as the condition(s) hold and they are marking enabled). 

Figure 6 TNCES model of a resource located once 

 

The information regarding the (un)availability of the resource is carried 

through the condition arc that links place resource_status.p1 to transition 

resource_usage.t1. If resource_usage.t1 fires, a token is placed in place 

resource_usage.p2. At the same time, the firing of resource_usage.t1 is announced 

through the module event arc connecting the resource_invoked event output and 

input. The triggering of this event will immediately cause the firing of transition 

resource_status.t1 (Only event-enabled transitions may have a triggered firing (if they 

are also marking enabled)). Consequently, a token is placed in place 

resource_status.p2 as well, condition-enabling transition resource_usage.t2. 

Figure 7 illustrates the situation in which the same device is searched for by 

two different requestors. In this case, the two separate resource_usage modules 

initialized at m(p1)=1 reflect the case in which two pallets have discovered this 

particular device to be capable of responding to their current demands. Resource 

invocation can take place only once. 

 

Figure 7 TNCES model of a resource located twice 

3.2. Transportation Devices 

Two types of transportation devices are considered here: robots and 

conveyors. The typed status and usage TNCES modules (Figures 4 and 5) are used to 

model robots and conveyors of one location (crossing points). For conveyors of more 

than one location, the usage typed module does not change. The status typed module 

remains the same with respect to the interface elements; however, its internal 

representation changes. Figure 8 illustrates the status typed module for unidirectional 
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conveyors of N locations. The models can be automatically generated if the number of 

locations per conveyor is known (Popescu, 2009). 

 

Figure 8 TNCES module of type ‘conveyor_status’ (N locations) 

 

 

The interconnections between usage and status typed modules follow the rules 

depicted in Figures 6 and 7: Module condition arcs link the 

available/orch_for_transfer condition output of the status module to the available/ 

orch_for_transfer condition input of each usage module. Module event arcs connect 

the resource_invoked / finished event outputs of each usage module to the 

resource_invoked / finished event input of each status module. 

3.3. Output Storages(unloading services) 

Load/unload operations are implicitly added to each standalone orchestrator 

model once it is added to the overall flow model (entry and exit points to/from the line 

are described semantically). 

As a result of load operations, the overall flow representation is updated 

automatically with status and usage typed modules representations of the entry point 

(workstation/conveyor/etc.) of the newly added orchestrator. The update proceeds to 

include in the model the transportation devices needed to take the loaded pallet to the 

desired destinations. Input storages are not incorporated in the overall flow model. 

Output storages must be incorporated in the overall flow model, because knowledge 

of the amount of remaining available unload space is needed e.g. when seeking a 

feasible schedule. 

Figure 9 illustrates two interconnected TNCES models of type status and 

usage representing an output storage. The interconnections between the modules 

include one module event arc (output_storage_status.transfer_finished X 
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output_storage_usage.transfer_finished) and two module condition arcs 

{((output_storage_status.available X output_storage_usage.available); 

(output_storage_usage.transfer_to_storage X output_storage_status. 

transfer_to_storage)}. Conflict resolution (e.g. for the conflict between transitions t1 

and t3 in the output_storage_status module) relies on a matrix-based algorithm that is 

presented in Appendix A.  

 

Figure 9 (Distinguishable) output buffer. Two part types. 

 

4. Incremental Modelling of Flow 

Each time a pallet is introduced into the line, its standalone orchestrator formal model 

must be generated and combined with the existing overall flow model into a final 

orchestrator mix model. Figure 10 illustrates the dynamic generation procedure for the 

orchestrator mix model through a small example: 

 

 

Figure 10 Standalone orchestrators. Separation of flow –related representation 

from atomic services representation 

 

A pallet with the required sequencing described by orchestrator O1 (Figure 10, 

top side) is first introduced into the line. The inner elements of each internal module 

are abstracted from for simplicity. Upon entering the line, the TNCES model of O1 is 

automatically generated. As there is only one pallet in the line, this model is a full 

formal representation of the current orchestrator mix. 

Another pallet, characterized by O2 (Figure 10, bottom side), follows the first 

one after some time. O2 is a sequence of three atomic services: S1 (the same service 

searched by O1 initially), S3 and S4. The newly generated formal model (O2) must be 

added automatically to the already existing orchestrator mix model. 
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For each standalone orchestrator, the atomic services are first separated from 

the rest of the model. An example of the outcome of this procedure is illustrated in 

Figure 10 (right side). The top-left side of the figure depicts orchestrator O1 as 

generated automatically in the initial stage. After separation (top-right), orchestrator 

O1 consists of only the Sequence module. Additional condition and event input and 

output sets are created to enable the necessary links to the external modules Service 

S1 and Service S2. To ensure a correct separation, the order in which the atomic 

services are withdrawn from the initial orchestration module is tracked. This order 

must be consistent with the generation order of corresponding additional event input –

event output pairs. 

The TNCES orchestrator mix model obtained by adding the model of O2 to 

the original orchestrator mix model (i.e., O1) is illustrated in Figure 11.  

 

Figure 11 Orchestrator mix model for the two orchestrators of Figure 10. 

 

 

The generation procedure considers the orchestrator model to be added at this 

step (Figure 10, bottom-right side). A check is performed to see whether the atomic 

services of the newly introduced model are already part of the existing mix model or 

not. In this case, service S1 is found to already have been included in the orchestrator 

mix model. Therefore, only the necessary connections are added to the mix module 

(i.e., the event arcs (O2.start_s1 X S1.start) and (S1.end X O2.end_s1) and the 

condition arc (S1.available X O1.available_s1)). The other two atomic services 

involved in the formal model of O2 - S3 and S4 - are not yet part of the current mix 

model. Therefore, the corresponding TNCES modules and the necessary connections 

are added to the main module. 
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The mapping of services to resources (i.e. to physical devices capable of 

performing the processes encapsulated by services) is done at runtime (continuously, 

while the pallets circulate through the line), to account for online equipment 

modifications or additions. Each TNCES module of type ‘atomic service’ is 

automatically replaced with corresponding status and usage modules for each of the 

resources (transportation/workstations/storages) involved in the processing. Each 

resource may be assigned multiple usage modules (one for each potential resource 

invocation), and exactly one status module. The model is then updated with the 

necessary orchestrator-resource and resource-resource connections. 

The inter-module connections in the TNCES flow model are classified and 

explained as follows.  

5.1. Status-Usage connections 

For one resource, status typed modules are connected to each of the 

corresponding usage modules through four connection arcs (Figure 12): 

 

Figure 12 status-usage connections 

 

• A condition arc linking the ‘available’ condition output of the status typed module 

to the ‘available’ condition input of the usage typed module.  

• A condition arc linking the ‘orch_for_transfer’ condition output of the status 

typed module to the ‘orch_for_transfer’ condition input of the usage typed 

module.  

• An event arc connecting the ‘finished’ event output of the usage typed module to 

the ‘finished’ event input of the status typed module. 

• An event arc connecting the ‘invoked’ event output of the usage typed module to 

the ‘invoked’ event input of the status typed module. 
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These rules are valid for all resource modules except the TNCES modules of 

the type ‘output_storage’ (Figure 9). 

5.2. Resource-to-Resource connections 

Two connection arcs are needed to model transfer of orchestrators from a 

source resource to a destination resource (Figure 13): 

 

Figure 13 Resource-to-resource connections 

 

• A condition arc linking the ‘to_next’ condition output of the status typed module 

of the source resource to the ‘available’ condition input of the usage typed 

module of the destination resource.  

• An event arc connecting the ‘finished’ event output of the usage typed module of 

the destination resource to the ‘transfer_finished’ event input of the status typed 

module for the start resource.  

5.3. Orchestrator-Resource connections 

The orchestrator-service connections are replaced with corresponding 

orchestrator-resource linkages, for each resource capable of performing a service 

(Figure 14):  

 

Figure 14 Replacing orchestrator-service connections with orchestrator-

resources connections 

 

 

• event arc connecting the start_s_j event output of the orchestrator to the start 

event input of the ‘atomic service’ typed TNCES module is replaced with a 

condition arc. The new connection links the start_s_j condition output of the 

orchestrator to the available condition input of the usage typed module associated 

with the first needed transportation device. 
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• The event arc connecting the end event output of the ‘atomic service’ typed 

TNCES module to the end event input of the orchestrator module is replaced with 

another event arc. The new link connects the finished event output of the 

processing resource module associated with the replaced service to the end_s_j 

event input of the orchestrator.  

• The condition arc connecting the available condition output of the ‘atomic 

service’ typed TNCES module to the available condition input of the orchestrator 

module is replaced with another condition arc. The new link connects the 

available condition output of the status typed module of the processing resource 

module associated with the replaced service to the available condition input of the 

orchestrator.  

5. Scheduling on variable-size models. Embedding context information in the 

flow model 

The scheduling problem is formulated as the process of finding a production schedule 

for a given set of orchestrators (i.e. pallets associated with product needs - the order of 

services that are needed to operate on the raw material to obtain a final product) and 

resources (i.e. devices, the physical equipment of the line), by searching a feasible 

transition firing order (i.e. from the current marking to the goal marking) in a PN-

based formal model that represents accurately the situation in the line.  

For production scheduling, Petri nets are used either in conjunction with 

heuristic rule base systems (Hu et al, 1995; Chincholkar and Krishnaiah Chetty, 1996; 

Krishnaiah Chetty et al., 1996; Lin and Lee, 1997; Kattan et al., 2003; Wu and Zhou, 

2007; Gradisar and Music, 2007) or with search algorithms (Lee and DiCesare, 1994; 

Zhou and Jeng, 1998; Shih and Sekiguchi,1991; Xiong and Zhou, 1998; Venkatesh 

and Zhou, 1998; Jeng et al., 1998; Kis et al, 2000; Hu and Li, 2009; Huang et al. , 

2008). It is remarkable that the seeking of schedules is generally conducted offline, on 
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manually constructed PN models. The search for a schedule is performed on PN-

based models that are constructed prior to the initiation of the search. 

The scheduling search proposed here operates on a Petri Net model that is 

modified automatically to account for arrival/exit of new orchestrators to/from the 

line. The automatically updated orchestrator mix may be subjected to scheduling 

search while the model itself is changing, provided that: 

(1) the differences in the structure of the underlying TNCES model are accounted for 

(addition/removal of an orchestrator to the orchestrator mix will result in 

addition/reset of corresponding rows and columns in the incidence 

/condition/event matrixes characterizing the net) and 

(2) context information is embedded in the model so that the physical location of each 

orchestrator is taken into account when selecting firable transitions in the flow 

model during the scheduling search. This second point is further explained as 

follows. 

Several orchestrators (pallets) may be using the same transportation device 

(e.g. a multi-location conveyor). The identification of enabled outgoing condition arcs 

at the output point (i.e. pTransfer in the status typed module associated with the 

transportation device) relies solely on the orchestrator situated at the exit point and its 

intended destination. Such a case is illustrated in Figure 15, where two different 

orchestrators (O1 and O2)  may use the same conveyor (the modules conveyor_status, 

conveyor_usage1, conveyor_usage2 and conveyor_usage3) for transportation: O1 

must be directed towards resource2 for processing (conveyor_usage1), while O2 must 

head towards resource1 (conveyor_usage2). This scenario is not clearly reflected in 

the structure of the flow model: a token in conveyor_status.transfer (place p9 of the 
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module) enables both outgoing condition arcs (and therefore, possibly, both 

destination ‘usage’ typed modules).  

 

 

Figure 15 Two orchestrators use the same conveyor for transportation 

 

Confusion can also occur when one orchestrator might use the same 

transportation device more than once. In Figure 15, this situation is sketched for 

orchestrator O1: After visiting resource2, transportation to the next processing unit  

(resource3) relies solely on the same device (conveyor) that is used for transfer to 

resource2 (conveyor_usage3). Without additional information, this situation is not 

immediately distinguishable at the conveyor_status.orch_for_transfer condition 

output. 

Track must be kept of each orchestrator’s location and intended destination in 

the ‘status’ typed module associated to the conveyor to ensure correct firing of the 

transitions at the output point. This is achievable through additional information 

conferred to places and defined inter-dependencies between this information and the 

firing rules governing the dynamics of the net.  

The tokens in a place P may be associated information Info(P) regarding the id 

of the calling orchestrator and the associated services. This information is stored in 

four fields: 

Info(P) = {InfoOrchestrator(P), InfoService(P), InfoServicesFrom(P) ,InfoServicesTo(P))}, 

attached to the element corresponding to P in the marking vector. The initialization of 

these four fields is done when usage typed modules are first added to the overall flow 

model:  
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• For each usage typed module associated with a workstation, the default value of 

the InfoService field is modified to reflect the particular workstation process that the 

added module is being associated with.  

• For each usage typed module associated with a transportation device, the default 

value of the InfoServicesFrom and InfoServicesTo fields is modified accordingly. 

The inter-dependencies between place-related information and the firing rules 

governing the dynamics of the net are explained as follows.  

• The first rule concerns firing rules in status and usage modules that are all 

associated to the same resource (Figure 12). In case transition t1 in a ‘usage’ typed 

module fires, the Info(p1) value of the module is copied into the Info(p2) field of 

the associated ‘status’ module. The rule is generally expressible as: 

USAGE.t1 fires � Info (STATUS.p2):= Info (USAGE.p1) 

(where USAGE and STATUS are the names and types of the discussed modules). For 

example, in Figure 15, after the firing of transition conveyor_usage1.t1 the marking 

vector of the flow model is updated accordingly:  

Info (conveyor_status.L1_busy):= Info (conveyor_usage1.t1) 

• The second rule concerns firing rules inside status typed modules. The 

information associated with the tokens of ‘busy’ places in status typed modules is 

propagated with the firing of the local transitions of the module. The propagation 

rules for status typed modules of unidirectional conveyors of n locations (Figure 

8) are: 

• n≥2: 

if tj fires (j=2:n) �  

Info(l_j_busy) := Info(l_(j-1)_busy); 

Info (l_(j-1)_busy):=NULL  
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if tn+1 fires � 

Info (pTransfer) := Info (l_n_busy); 

Info (l_n_busy):=NULL 

if tn+2 fires �  

Info (pTransfer):=NULL  

• n=1: 

if tn+1 fires � 

Info(pTransfer) := Info(l_n_busy);  

Info(l_n_busy):=NULL  

if tn+2 fires � Info (pTransfer):=NULL  

The above specified rules are generally applicable to status typed modules. 

• The third rule concerns resource-to-resource module interconnections that model 

transfer of orchestrators from a source resource (represented by one statusSOURCE 

module and one or more usageSOURCE modules) to a destination resource 

(represented by one statusDESTINATION module and one or more usageDESTINATION 

modules). Resource-to-resource transfer is enabled (i.e. transition 

usageDESTINATION.t1 is firable) only for the statusSOURCE - usageDESTINATION 

connections that are characterized by matching token-related information. For the 

example of Figure 13, the rule depends on the nature of the transfer and is 

summarized in Table 1. 

Table 1  Match check to test information-enabling of a place 

 

 

In Figure 15, transition resource_usage.t1 is firable iff: 

m(conveyor_status.transfer)==1 AND 

m(resource1_usage.located)==1 AND 
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InfoOrchestrator(conveyor_status.transfer)==InfoOrchestrator (resource1_usage.located) 

AND 

InfoServicesTo(conveyor_status.transfer)== InfoService (resource1_usage.located) 

6. Implementation 

6.1. Case Study 

Figure 16 illustrates the line used as a case study for the proposed approach. 

The line consists of six cells. The robots situated in four of the cells are in charge of 

drawing model parts of mobile phones (frame, screen and keyboard), of three 

different types each. The pallets carry the drawing boards. Two of the cells are 

responsible for load and respectively unload activities. The unload cell contains a 

static buffer that may be used both as an output storage and for temporarily buffering 

parts undergoing processing. 

 

Figure 16 Line case study 

 

 

When entering the line, each pallet’s orchestrator has knowledge of the 

services that need to act upon it to obtain the desired final drawing. Examples of 

orchestrators for this setting are:  

• O1:  Sequence[Frame1, AnyOrder(Screen1,Keyboard1)] 

• O2:  Sequence[Frame2, Choice( AnyOrder(Screen2,Keyboard2); 

AnyOrder(Screen3,Keyboard3) )] 

• O3:  Sequence[Frame3, SplitJoin(Screen3, Keyboard3)] 

The procedures to incrementally construct and update the flow model and to 

dynamically search for a schedule in the model are implemented in JAVA.  

7.2. Experiments 

The goals of the conducted experiments were: 
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1. To validate that the proposed modelling methodology is feasible from the 

viewpoint of safeness. That is, that no tokens are generated unnecessarily (i.e. 

falsely representing the situation modeled) within the net once the building 

blocks of the model are interconnected and the model is executed.  

2. To validate that it is feasible (from the viewpoint of timing constraints) to 

interrupt a scheduling search on a PN model in order to update the model itself 

(i.e. add/remove elements to/from the model), and then continue the 

scheduling search (on the updated model) from the point it was initially 

interrupted on the previous version of the model. Comparison with other 

scheduling methods is beyond the scope of this paper.  

To validate the first point, flow models were constructed statically (prior to the 

scheduling search) for mixes including 2 to 15 orchestrators of types O1, O2 and O3 

(as described in Section 7.1). Backtracking search was subsequently performed on 

these models to find a schedule. During the search, feasible groups of transitions were 

identified and conflicts resolved as discussed in Appendix A. 

The program was run on an AMD Athlon 64 Processor at 1.99 GHz and 1Gb of 

RAM. The construction of an initial model takes in average 3 to 5 seconds (CPU 

time). Table 2 reports the durations (in seconds) of the scheduling search performed 

on static orchestrator mix (i.e. that remains unmodified during the search), obtained 

by firing together feasible groups of transitions (see Apendix A for details).  

 
Table 2  Scheduling search duration – in CPU time / seconds (static orchestrator mix) 

 

Several simulation runs were conducted for each orchestrator mix. Throughout 

each run, the number of tokens remained either 0 or 1 in all places except in status-

typed modules corresponding to representations of output storages (Figure 9), whose 
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capacity is greater than 1. The sum of tokens remained constant per typed module 

(including representations of output storages) throughout each run.  

7.3. Proposed implementation architecture 

The proposed implementation architecture is shown in Figure 17. 

 

Figure 17 SOA-based implementation schema 

 

When entering a manufacturing line, an orchestrator requests a Scheduling 

Service. Through the Service Broker, it identifies the alternatives and invokes the 

Scheduling Service Provider. Its flow description is automatically translated to the 

TNCES formal model and added to the orchestrator mix model(s) to be considered in 

the search. 

Scheduling Service Providers are requestors of Machining/Transportation 

services information, obtainable through the Service Broker. In addition to this, 

Scheduling Service Providers may request Monitoring services to account for 

machine breakdowns or equipment additions/removals while executing.  

The invocations of Scheduler Service Providers could be done in two ways: 

(1) Each new orchestrator invokes each of the available Scheduling Service 

Providers when entering a manufacturing line. In this way, all available 

Scheduling Service Providers operate on the same underlying formal model.  

(2) Each new orchestrator invokes exactly one available Scheduling Service 

Provider. The feasibility of this scenario remains to be studied, as it implies 

the need for synchronization between all Scheduling Service Providers (the 

firing of transitions in status-typed modules must be made visible to all 

Scheduling Service Providers to avoid inconsistencies between the found 

schedules). 
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7. Conclusions 

This work’s primary research objective is to construct formal models that will 

reflect at all times what is happening to product flow in a service-oriented 

manufacturing system (i.e. that uses Web Services to deploy SOA). The intention is 

not only to modify parameters of a model, but the model itself, to account for changes 

in equipment (additions / breakdowns) and  in the order of the product requests input 

to a line. Model updates may be done continuously, while products enter/exit the line 

and are being processed at various workstations.  

A line consisting of six robotic cells was the case study for validation of the 

proposed modelling methodology. Formal models of individual orchestrators (flows 

of processes) associated to various product types were automatically constructed and 

mixed into one final flow model. Scheduling search was subsequently successfully 

performed on each of the final models. For each search, the TNCES models subjected 

to scheduling were monitored to check two hypotheses: first, that the number of 

tokens in each place does not exceed 1 and second, that the sum of tokens in  some of 

the modules remains constant irrespective of the token game. The first hypothesis 

held true for all typed modules, except representations of output storages (here  the 

number of tokens in places associated to such modules never exceeded the buffer’s 

capacity – as expected). The second hypothesis was validated: the sum of the tokens 

in each typed module remained constant throughout each simulation run. 

Simulations were also run to check the feasibility of adding/removing 

elements to/from a flow model during the scheduling search performed on it. In each 

case, the scheduling procedure was successfully paused in a point so that the 

underlying model is modified, and then continued from the same point on. Provided 

obtained scheduling data is preserved in-between model modifications, it may be 

concluded that it is feasible to have formal models automatically constructed based on 
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myopic, local views of individual product needs, in order to obtain a global view of 

the situation in a line and act accordingly.  
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Appendix A Sources of Conflict. Matrix-based Conflict Resolution Algorithm 

Sources of Conflict 

Conflict may result from three main sources: 

First, unless it is a multiple location conveyor or a storage, a resource cannot 

perform two or more services simultaneously. . If the transitions of multiple 

processing resource usage modules associated with the same status module are 

condition-enabled at the same time, only one of the transitions of the usage typed 

modules can fire. 

Second, a service cannot be performed on the same orchestrator by two 

different resources at the same time. ). In the TNCES flow model, this situation may 

appear with multiple usage typed modules connected to the same end_s_j event input 

of a calling module. This type of conflict is resolved by requiring that outgoing arc 

connections from ‘to_next’ condition outputs of status typed modules are mutually 

exclusive. In case such connections condition-enable transitions in more than one 

usage typed module, exactly one of the firable transitions should be allowed to fire. 

An additional source of conflicts that must be considered when constructing 

the search space is the typed nature of the composing modules in the TNCES flow 

model. Module types dictate the type of internal transition firing, when building the 

search space. For instance, in Split or Split+Join modules, all transitions that are 

enabled simultaneously should fire concurrently. In Choice and AnyOrder typed 

modules, the same scenario requires that only one of the eligible transitions fires. In 

modules of type ‘output storage_status’ (illustrated in Figure 9), all transitions 

connected to the transfer_to_storage condition input are conflicting.  
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Matrix-based Conflict Resolution Algorithm 

At each step of a scheduling search, a decision must be made to select - out of 

the set of enabled transitions - a group of transitions that may fire together (a firable 

transition group).  To keep consistency with the physical meaning of a transition 

firing, transition conflicts must be taken into consideration when this selection is 

made. The firing of some of the enabled transitions must be prevented to account for 

the semantics of the connection arcs of the TNCES model. As described earlier in this 

section, such conflicts are automatically detectable based on the structure of the 

TNCES flow model and information on the current marking. 

Figure 18 illustrates the procedure to search for a feasible firable group of 

transitions via a small case study. The example is given for an input vector of enabled 

transitions TEN = {39, 43, 57, 59, 69, 71} (where the numbers denote the flat numbers 

of the transitions in the overall TNCES model). The total number of transitions in the 

considered model is 71.  

 

Figure 18 Search firable feasible transition group. Example. 

 

The conflict matrix C (partially shown in Figure 19) is automatically 

obtainable from the structure of the flow model. C[i,j]=1 if there is a conflict between 

transitions ti and tj; otherwise C[i,j]=0. 

 

Figure 19 Conflict Matrix: example 

 

The purpose of the TEN vector (see Figure 18) is to record all enabled 

transitions in the model at one step. TEN[k]=1 if transition tk is enabled, otherwise it is 

0.  

To identify a group of transitions that may fire together, successive 

subtractions are made from TEN. The steps documented in Figure 18 are explained as 

follows: 
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1. The conflict matrix row corresponding to transition 39 is deducted from TEN. 

The index 39 is selected randomly from the list of non-zero elements of TEN. 

The index 39 is registered to have already been searched in a 

searched_indexes list.  

2. The newly obtained TEN vector (denoted by )1(

ENT ) has nonzero elements 

corresponding to indexes 39, 59 and 71. The conflict matrix row 

corresponding to transition 59 is subtracted from 
)1(

ENT
. The index 59 is 

selected randomly from the list of non-zero elements of
)1(

ENT
 that are not 

already contained in the searched_indexes list (i.e. 59 and 71 - since index 39 

was already selected at step 1 it is no longer considered for random selection). 

The index 59 is registered to have already been searched in searched_indexes 

list.  

3. The newly obtained TEN vector (denoted by 
)2(

ENT
) has nonzero elements 

corresponding to indexes 39 and 59. As both indexes have been previously 

considered for subtraction (and therefore all indexes that may be in conflict 

with the two have been removed from the list of firable transitions), the search 

ends here. The resulting firable transition group is {39, 59}. 

Nodes of the reachability graph may be visited more than once during a 

scheduling search. In case a search path is abandoned, then alternative paths need to 

be explored. This requires that a feasible firing transition group is reselected from the 

set of enabled transitions in the considered start state of the paths. In order to ensure 

that already selected transition groups are no longer considered when a state is 

revisited, each selection startpoint should be recorded per node so that it is discarded 

as startpoint in future path computations. 
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The general procedure to select a feasible firable transition group in the 

TNCES flow model at each search step is illustrated in Table 3. 

 
Table 3 Identification of feasible firable transition groups based on knowledge of conflicts in the 

entire flow model  
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Figure 1. Example TNCES module 

Figure 2. Example of condition arc (a) / event arc (b) interconnection between 

TNCES modules 

Figure 3. status and usage typed modules – interfaces 

Figure 4. Representing processing workstations: TNCES module of type ‘status’ 

Figure 5. Representing processing workstations: TNCES module of type ‘usage’ 

Figure 6. TNCES model of a resource located once 

Figure 7. TNCES model of a resource located twice 

Figure 8. TNCES module of type ‘conveyor_status’ (N locations) 

Figure 9. (Distinguishable) output buffer. Two part types. 

Figure 10. Standalone orchestrators. Separation of flow-related representation from 

atomic services representation 

Figure 11. Orchestrator mix model for the two orchestrators of Figure 10 

Figure 12. status-usage connections 

Figure 13. Resource-to-resource connections 

Figure 14. Replacing orchestrator-service connections with orchestrator-resources 

connections 

Figure 15. Two orchestrators use the same conveyor for transportation 

Figure 16. Line case study 

Figure 17. SOA-based implementation schema 

Figure 18 Search firable feasible transition group. Example. 

Figure 19 Conflict Matrix: example 

 

 

 

Table 1. Match check to test information-enabling of a place 

Table 2. Scheduling search duration – in CPU time / seconds (static orchestrator mix) 

Table 3. Identification of feasible firable transition groups based on knowledge of 

conflicts in the entire flow model 
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Table 1  Match check to test information-enabling of a place 

Source type Destination 

type 

Match check 

Workstation Transportation InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located) 

InfoService(statusSOURCE.transfer)== InfoServicesFrom (usageDESTINATION.located) 

InfoServicesTo(statusSOURCE.transfer) ⊃  InfoServicesTo (usageDESTINATION.located) 

Transportation Workstation InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located) 

InfoServicesTo(statusSOURCE.transfer)== InfoService (usageDESTINATION.located) 

InfoServicesFrom(usageDESTINATION.located)⊃ InfoServicesFrom(statusSOURCE.transfer)   

Transportation Transportation InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located) 

InfoServicesFrom(statusSOURCE.transfer)==InfoServicesFrom(usageDESTINATION.located) 

InfoServicesTo(statusSOURCE.transfer)==InfoServicesTo(usageDESTINATION.located) 

- output_storage InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located) 

InfoService(statusSOURCE.transfer)== InfoService(usageDESTINATION.located) 
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Table 2  Scheduling search duration – in CPU time / seconds (static orchestrator mix) 

 Run Number 

Number of 

Orchestrators 

in the (Static) 

Mix
1
 

Number 

of Places 

Number of 

Transitions 

1 2 3 4 5 6 

2 508 484 2 2 1 2 2 2 

3 806 780 4 4 2 4 3 3 

4 903 876 6 4 3 5 4 3 

5 1201 1172 11 7 6 9 8 7 

6 1298 1268 11 9 9 10 9 10 

7 1596 1564 14 39 13 14 14 13 

8 1693 1660 14 16 14 15 14 14 

9 1991 1956 18 20 21 21 22 24 

10 2088 2052 22 42 29 24 25 52 

11 2386 2348 28 26 20 27 21 28 

12 2483 2444 31 27 31 32 30 30 

13 2781 2740 29 26 25 32 31 27 

14 2878 2836 28 27 27 27 29 33 

15 3176 3132 39 39 41 40 37 39 

20 4063 4012 49 63 62 60 66 62 

25 5151 5092 151 130 87 134 94 89 

 

                                                 
1 Approx. 20 operations – on average - to be scheduled per orchestrator. 
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Table 3 Identification of feasible firable transition groups based on knowledge of conflicts in the 

entire flow model 
Procedure SEARCH_FEASIBLE_FIRABLE_TRANSITION_GROUP (TEN

(i), C, searched_indexes) 

Needed data structures: 

� TEN vector, contains the flat numbers of all enabled transitions in the TNCES flow model at one 

step 

� C conflict matrix, automatically obtained from the structure of the flow model. C[i,j]=1 if there is a 

conflict between transitions ti and tj; otherwise C[i,j]=0 

� index vector, contains the integer indexes of the elements of TEN that are equal to 1 

� k integer 

� seeds vector of integers, the start flat number of a new search. A different start seed ensures a new 

transition group is selected each time a new 

SEARCH_FEASIBLE_FIRABLE_TRANSITION_GROUP search starts from the same initial TEN 

vector. At the beginning of the search for a schedule seeds = Ф 

� searched_indexes vector, stores the flat numbers of the transitions already investigated for 

conflicts; initially searched_indexes = Ф 

do 
index:= find (TEN

(i)==1); 

if i==0 then do  

select k ∉ seeds randomly from index; 

seeds:=[seeds, k]  

od. 

else do  

select k randomly from index; od. fi. 

TEN
(i+1)=TEN

(i) – C(k, :); 

searched_indexes := [searched_indexes; k] 

SEARCH_FEASIBLE_FIRABLE_TRANSITION_GROUP (TEN
(i+1), C) 

while searched_indexes ≠ find (TEN
(i)==1) od. 
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Figure 1. Example TNCES module  

211x76mm (72 x 72 DPI)  
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Figure 2. Example of condition arc (a) / event arc (b) interconnection between TNCES modules  
255x171mm (72 x 72 DPI)  
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Figure 3. status and usage typed modules – interfaces  
214x40mm (72 x 72 DPI)  
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Figure 4. Representing processing workstations: TNCES module of type ‘status’  
147x89mm (72 x 72 DPI)  
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Figure 5. Representing processing workstations: TNCES module of type ‘usage’  
134x85mm (72 x 72 DPI)  
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Figure 6. TNCES model of a resource located once  
209x93mm (72 x 72 DPI)  

 
 

Page 43 of 56

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 7. TNCES model of a resource located twice  
213x173mm (72 x 72 DPI)  
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Figure 8. TNCES module of type ‘conveyor_status’ (N locations)  
262x89mm (72 x 72 DPI)  
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Figure 9. (Distinguishable) output buffer. Two part types.  
275x92mm (72 x 72 DPI)  
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Figure 10. Standalone orchestrators. Separation of flow-related representation from atomic services 
representation  

349x231mm (72 x 72 DPI)  
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Figure 11. Orchestrator mix model for the two orchestrators of Figure 10  
249x221mm (72 x 72 DPI)  
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Figure 12. status-usage connections  

194x44mm (72 x 72 DPI)  
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Figure 13. Resource-to-resource connections  
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Figure 14. Replacing orchestrator-service connections with orchestrator-resources connections  
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Figure 15. Two orchestrators use the same conveyor for transportation  
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Figure 16. Line case study  
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Figure 17. SOA-based implementation schema  
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Figure 18 Search firable feasible transition group. Example.  
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Figure 19 Conflict Matrix: example  
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