
HAL Id: hal-00715497
https://hal.science/hal-00715497

Submitted on 8 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Petri Net-based Approach to Incremental Modelling
of Flow and Resources in Service-Oriented

Manufacturing Systems
Corina Popescu, Maria Cavia Soto, Jose Luis Martinez Lastra

To cite this version:
Corina Popescu, Maria Cavia Soto, Jose Luis Martinez Lastra. A Petri Net-based Approach to Incre-
mental Modelling of Flow and Resources in Service-Oriented Manufacturing Systems. International
Journal of Production Research, 2011, pp.1. �10.1080/00207543.2011.561371�. �hal-00715497�

https://hal.science/hal-00715497
https://hal.archives-ouvertes.fr

For Peer Review
 O

nly

A Petri Net-based Approach to Incremental Modelling of

Flow and Resources in Service-Oriented Manufacturing
Systems

Journal: International Journal of Production Research

Manuscript ID: TPRS-2010-IJPR-0601.R2

Manuscript Type: Original Manuscript

Date Submitted by the
Author:

22-Dec-2010

Complete List of Authors: Popescu, Corina; Tampere University of Technology, Department of
Production Engineering
Cavia Soto, Maria; Universidad de Cantabria
Martinez Lastra, Jose; Tampere University of Technology,
Department of Production Engineering

Keywords:
PETRI NETS, MODELLING, DYNAMIC SCHEDULING, E-
MANUFACTURING

Keywords (user): Service Oriented Architecture, Timed Net Condition Event Systems

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

For Peer Review
 O

nly

A Petri Net-based Approach to Incremental Modelling of Flow and

Resources in Service-Oriented Manufacturing Systems

Corina Popescu
a
, M. Cavia Soto

b
, Jose L. Martinez Lastra

a

a
 Department of Production Engineering, Tampere University of Technology,

Tampere, Finland;
b
 Universidad de Cantabria, Santander, Spain

(Received June 2010; final version received December 2010)

In order to overcome the myopia problem, routing strategies must be based on formal

representations of flow that automatically account for modifications in the values of

parameters of interest and in the model itself. This work addresses this problem and

discusses how to automatically incorporate resources (e.g. workstations/ transportation

devices/ storages) in a Petri Net derived model of flow that is modifiable at runtime to

reflect and influence the routing in a manufacturing line. The modelling approach takes

into consideration scalability needs and was experimentally validated. The applicability

of the models is shown for PN-based dynamic scheduling.

1. Introduction

Frequent changes in production demand and the continuously increasing time-to-

market pressure command manufacturing line modifications that are sometimes

subject to critical deadlines. The required adjustments range from PLC-level program

changes to machine/robot replacements and sometimes even reorganization of the

entire line.

The clear separation between the set of actions that modify the state of the

world (the process), the view that the outside world has of this set of actions (the

encapsulation of the process as a service) and the physical equipment where a process

executes (the resource) has been recognized to have a huge potential to address these

problems (Delamer and Lastra, 2007). The technology of Web Services (WS)

deploying Service Oriented Architecture (SOA) offers the necessary infrastructure to

abstract a manufacturing system as a set of service encapsulations of provided and

requested processes (equipment skills and product needs). This type of infrastructure

allows both changes in the values of parameters of interest (online equipment

Page 2 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

modifications) and the flow itself (variations in product type demand order) to be

recognized and responded to in a natural way.

In an agile world, the capability to change rapidly is a desirable property of

manufacturing systems. However, this capability alone does not guarantee a good

overall performance. Good support of reconfigurability and adaptability through WS

technology is ensured only if dynamic decision taking mechanisms rely on formal

flow representations that continuously reflect the situation in the line.

The main objective of this research is to develop a methodology to

automatically modify the model of Web Services orchestration itself in order to

account for elements and events newly introduced to or retrieved from the represented

world. The discussed results are an extension of previous work (Popescu et. al, 2009).

This paper discusses how to automatically incorporate resources (e.g. workstations/

transportation devices/ storages) in a Petri Net derived model of flow that is

modifiable at runtime to reflect and influence the routing in a manufacturing line. A

method to automatically associate context information of each pallet with the

elements of the formal model of flow is also presented. Context information is

appended to elements in the model automatically, while the model is constructed, and

the added data influences the firing rules of the transitions in the model, during the

scheduling search.

The paper is organized as follows: Section 2 discusses the background of this

work: the terminology used (‘service oriented manufacturing systems’), related work

on modelling and scheduling, and the formalism chosen for modelling. Section 3

discusses the modelling of resources in a modular, typed and composable way.

Section 4 introduces an incremental approach to automatically modify the model of

flow in manufacturing systems that use Web Services to implement the Service-

Page 3 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Oriented-Architecture pattern. Section 5 discusses scheduling on variable-size PN

models of flow and presents the proposed approach to embed context information in

the model. Section 6 gives implementation details and describes the experiments to

validate the proposed modelling approach. Section 7 draws the conclusions and

discusses future challenges. Appendix A gives details on the conflict detection and

resolution mechanisms utilized during the scheduling search presented in Section 5.

2. Background

2.1. Service Oriented Manufacturing Systems

Service-oriented manufacturing systems are manufacturing systems that use Web

Services as a technology to implement the Service Oriented Architecture pattern. The

term ‘service-oriented’ refers to the specific architecture and technology that are used

to implement the middleware of this type of systems.

Dedicated Manufacturing Systems, Flexible Manufacturing Systems and

Reconfigurable Manufacturing Systems can be encapsulated as services if a minimal

set of implementation constraints is respected. This set is the Devices Profile for Web

Services Specification (DPWS), which is an extension of the Web Services protocol

suite. Initially published in May 2004 and submitted for standardization to OASIS in

July 2008, DPWS defines a minimal set of implementation constraints to enable

secure Web Service description, messaging, dynamic discovery and publish/subscribe

eventing at device level. DPWS is built around a group of Web Services standards:

WSDL, XML Schema, SOAP, WS-Addressing, WS-Metadata Exchange, WS-

Transfer, WS-Policy, WS-Security, WS-Discovery and WS-Eventing.

The adoption of DPWS has been supported by several European research

projects. Implementations of DPWS in embedded devices have been achieved in the

ITEA-SIRENA (SIRENA), and ITEA-SODA (SODA) projects. DPWS-enabled

Page 4 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

devices were implemented and tested in pilot prototypes in the industrial domain

(FP6-SOCRADES).

Services are encapsulations of processes and can be thought of as interfaces. A

service provides a clear separation between the way the encapsulated process is

executed and the view other entities have of the process from the outside. Services are

loosely coupled (e.g. the technical details of two collaborating applications are hidden

from each other) and can be (de)composed to whichever level of granularity may be

required (the highest level focuses on business processes). Additionally, if annotated

semantically, a service may be automatically discovered, invoked and composed.

From an SOA perspective, a manufacturing system is seen as a set of service

encapsulations of provided and requested processes. The provided processes are the

equipment skills. The requested processes are the product needs. Each product can be

described in terms of its orchestrator. The orchestrator specifies the order of

execution (the flow) of its needs, i.e. the services that should operate upon the raw

material to obtain a final product.

In a system there can be as many orchestrators as users with needs (i.e. as

pallets with raw products that should circulate through the line to be processed). The

orchestrated services are those needed (requested) by the users. In the case of a

manufacturing line, the users are the pallets circulating through the line. The needs are

the services that should be performed on the raw material to obtain a final product.

Once the needs of a user are transferred to the system, the system will translate these

needs into a desired orchestration.

Following the SOA pattern, pallets (service requestors) search and locate the

needed services in the order specified by their corresponding orchestrators. The

devices (the service providers) publish the processes they can offer. Selections of each

Page 5 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

device to operate upon a pallet are made gradually, as the orchestrator executes. Each

time a device is selected for execution, the transportation services needed to carry the

pallet to its chosen destination are subjected to discovery and selection as well. These

steps take place for each service specified in the orchestrator of a pallet, until all

product needs are satisfied and the pallet exits the line.

2.2. Incremental Modeling of Flow

Wang and Deng (1999) present an incremental multi-levelled modelling and

verification methodology based on Time Petri Nets (TPN) and Real Time

Computational Tree Logic (RTCTL). TPNs are used to manually represent

component behavior and connections. RTCTL is used to describe time critical

constraints as formulas over communication ports (each port represents an atomic

proposition, which is true at the moment that a token arrives in the port).

An incremental Petri Net-based modeling approach of production sequences

for logic control design is presented in (Castelnuovo, A. et. al, 2007). Subnets are

progressively added to a partial model until all specifications have been included. The

approach is based on a generic feedforward connection rule and on specifications of

the logic behavior of sets of transitions (Binary Firing Patterns). The used nets

(feedforward Petri Nets - FFPNs) are very similar to the workflow nets of (Aalst). In

order to obtain recipe models holding the minimum requirement for system

correctness (boundedness, liveness and reversibility), the authors describe a well-

definiteness property to be achieved at each stage of the modeling procedure, as the

model is incremented (the property is similar to the concept of soundness (Aalst,

1999)). It is not clear whether it is possible to also easily remove blocks from an

FFPN.

Page 6 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

No approach known to the author exists that represents automatically a Petri Net -

derived model of mixed sequences of operations that accounts for (additions/removals

of) resources and possible disruptions (machine failures/ urgent orders / unload

operations), to continuously and accurately reflect the situation in the line during the

scheduling search.

2.3. Scheduling

Finding an optimal schedule in a distributed system is in almost all realistic scenarios

an NP complete problem, i.e. computationally intractable (Kopetz, 1997). To account

for the effects of the numerous factors influencing the factory floor, schedulers should

aim to obtain a reasonable load on the shop rather than optimized sequences (Silva

and Vallete, 1989). The experimental findings of Lawrence and Sewell (1997) support

this claim: the study compares optimal seeking algorithms versus heuristic methods

applied to 53 standard job shop scheduling problems, when processing times are

uncertain. As processing time uncertainty increases, the results indicate convergence

in the performances of fixed optimal sequences and fixed heuristic sequences. The

best performance is obtained with dynamically updated heuristic schedules. Matsuura

and colleagues (1993) refine the analysis by categories of uncertainties, and report a

better performance of sequencing versus dispatching (for small machine breakdowns)

and of dispatching versus sequencing (for specification changes and rush jobs). To

take these findings into account, they propose a switching approach between

sequencing and dispatching according to the manufacturing situation.

Research is needed to input real time information collected from the

factory/plant to product routing /asset management algorithms, to assist the

devices/resources cooperate (optimally) while reducing waste caused by loss of

energy/material and inefficient processes.

Page 7 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

2.4. Timed Net Condition Event Systems

The Timed Net Condition Event Systems (TNCES) (Rausch and Hanisch, 1995;

Hanisch et al., 1997) formalism enhances the expression capabilities of Petri Nets

(Murata, 1989) with typed modularity, and adds to the originally defined elements of

a PN the notions of event arcs and condition arcs. Event arcs report changes in the

state of the system, while condition arcs carry state information. TNCES can model

simultaneous start, has a clear notion of interfaces (event inputs/outputs and condition

inputs/outputs) and a modular hierarchy.

An example of a simple TNCES module of name ‘Example TNCES Module’

and type ‘tnces_module_example’ is depicted in Figure 1.

Figure 1 Example TNCES Module

Apart from sets of places ({p1, p2, p3, p4, p5}), transitions ({t1,t2,t3,t4}) and

flowarcs ({(p1,t2), (t1,p1), (p2,t1), (t2, p2), (p4,t3), (t2, p4), (p5,t4), (t3, p5), (p3, t2),

(t4, p3)}), which are present in any PN, this TNCES module has event inputs ({ei1}),

event outputs ({eo1}) , condition inputs ({ci1}) and condition outputs ({co1}). Event

arcs ({(ei1, t2), (t4, eo1),) link event inputs to transitions / transitions to event outputs.

Condition arcs ({(ci1, t1), (p3, co1)}) link condition inputs to transitions / places to

condition outputs.

Figure 2 presents a composition of two TNCES modules, of names and types

B and R.

Figure 2. Example of condition arc (a) / event arc (b) interconnection between

TNCES modules

Page 8 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Two possible types of module interconnections may exist in a TNCES model:

condition arcs (e.g. Figure 2a: {(B.co1, R.ci1)}) and event arcs (e.g. Figure 2b:

{(B.eo1, R.ei1)}).

Condition and event arcs influence the firing rules in a TNCES module. A

transition that is marking enabled (i.e. has at least one token in each of its input

places) may fire at any point in time in case it is also condition enabled. A condition

enabled transition that is not also marking enabled may not fire. Considering the

example in Figure 2a: transition R.t1 may fire at any point in time if there is at least

one token in the place R.p1 (i.e. the transition is marking enabled) and if there is one

token in the place B.p2 (i.e. the transition is condition enabled through the module

condition arc (B.co1, R.ci1)). A transition that is marking enabled will fire

immediately if it is also event enabled. An event enabled transition that is not marking

enabled will not fire. In the module depicted in Figure 2b, transition R.t1 fires

immediately if there is at least one token in place R.p1 and once transition R.t2 fires

(change in state signalled through the module event arc (B.eo1, R.ei1)).

TNCES modules may be associated delay times with flowarcs outgoing from

places.

3. Modelling Resources

This section gives details on the construction procedures of modular and composable

TNCES models for three main types of resources: processing workstations (machines

or robots), transportation devices (robots or conveyors) and storages.

Each resource is associated exactly one status-typed TNCES module, to

describe its state (i.e. idle/busy/unloading). Additionally, a resource is associated as

many usage-typed TNCES modules as necessary, to describe location and invocation

Page 9 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

of the resource by service requestors, according to the Service-Oriented-Architecture

pattern.

The interface of status (respectively usage) –typed modules is the same,

irrespective of the type of modelled resource (Figure 3).

Figure 3 status and usage typed modules – interfaces

status –typed modules have three event inputs (invoked/finished/transfer_finished)

and three condition outputs (available/orch_for_transfer/to_next). usage-typed

modules have two condition inputs (available and orch_for_transfer) and two event

outputs (invoked and finished). The inner elements are defined per resource type, and

can be generated automatically (Popescu et al., 2009).

3.1. Processing Workstations(robots / machines)

The internal elements of the TNCES typed status and usage modules used to describe

a processing workstation are shown in Figures 4 and 5.

Figure 4 Representing processing workstations: TNCES module of type ‘status’

Figure 5 Representing processing workstations: TNCES module of type ‘usage’

There can be exactly one status and as many usage modules as necessary per resource

in the overall flow model. A usage module is added to the overall model each time a

device is identified as potential provider for a requested service. Time constraints are

associated to the (p2 t2) flowarc of the usage module, to account for multiple

processing capabilities associated with a device.

Figure 6 illustrates the model of a resource that is located and possibly

invoked once. In case the resource is idle (i.e., there is one token in place

resource_status.p1 (m(resource_status.p1)=1) and identified as potential provider of

service for a particular requestor/pallet (m(resource_usage.p1)=1), transition

Page 10 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

resource_usage.t1 may fire at any time (condition-enabled transitions may fire at any

point in time as long as the condition(s) hold and they are marking enabled).

Figure 6 TNCES model of a resource located once

The information regarding the (un)availability of the resource is carried

through the condition arc that links place resource_status.p1 to transition

resource_usage.t1. If resource_usage.t1 fires, a token is placed in place

resource_usage.p2. At the same time, the firing of resource_usage.t1 is announced

through the module event arc connecting the resource_invoked event output and

input. The triggering of this event will immediately cause the firing of transition

resource_status.t1 (Only event-enabled transitions may have a triggered firing (if they

are also marking enabled)). Consequently, a token is placed in place

resource_status.p2 as well, condition-enabling transition resource_usage.t2.

Figure 7 illustrates the situation in which the same device is searched for by

two different requestors. In this case, the two separate resource_usage modules

initialized at m(p1)=1 reflect the case in which two pallets have discovered this

particular device to be capable of responding to their current demands. Resource

invocation can take place only once.

Figure 7 TNCES model of a resource located twice

3.2. Transportation Devices

Two types of transportation devices are considered here: robots and

conveyors. The typed status and usage TNCES modules (Figures 4 and 5) are used to

model robots and conveyors of one location (crossing points). For conveyors of more

than one location, the usage typed module does not change. The status typed module

remains the same with respect to the interface elements; however, its internal

representation changes. Figure 8 illustrates the status typed module for unidirectional

Page 11 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

conveyors of N locations. The models can be automatically generated if the number of

locations per conveyor is known (Popescu, 2009).

Figure 8 TNCES module of type ‘conveyor_status’ (N locations)

The interconnections between usage and status typed modules follow the rules

depicted in Figures 6 and 7: Module condition arcs link the

available/orch_for_transfer condition output of the status module to the available/

orch_for_transfer condition input of each usage module. Module event arcs connect

the resource_invoked / finished event outputs of each usage module to the

resource_invoked / finished event input of each status module.

3.3. Output Storages(unloading services)

Load/unload operations are implicitly added to each standalone orchestrator

model once it is added to the overall flow model (entry and exit points to/from the line

are described semantically).

As a result of load operations, the overall flow representation is updated

automatically with status and usage typed modules representations of the entry point

(workstation/conveyor/etc.) of the newly added orchestrator. The update proceeds to

include in the model the transportation devices needed to take the loaded pallet to the

desired destinations. Input storages are not incorporated in the overall flow model.

Output storages must be incorporated in the overall flow model, because knowledge

of the amount of remaining available unload space is needed e.g. when seeking a

feasible schedule.

Figure 9 illustrates two interconnected TNCES models of type status and

usage representing an output storage. The interconnections between the modules

include one module event arc (output_storage_status.transfer_finished X

Page 12 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

output_storage_usage.transfer_finished) and two module condition arcs

{((output_storage_status.available X output_storage_usage.available);

(output_storage_usage.transfer_to_storage X output_storage_status.

transfer_to_storage)}. Conflict resolution (e.g. for the conflict between transitions t1

and t3 in the output_storage_status module) relies on a matrix-based algorithm that is

presented in Appendix A.

Figure 9 (Distinguishable) output buffer. Two part types.

4. Incremental Modelling of Flow

Each time a pallet is introduced into the line, its standalone orchestrator formal model

must be generated and combined with the existing overall flow model into a final

orchestrator mix model. Figure 10 illustrates the dynamic generation procedure for the

orchestrator mix model through a small example:

Figure 10 Standalone orchestrators. Separation of flow –related representation

from atomic services representation

A pallet with the required sequencing described by orchestrator O1 (Figure 10,

top side) is first introduced into the line. The inner elements of each internal module

are abstracted from for simplicity. Upon entering the line, the TNCES model of O1 is

automatically generated. As there is only one pallet in the line, this model is a full

formal representation of the current orchestrator mix.

Another pallet, characterized by O2 (Figure 10, bottom side), follows the first

one after some time. O2 is a sequence of three atomic services: S1 (the same service

searched by O1 initially), S3 and S4. The newly generated formal model (O2) must be

added automatically to the already existing orchestrator mix model.

Page 13 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

For each standalone orchestrator, the atomic services are first separated from

the rest of the model. An example of the outcome of this procedure is illustrated in

Figure 10 (right side). The top-left side of the figure depicts orchestrator O1 as

generated automatically in the initial stage. After separation (top-right), orchestrator

O1 consists of only the Sequence module. Additional condition and event input and

output sets are created to enable the necessary links to the external modules Service

S1 and Service S2. To ensure a correct separation, the order in which the atomic

services are withdrawn from the initial orchestration module is tracked. This order

must be consistent with the generation order of corresponding additional event input –

event output pairs.

The TNCES orchestrator mix model obtained by adding the model of O2 to

the original orchestrator mix model (i.e., O1) is illustrated in Figure 11.

Figure 11 Orchestrator mix model for the two orchestrators of Figure 10.

The generation procedure considers the orchestrator model to be added at this

step (Figure 10, bottom-right side). A check is performed to see whether the atomic

services of the newly introduced model are already part of the existing mix model or

not. In this case, service S1 is found to already have been included in the orchestrator

mix model. Therefore, only the necessary connections are added to the mix module

(i.e., the event arcs (O2.start_s1 X S1.start) and (S1.end X O2.end_s1) and the

condition arc (S1.available X O1.available_s1)). The other two atomic services

involved in the formal model of O2 - S3 and S4 - are not yet part of the current mix

model. Therefore, the corresponding TNCES modules and the necessary connections

are added to the main module.

Page 14 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

The mapping of services to resources (i.e. to physical devices capable of

performing the processes encapsulated by services) is done at runtime (continuously,

while the pallets circulate through the line), to account for online equipment

modifications or additions. Each TNCES module of type ‘atomic service’ is

automatically replaced with corresponding status and usage modules for each of the

resources (transportation/workstations/storages) involved in the processing. Each

resource may be assigned multiple usage modules (one for each potential resource

invocation), and exactly one status module. The model is then updated with the

necessary orchestrator-resource and resource-resource connections.

The inter-module connections in the TNCES flow model are classified and

explained as follows.

5.1. Status-Usage connections

For one resource, status typed modules are connected to each of the

corresponding usage modules through four connection arcs (Figure 12):

Figure 12 status-usage connections

• A condition arc linking the ‘available’ condition output of the status typed module

to the ‘available’ condition input of the usage typed module.

• A condition arc linking the ‘orch_for_transfer’ condition output of the status

typed module to the ‘orch_for_transfer’ condition input of the usage typed

module.

• An event arc connecting the ‘finished’ event output of the usage typed module to

the ‘finished’ event input of the status typed module.

• An event arc connecting the ‘invoked’ event output of the usage typed module to

the ‘invoked’ event input of the status typed module.

Page 15 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

These rules are valid for all resource modules except the TNCES modules of

the type ‘output_storage’ (Figure 9).

5.2. Resource-to-Resource connections

Two connection arcs are needed to model transfer of orchestrators from a

source resource to a destination resource (Figure 13):

Figure 13 Resource-to-resource connections

• A condition arc linking the ‘to_next’ condition output of the status typed module

of the source resource to the ‘available’ condition input of the usage typed

module of the destination resource.

• An event arc connecting the ‘finished’ event output of the usage typed module of

the destination resource to the ‘transfer_finished’ event input of the status typed

module for the start resource.

5.3. Orchestrator-Resource connections

The orchestrator-service connections are replaced with corresponding

orchestrator-resource linkages, for each resource capable of performing a service

(Figure 14):

Figure 14 Replacing orchestrator-service connections with orchestrator-

resources connections

• event arc connecting the start_s_j event output of the orchestrator to the start

event input of the ‘atomic service’ typed TNCES module is replaced with a

condition arc. The new connection links the start_s_j condition output of the

orchestrator to the available condition input of the usage typed module associated

with the first needed transportation device.

Page 16 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

• The event arc connecting the end event output of the ‘atomic service’ typed

TNCES module to the end event input of the orchestrator module is replaced with

another event arc. The new link connects the finished event output of the

processing resource module associated with the replaced service to the end_s_j

event input of the orchestrator.

• The condition arc connecting the available condition output of the ‘atomic

service’ typed TNCES module to the available condition input of the orchestrator

module is replaced with another condition arc. The new link connects the

available condition output of the status typed module of the processing resource

module associated with the replaced service to the available condition input of the

orchestrator.

5. Scheduling on variable-size models. Embedding context information in the

flow model

The scheduling problem is formulated as the process of finding a production schedule

for a given set of orchestrators (i.e. pallets associated with product needs - the order of

services that are needed to operate on the raw material to obtain a final product) and

resources (i.e. devices, the physical equipment of the line), by searching a feasible

transition firing order (i.e. from the current marking to the goal marking) in a PN-

based formal model that represents accurately the situation in the line.

For production scheduling, Petri nets are used either in conjunction with

heuristic rule base systems (Hu et al, 1995; Chincholkar and Krishnaiah Chetty, 1996;

Krishnaiah Chetty et al., 1996; Lin and Lee, 1997; Kattan et al., 2003; Wu and Zhou,

2007; Gradisar and Music, 2007) or with search algorithms (Lee and DiCesare, 1994;

Zhou and Jeng, 1998; Shih and Sekiguchi,1991; Xiong and Zhou, 1998; Venkatesh

and Zhou, 1998; Jeng et al., 1998; Kis et al, 2000; Hu and Li, 2009; Huang et al. ,

2008). It is remarkable that the seeking of schedules is generally conducted offline, on

Page 17 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

manually constructed PN models. The search for a schedule is performed on PN-

based models that are constructed prior to the initiation of the search.

The scheduling search proposed here operates on a Petri Net model that is

modified automatically to account for arrival/exit of new orchestrators to/from the

line. The automatically updated orchestrator mix may be subjected to scheduling

search while the model itself is changing, provided that:

(1) the differences in the structure of the underlying TNCES model are accounted for

(addition/removal of an orchestrator to the orchestrator mix will result in

addition/reset of corresponding rows and columns in the incidence

/condition/event matrixes characterizing the net) and

(2) context information is embedded in the model so that the physical location of each

orchestrator is taken into account when selecting firable transitions in the flow

model during the scheduling search. This second point is further explained as

follows.

Several orchestrators (pallets) may be using the same transportation device

(e.g. a multi-location conveyor). The identification of enabled outgoing condition arcs

at the output point (i.e. pTransfer in the status typed module associated with the

transportation device) relies solely on the orchestrator situated at the exit point and its

intended destination. Such a case is illustrated in Figure 15, where two different

orchestrators (O1 and O2) may use the same conveyor (the modules conveyor_status,

conveyor_usage1, conveyor_usage2 and conveyor_usage3) for transportation: O1

must be directed towards resource2 for processing (conveyor_usage1), while O2 must

head towards resource1 (conveyor_usage2). This scenario is not clearly reflected in

the structure of the flow model: a token in conveyor_status.transfer (place p9 of the

Page 18 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

module) enables both outgoing condition arcs (and therefore, possibly, both

destination ‘usage’ typed modules).

Figure 15 Two orchestrators use the same conveyor for transportation

Confusion can also occur when one orchestrator might use the same

transportation device more than once. In Figure 15, this situation is sketched for

orchestrator O1: After visiting resource2, transportation to the next processing unit

(resource3) relies solely on the same device (conveyor) that is used for transfer to

resource2 (conveyor_usage3). Without additional information, this situation is not

immediately distinguishable at the conveyor_status.orch_for_transfer condition

output.

Track must be kept of each orchestrator’s location and intended destination in

the ‘status’ typed module associated to the conveyor to ensure correct firing of the

transitions at the output point. This is achievable through additional information

conferred to places and defined inter-dependencies between this information and the

firing rules governing the dynamics of the net.

The tokens in a place P may be associated information Info(P) regarding the id

of the calling orchestrator and the associated services. This information is stored in

four fields:

Info(P) = {InfoOrchestrator(P), InfoService(P), InfoServicesFrom(P) ,InfoServicesTo(P))},

attached to the element corresponding to P in the marking vector. The initialization of

these four fields is done when usage typed modules are first added to the overall flow

model:

Page 19 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

• For each usage typed module associated with a workstation, the default value of

the InfoService field is modified to reflect the particular workstation process that the

added module is being associated with.

• For each usage typed module associated with a transportation device, the default

value of the InfoServicesFrom and InfoServicesTo fields is modified accordingly.

The inter-dependencies between place-related information and the firing rules

governing the dynamics of the net are explained as follows.

• The first rule concerns firing rules in status and usage modules that are all

associated to the same resource (Figure 12). In case transition t1 in a ‘usage’ typed

module fires, the Info(p1) value of the module is copied into the Info(p2) field of

the associated ‘status’ module. The rule is generally expressible as:

USAGE.t1 fires � Info (STATUS.p2):= Info (USAGE.p1)

(where USAGE and STATUS are the names and types of the discussed modules). For

example, in Figure 15, after the firing of transition conveyor_usage1.t1 the marking

vector of the flow model is updated accordingly:

Info (conveyor_status.L1_busy):= Info (conveyor_usage1.t1)

• The second rule concerns firing rules inside status typed modules. The

information associated with the tokens of ‘busy’ places in status typed modules is

propagated with the firing of the local transitions of the module. The propagation

rules for status typed modules of unidirectional conveyors of n locations (Figure

8) are:

• n≥2:

if tj fires (j=2:n) �

Info(l_j_busy) := Info(l_(j-1)_busy);

Info (l_(j-1)_busy):=NULL

Page 20 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

if tn+1 fires �

Info (pTransfer) := Info (l_n_busy);

Info (l_n_busy):=NULL

if tn+2 fires �

Info (pTransfer):=NULL

• n=1:

if tn+1 fires �

Info(pTransfer) := Info(l_n_busy);

Info(l_n_busy):=NULL

if tn+2 fires � Info (pTransfer):=NULL

The above specified rules are generally applicable to status typed modules.

• The third rule concerns resource-to-resource module interconnections that model

transfer of orchestrators from a source resource (represented by one statusSOURCE

module and one or more usageSOURCE modules) to a destination resource

(represented by one statusDESTINATION module and one or more usageDESTINATION

modules). Resource-to-resource transfer is enabled (i.e. transition

usageDESTINATION.t1 is firable) only for the statusSOURCE - usageDESTINATION

connections that are characterized by matching token-related information. For the

example of Figure 13, the rule depends on the nature of the transfer and is

summarized in Table 1.

Table 1 Match check to test information-enabling of a place

In Figure 15, transition resource_usage.t1 is firable iff:

m(conveyor_status.transfer)==1 AND

m(resource1_usage.located)==1 AND

Page 21 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

InfoOrchestrator(conveyor_status.transfer)==InfoOrchestrator (resource1_usage.located)

AND

InfoServicesTo(conveyor_status.transfer)== InfoService (resource1_usage.located)

6. Implementation

6.1. Case Study

Figure 16 illustrates the line used as a case study for the proposed approach.

The line consists of six cells. The robots situated in four of the cells are in charge of

drawing model parts of mobile phones (frame, screen and keyboard), of three

different types each. The pallets carry the drawing boards. Two of the cells are

responsible for load and respectively unload activities. The unload cell contains a

static buffer that may be used both as an output storage and for temporarily buffering

parts undergoing processing.

Figure 16 Line case study

When entering the line, each pallet’s orchestrator has knowledge of the

services that need to act upon it to obtain the desired final drawing. Examples of

orchestrators for this setting are:

• O1: Sequence[Frame1, AnyOrder(Screen1,Keyboard1)]

• O2: Sequence[Frame2, Choice(AnyOrder(Screen2,Keyboard2);

AnyOrder(Screen3,Keyboard3))]

• O3: Sequence[Frame3, SplitJoin(Screen3, Keyboard3)]

The procedures to incrementally construct and update the flow model and to

dynamically search for a schedule in the model are implemented in JAVA.

7.2. Experiments

The goals of the conducted experiments were:

Page 22 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

1. To validate that the proposed modelling methodology is feasible from the

viewpoint of safeness. That is, that no tokens are generated unnecessarily (i.e.

falsely representing the situation modeled) within the net once the building

blocks of the model are interconnected and the model is executed.

2. To validate that it is feasible (from the viewpoint of timing constraints) to

interrupt a scheduling search on a PN model in order to update the model itself

(i.e. add/remove elements to/from the model), and then continue the

scheduling search (on the updated model) from the point it was initially

interrupted on the previous version of the model. Comparison with other

scheduling methods is beyond the scope of this paper.

To validate the first point, flow models were constructed statically (prior to the

scheduling search) for mixes including 2 to 15 orchestrators of types O1, O2 and O3

(as described in Section 7.1). Backtracking search was subsequently performed on

these models to find a schedule. During the search, feasible groups of transitions were

identified and conflicts resolved as discussed in Appendix A.

The program was run on an AMD Athlon 64 Processor at 1.99 GHz and 1Gb of

RAM. The construction of an initial model takes in average 3 to 5 seconds (CPU

time). Table 2 reports the durations (in seconds) of the scheduling search performed

on static orchestrator mix (i.e. that remains unmodified during the search), obtained

by firing together feasible groups of transitions (see Apendix A for details).

Table 2 Scheduling search duration – in CPU time / seconds (static orchestrator mix)

Several simulation runs were conducted for each orchestrator mix. Throughout

each run, the number of tokens remained either 0 or 1 in all places except in status-

typed modules corresponding to representations of output storages (Figure 9), whose

Page 23 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

capacity is greater than 1. The sum of tokens remained constant per typed module

(including representations of output storages) throughout each run.

7.3. Proposed implementation architecture

The proposed implementation architecture is shown in Figure 17.

Figure 17 SOA-based implementation schema

When entering a manufacturing line, an orchestrator requests a Scheduling

Service. Through the Service Broker, it identifies the alternatives and invokes the

Scheduling Service Provider. Its flow description is automatically translated to the

TNCES formal model and added to the orchestrator mix model(s) to be considered in

the search.

Scheduling Service Providers are requestors of Machining/Transportation

services information, obtainable through the Service Broker. In addition to this,

Scheduling Service Providers may request Monitoring services to account for

machine breakdowns or equipment additions/removals while executing.

The invocations of Scheduler Service Providers could be done in two ways:

(1) Each new orchestrator invokes each of the available Scheduling Service

Providers when entering a manufacturing line. In this way, all available

Scheduling Service Providers operate on the same underlying formal model.

(2) Each new orchestrator invokes exactly one available Scheduling Service

Provider. The feasibility of this scenario remains to be studied, as it implies

the need for synchronization between all Scheduling Service Providers (the

firing of transitions in status-typed modules must be made visible to all

Scheduling Service Providers to avoid inconsistencies between the found

schedules).

Page 24 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

7. Conclusions

This work’s primary research objective is to construct formal models that will

reflect at all times what is happening to product flow in a service-oriented

manufacturing system (i.e. that uses Web Services to deploy SOA). The intention is

not only to modify parameters of a model, but the model itself, to account for changes

in equipment (additions / breakdowns) and in the order of the product requests input

to a line. Model updates may be done continuously, while products enter/exit the line

and are being processed at various workstations.

A line consisting of six robotic cells was the case study for validation of the

proposed modelling methodology. Formal models of individual orchestrators (flows

of processes) associated to various product types were automatically constructed and

mixed into one final flow model. Scheduling search was subsequently successfully

performed on each of the final models. For each search, the TNCES models subjected

to scheduling were monitored to check two hypotheses: first, that the number of

tokens in each place does not exceed 1 and second, that the sum of tokens in some of

the modules remains constant irrespective of the token game. The first hypothesis

held true for all typed modules, except representations of output storages (here the

number of tokens in places associated to such modules never exceeded the buffer’s

capacity – as expected). The second hypothesis was validated: the sum of the tokens

in each typed module remained constant throughout each simulation run.

Simulations were also run to check the feasibility of adding/removing

elements to/from a flow model during the scheduling search performed on it. In each

case, the scheduling procedure was successfully paused in a point so that the

underlying model is modified, and then continued from the same point on. Provided

obtained scheduling data is preserved in-between model modifications, it may be

concluded that it is feasible to have formal models automatically constructed based on

Page 25 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

myopic, local views of individual product needs, in order to obtain a global view of

the situation in a line and act accordingly.

Page 26 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Appendix A Sources of Conflict. Matrix-based Conflict Resolution Algorithm

Sources of Conflict

Conflict may result from three main sources:

First, unless it is a multiple location conveyor or a storage, a resource cannot

perform two or more services simultaneously. . If the transitions of multiple

processing resource usage modules associated with the same status module are

condition-enabled at the same time, only one of the transitions of the usage typed

modules can fire.

Second, a service cannot be performed on the same orchestrator by two

different resources at the same time.). In the TNCES flow model, this situation may

appear with multiple usage typed modules connected to the same end_s_j event input

of a calling module. This type of conflict is resolved by requiring that outgoing arc

connections from ‘to_next’ condition outputs of status typed modules are mutually

exclusive. In case such connections condition-enable transitions in more than one

usage typed module, exactly one of the firable transitions should be allowed to fire.

An additional source of conflicts that must be considered when constructing

the search space is the typed nature of the composing modules in the TNCES flow

model. Module types dictate the type of internal transition firing, when building the

search space. For instance, in Split or Split+Join modules, all transitions that are

enabled simultaneously should fire concurrently. In Choice and AnyOrder typed

modules, the same scenario requires that only one of the eligible transitions fires. In

modules of type ‘output storage_status’ (illustrated in Figure 9), all transitions

connected to the transfer_to_storage condition input are conflicting.

Page 27 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Matrix-based Conflict Resolution Algorithm

At each step of a scheduling search, a decision must be made to select - out of

the set of enabled transitions - a group of transitions that may fire together (a firable

transition group). To keep consistency with the physical meaning of a transition

firing, transition conflicts must be taken into consideration when this selection is

made. The firing of some of the enabled transitions must be prevented to account for

the semantics of the connection arcs of the TNCES model. As described earlier in this

section, such conflicts are automatically detectable based on the structure of the

TNCES flow model and information on the current marking.

Figure 18 illustrates the procedure to search for a feasible firable group of

transitions via a small case study. The example is given for an input vector of enabled

transitions TEN = {39, 43, 57, 59, 69, 71} (where the numbers denote the flat numbers

of the transitions in the overall TNCES model). The total number of transitions in the

considered model is 71.

Figure 18 Search firable feasible transition group. Example.

The conflict matrix C (partially shown in Figure 19) is automatically

obtainable from the structure of the flow model. C[i,j]=1 if there is a conflict between

transitions ti and tj; otherwise C[i,j]=0.

Figure 19 Conflict Matrix: example

The purpose of the TEN vector (see Figure 18) is to record all enabled

transitions in the model at one step. TEN[k]=1 if transition tk is enabled, otherwise it is

0.

To identify a group of transitions that may fire together, successive

subtractions are made from TEN. The steps documented in Figure 18 are explained as

follows:

Page 28 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

1. The conflict matrix row corresponding to transition 39 is deducted from TEN.

The index 39 is selected randomly from the list of non-zero elements of TEN.

The index 39 is registered to have already been searched in a

searched_indexes list.

2. The newly obtained TEN vector (denoted by)1(

ENT) has nonzero elements

corresponding to indexes 39, 59 and 71. The conflict matrix row

corresponding to transition 59 is subtracted from
)1(

ENT
. The index 59 is

selected randomly from the list of non-zero elements of
)1(

ENT
 that are not

already contained in the searched_indexes list (i.e. 59 and 71 - since index 39

was already selected at step 1 it is no longer considered for random selection).

The index 59 is registered to have already been searched in searched_indexes

list.

3. The newly obtained TEN vector (denoted by
)2(

ENT
) has nonzero elements

corresponding to indexes 39 and 59. As both indexes have been previously

considered for subtraction (and therefore all indexes that may be in conflict

with the two have been removed from the list of firable transitions), the search

ends here. The resulting firable transition group is {39, 59}.

Nodes of the reachability graph may be visited more than once during a

scheduling search. In case a search path is abandoned, then alternative paths need to

be explored. This requires that a feasible firing transition group is reselected from the

set of enabled transitions in the considered start state of the paths. In order to ensure

that already selected transition groups are no longer considered when a state is

revisited, each selection startpoint should be recorded per node so that it is discarded

as startpoint in future path computations.

Page 29 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

The general procedure to select a feasible firable transition group in the

TNCES flow model at each search step is illustrated in Table 3.

Table 3 Identification of feasible firable transition groups based on knowledge of conflicts in the

entire flow model

Page 30 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 1. Example TNCES module

Figure 2. Example of condition arc (a) / event arc (b) interconnection between

TNCES modules

Figure 3. status and usage typed modules – interfaces

Figure 4. Representing processing workstations: TNCES module of type ‘status’

Figure 5. Representing processing workstations: TNCES module of type ‘usage’

Figure 6. TNCES model of a resource located once

Figure 7. TNCES model of a resource located twice

Figure 8. TNCES module of type ‘conveyor_status’ (N locations)

Figure 9. (Distinguishable) output buffer. Two part types.

Figure 10. Standalone orchestrators. Separation of flow-related representation from

atomic services representation

Figure 11. Orchestrator mix model for the two orchestrators of Figure 10

Figure 12. status-usage connections

Figure 13. Resource-to-resource connections

Figure 14. Replacing orchestrator-service connections with orchestrator-resources

connections

Figure 15. Two orchestrators use the same conveyor for transportation

Figure 16. Line case study

Figure 17. SOA-based implementation schema

Figure 18 Search firable feasible transition group. Example.

Figure 19 Conflict Matrix: example

Table 1. Match check to test information-enabling of a place

Table 2. Scheduling search duration – in CPU time / seconds (static orchestrator mix)

Table 3. Identification of feasible firable transition groups based on knowledge of

conflicts in the entire flow model

Page 31 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

References

Castelnuvo, A., Ferrarini, L., Piroddi, L., 2007. An Incremental Petri Net-Based

Approach to the Modeling of Production Sequences in Manufacturing

Systems. IEEE Transactions on Automation Science and Engineering, vol. 4 ,

no. 3.

Chincholkar, A.K., Krishnaiah Chetty, O.V., 1996. Stochastic Coloured Petri Nets for

Modelling and Evaluation, and Heuristic Rule Base for Scheduling of FMS.

Int. J. Adv. Manuf. Technol., vol. 12, pp.339-348.

Delamer, I.M., Martinez Lastra, J.L., 2007. Loosely-coupled Automation Systems

using Device-level SOA, Proceedings of the 5th IEEE International

Conference on Industrial Informatics, Vienna, Austria, pp. 743-748.

DPWS Specification, Available online: http://docs.oasis-open.org/ws-dd/dpws/1.1/pr-

01/wsdd-dpws-1.1-spec-pr-01.html, Accessed 11.10.2010

FP6-SOCRADES, http://www.socrades.eu/

Gradisar, D., Music, G., 2007, Production-process modelling based on production-

management data: a Petri-net approach. International Journal of Computer

Integrated Manufacturing, vol. 20, no. 8, pp. 794-810.

Hanisch, H.-M., Thieme, J., Luder, A., Wienhold, A., 1997. Modeling of PLC

Behavior by Means of Timed Net Condition/Event Systems. In Proceedings

of 6th International Conference on Emerging Technologies and Factory

Automation, Los Angeles, USA, pp. 391-396.

Hu, G.H., Wong, Y.S., Loh, H.T., 1995. An FMS Scheduling and Control Decision

Support System Based on Generalised Stochastic Petri Nets. Int. J. Adv.

Manuf. Technol., vol. 10, pp. 52-58.

Hu, H., Li, Z., 2009. Modeling and scheduling for manufacturing grid workflows

using timed Petri nets. Int. J. Adv. Manuf. Technol. , vol. 42, pp. 553-568.

Huang, B., Sun, Y., Sun, Y.M., 2008. Scheduling of flexible manufacturing systems

based on Petri nets and hybrid heuristic search. International Journal of

Production Research, vol. 46(16), pp.4553-4565.

Jeng, M.D., Lin, C.S., Huang, Y.S., 1998. Petri net dynamics-based scheduling of

flexible manufacturing systems with assembly, Journal of Intelligent

Manufacturing, vol.10, pp. 541-555.

Kattan, I., Mikolajczak, B., Kattan, K., Alqassar, B., 2003. Minimizing cycle time and

group scheduling, using Petri nets a study of heuristic methods. Journal of

Intelligent Manufacturing, 14, pp. 107-121.

Kis, T., Kiritsis, D., Xirouchakis, P., 2000. A Petri net model for integrated process

and job shop production planning. Journal of Intelligent Manufacturing, vol.

11, pp. 191-207.

Kopetz, H., 1997. Real Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, Chapter 11

Krishnaiah Chetty, O.V., Gnanasekaran, O. C., 1996. Modelling, Simulation and

Scheduling of Flexible Assembly Systems with Coloured Petri Nets. Int. J.

Adv. Manuf. Technol., vol.11, pp. 430-438.

Lawrence S.R., Sewell, E.C., 1997, Heuristic, optimal, static and dynamic schedules

when processing times are uncertain. Journal of Operations Management 15

(1997), pp.71-82.

Page 32 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Lee, D.Y., DiCesare, F., 1994 . Scheduling Flexible Manufacturing Systems Using

Petri Nets and Heuristic Search. IEEE Transactions on Robotics and

Automation. vol. 10, no.2, pp.123 -132.

Lin, J.T., Lee, C.C., 1997. Petri net-based integrated control and scheduling scheme

for flexible manufacturing cells. Computer Integrated Manufacturing

Systems, vol. 10, no.2, pp.109-122.

Matsuura, H., Tsubone, H., Kanezashi, M., 1993, Sequencing, dispatching and

switching in a dynamic manufacturing environment. Int.J. Prod.Res., vol.31,

no.7 , 1671-1688.

Maturana, F., Shen, W., Norrie, D.H.,1999. MetaMorph: an adaptive agent-based

architecture for intelligent manufacturing, Int. J. Prod. Res., vol. 37 , no. 10,

pp.2159-2173.

Murata T., 1989. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, vol.77 (4),pp. 541-580.

Popescu, C., Cavia Soto, M., Martinez Lastra, J.L., 2009. Runtime Modeling of Flow

for Dynamic Deadlock-Free Scheduling in Service-Oriented Factory

Automation Systems. IETE Technical Review,vol.26 (3), pp.203-212.

Popescu, C., 2009, ‘An Approach to Incremental Modelling of Web Services

Orchestration: An Application to Deadlock-free Scheduling in Automated

Systems’, Dr. Tech., Tampere University of Technology

Rausch M., Hanisch, H.-M., 1995. Net condition/event systems with multiple

condition output, Proceedings of the Symposium on Emerging Technologies

and Factory Automation, vol.1, pp. 592-600.

Shen, W., Maturana, F., Norrie, D.H., 2000, MetaMorph II: an agent-based

architecture for distributed intelligent design and manufacturing, Journal of

Intelligent Manufacturing, vol. 11, pp.237-251.

Shih, H., Sekiguchi, T.,1991. A timed Petri net and beam search based online FMS

scheduling system with routing flexibility. in Proceedings of the International

Conference on Robotics and Automation, pp.2548-2553.

Silva, M., Vallete, R.,1989. Petri Nets and Flexible Manufacturing, Lecture Notes in

Computer Science, Advances in Petri Nets

SIRENA, http://www.sirena-itea.org/

SODA, http://www.soda-itea.org/

Van der Aalst, W.M.P., ‘The Application of Petri nets to workflow management’

Journal of Circuits, Systems and Computers, vol.8, pp. 21-66.

Van der Aalst, W.M.P., 1999. Interorganisational workflows: An approach based on

message sequence charts and Petri nets. Systems Analysis, Modelling,

Simulation 34 (3), pp.335-367.

Venkatesh, K., Zhou, M.C., 1998. Object-oriented design of FMS control software

based on Object Modeling Technique diagrams and Petri Nets. Journal of

Manufacturing Systems, vol. 17(2), pp.118-136.

Wang, J., Deng, Y., 1999 . Incremental modeling and verification of flexible

manufacturing systems. Journal of Intelligent Manufacturing, vol. 10, pp.485-

502.

Wu, N., Zhou, M.C., 2007 . Real-time deadlock-free scheduling for semiconductor

track systems based on colored timed Petri nets. OR Spectrum, vol. 29,

pp.421-443

Xiong, H.H., Zhou, M.C., 1998. Scheduling of Semiconductor Test Facility via Petri

Nets and Hybrid Heuristic Search. IEEE Transactions on Semiconductor

Manufacturing, vol.11, no. 3, pp. 384-393.

Page 33 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Zhou, M., Jeng, M.D., 1998. Modeling, Analysis, Simulation, Scheduling and Control

of Semiconductor Manufacturing Systems: A Petri Net Approach. IEEE

Transactions on Semiconductor Manufacturing, vol.11, no. 3, pp.333-357.

Page 34 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 1 Match check to test information-enabling of a place

Source type Destination

type

Match check

Workstation Transportation InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located)

InfoService(statusSOURCE.transfer)== InfoServicesFrom (usageDESTINATION.located)

InfoServicesTo(statusSOURCE.transfer) ⊃ InfoServicesTo (usageDESTINATION.located)

Transportation Workstation InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located)

InfoServicesTo(statusSOURCE.transfer)== InfoService (usageDESTINATION.located)

InfoServicesFrom(usageDESTINATION.located)⊃ InfoServicesFrom(statusSOURCE.transfer)

Transportation Transportation InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located)

InfoServicesFrom(statusSOURCE.transfer)==InfoServicesFrom(usageDESTINATION.located)

InfoServicesTo(statusSOURCE.transfer)==InfoServicesTo(usageDESTINATION.located)

- output_storage InfoOrchestrator(statusSOURCE.transfer)== InfoOrchestrator(usageDESTINATION.located)

InfoService(statusSOURCE.transfer)== InfoService(usageDESTINATION.located)

Page 35 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 2 Scheduling search duration – in CPU time / seconds (static orchestrator mix)

 Run Number

Number of

Orchestrators

in the (Static)

Mix
1

Number

of Places

Number of

Transitions

1 2 3 4 5 6

2 508 484 2 2 1 2 2 2

3 806 780 4 4 2 4 3 3

4 903 876 6 4 3 5 4 3

5 1201 1172 11 7 6 9 8 7

6 1298 1268 11 9 9 10 9 10

7 1596 1564 14 39 13 14 14 13

8 1693 1660 14 16 14 15 14 14

9 1991 1956 18 20 21 21 22 24

10 2088 2052 22 42 29 24 25 52

11 2386 2348 28 26 20 27 21 28

12 2483 2444 31 27 31 32 30 30

13 2781 2740 29 26 25 32 31 27

14 2878 2836 28 27 27 27 29 33

15 3176 3132 39 39 41 40 37 39

20 4063 4012 49 63 62 60 66 62

25 5151 5092 151 130 87 134 94 89

1 Approx. 20 operations – on average - to be scheduled per orchestrator.

Page 36 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Table 3 Identification of feasible firable transition groups based on knowledge of conflicts in the

entire flow model
Procedure SEARCH_FEASIBLE_FIRABLE_TRANSITION_GROUP (TEN

(i), C, searched_indexes)

Needed data structures:

� TEN vector, contains the flat numbers of all enabled transitions in the TNCES flow model at one

step

� C conflict matrix, automatically obtained from the structure of the flow model. C[i,j]=1 if there is a

conflict between transitions ti and tj; otherwise C[i,j]=0

� index vector, contains the integer indexes of the elements of TEN that are equal to 1

� k integer

� seeds vector of integers, the start flat number of a new search. A different start seed ensures a new

transition group is selected each time a new

SEARCH_FEASIBLE_FIRABLE_TRANSITION_GROUP search starts from the same initial TEN

vector. At the beginning of the search for a schedule seeds = Ф

� searched_indexes vector, stores the flat numbers of the transitions already investigated for

conflicts; initially searched_indexes = Ф

do
index:= find (TEN

(i)==1);

if i==0 then do

select k ∉ seeds randomly from index;

seeds:=[seeds, k]

od.

else do

select k randomly from index; od. fi.

TEN
(i+1)=TEN

(i) – C(k, :);

searched_indexes := [searched_indexes; k]

SEARCH_FEASIBLE_FIRABLE_TRANSITION_GROUP (TEN
(i+1), C)

while searched_indexes ≠ find (TEN
(i)==1) od.

Page 37 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 1. Example TNCES module

211x76mm (72 x 72 DPI)

Page 38 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 2. Example of condition arc (a) / event arc (b) interconnection between TNCES modules
255x171mm (72 x 72 DPI)

Page 39 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 3. status and usage typed modules – interfaces
214x40mm (72 x 72 DPI)

Page 40 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 4. Representing processing workstations: TNCES module of type ‘status’
147x89mm (72 x 72 DPI)

Page 41 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 5. Representing processing workstations: TNCES module of type ‘usage’
134x85mm (72 x 72 DPI)

Page 42 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 6. TNCES model of a resource located once
209x93mm (72 x 72 DPI)

Page 43 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 7. TNCES model of a resource located twice
213x173mm (72 x 72 DPI)

Page 44 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 8. TNCES module of type ‘conveyor_status’ (N locations)
262x89mm (72 x 72 DPI)

Page 45 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 9. (Distinguishable) output buffer. Two part types.
275x92mm (72 x 72 DPI)

Page 46 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 10. Standalone orchestrators. Separation of flow-related representation from atomic services
representation

349x231mm (72 x 72 DPI)

Page 47 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 11. Orchestrator mix model for the two orchestrators of Figure 10
249x221mm (72 x 72 DPI)

Page 48 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 12. status-usage connections

194x44mm (72 x 72 DPI)

Page 49 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 13. Resource-to-resource connections

196x74mm (72 x 72 DPI)

Page 50 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 14. Replacing orchestrator-service connections with orchestrator-resources connections

306x238mm (72 x 72 DPI)

Page 51 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 15. Two orchestrators use the same conveyor for transportation
412x322mm (72 x 72 DPI)

Page 52 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 16. Line case study

451x254mm (72 x 72 DPI)

Page 53 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 17. SOA-based implementation schema

249x185mm (72 x 72 DPI)

Page 54 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 18 Search firable feasible transition group. Example.

303x67mm (72 x 72 DPI)

Page 55 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

Figure 19 Conflict Matrix: example
212x117mm (72 x 72 DPI)

Page 56 of 56

http://mc.manuscriptcentral.com/tprs Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

