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The surprisingly rapid relaxation of the sustainable current density in the critical state of single
crystalline Ba1−xKxFe2As2 is investigated for magnetic fields oriented parallel to the c-axis and to
the ab–plane respectively. Due to the inadequacy of standard analysis procedures developed for flux
creep in the high temperature superconducting cuprates, we develop a simple, straightforward data
treatment technique that reveals the creep mechanism and the creep exponent µ. At low magnetic
fields, below the second magnetization peak, µ varies only slightly as function of temperature and
magnetic flux density B. From the data, we determine the temperature- and field dependence
of the effective activation barrier for creep. At low temperatures, the measured current density
approaches the zero–temperature critical current density (in the absence of creep) to within a factor
2, thus lending credence to earlier conclusions drawn with respect to the pinning mechanism. The
comparable values of the experimental screening current density and the zero-temperature critical
current density reveals the limited usefulness of the widely used “interpolation formula”.

PACS numbers: 74.25.Ha,74.25.Op, 74.25.Wx

I. INTRODUCTION

Recently, the measurement of the critical current den-
sity jc of superconducting iron-based compounds has
been recognized as a useful tool for the characteriza-
tion of microscopic1,2 and nanoscale1,3 disorder in these
materials. However, the study of vortex pinning and
the critical current density is compromised by surpris-
ingly large thermally activated flux creep4–6 in the Bean
critical state.7,8 In some materials, such as single crys-
talline (Ba,K)Fe2As2, the logarithmic creep rate S ≡
−d ln j/d ln t of the sustainable current density j ap-
proaches that previously measured in some of the high
temperature cuprate superconductors.9–11 Sizeable creep
rates influence the magnitude, and, potentially, the tem-
perature and flux density-dependence j(T,B), thereby
compromising the analysis of fundamental vortex pinning
mechanisms in the iron-based superconductors1,2 and the
understanding of possible phase transitions of the vortex
ensemble.2,12,13

A detailed analysis of flux creep in the iron-based su-
perconductors is therefore justified. In the cuprates, such

analysis has unveiled the non-logarithmic nature of vor-
tex creep, a direct consequence of the non-linearity of the
relevant potential barrier U(j) opposing thermally acti-
vation as function of the driving force Bj. In turn, this
nonlinear behavior arises from the elasticity of the vortex
ensemble, i.e., the fact that this can be deformed continu-
ously on very different length scales. In contrast to single-
particle creep,14 the relevant activation barrier does not
depend algebraically on the driving force, but, rather, in-
creases steeply at low driving forces because of the nonlin-
ear increase of the size of the critical nucleus.15–17 In gen-
eral, the size of the critical nucleus increases as an inverse
power-law in j, leading to the well-known relation15–17

U(j) = Uc

(
jc
j

)µ
. (1)

The value of the creep exponent µ depends on the di-
mensionality of the critical nucleus as well as that of the
elastic manifold as a whole.15 In the case of single crys-
talline iron-based superconductors to be considered here,
the latter can be either a single one-dimensional (1D)
vortex line, or the 3D vortex ensemble. The law (1) does
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not extrapolate to a zero activation barrier at large driv-
ing force; one therefore frequently resorts to the so-called
interpolation formula,16,17

U(j) = Uc

[(
jc
j

)µ
− 1

]
. (2)

Among the various methods to experimentally estab-
lish the U(j)–dependence,10,18–22 the analysis of the loga-
rithmic time dependence of 1/S is the most reliable:21,22
for Eq. (2), one has 1/S ∝ µ ln[(t0 + t)/τ ], with t0 a
constant determined by transients at the onset of relax-
ation, and τ = (Λjc/E0) (kBT/Uc) a normalization time
determined by the barrier magnitude, a factor E0 (with
dimension of electric field) related to the details of the
creep mechanism, and a sample “inductance” Λ = µ0a

2

(a is a relevant sample dimension).23,24 An alternative
“dynamic” method based on the dependence of the sus-
tainable current density on the sweep-rate Ḣa of the ap-
plied magnetic field in magnetic hysteresis loop measure-
ments was used in Refs. 5,6,20, and 25–27. In princi-
ple, the product (T/Q)d ln j/dT , with Q ≡ d ln j/d ln Ḣa,
directly yields µ.5,6,25–28 The potential of local mag-
netic measurements of the magnetic induction B was
exploited by Abulafia et al.,29 who reconstructed the
current-voltage characteristics of YBa2Cu3O7−δ single
crystals from Ampère’s law j ∼ µ−10 dB/dx for the cur-
rent density and Faraday’s law

E(x) = −
∫ x

0

(dB/dt)dx′ (3)

for the electric field (integrating from the sample centre
to its perimeter).

As opposed to the cuprates, the dynamic range
over which creep data can be collected in the iron–
based superconductors is insufficient to reliably deter-
mine S(ln t), Q(ln Ḣa), or the curvature of E(j) =
E0 exp(−U(j)/kBT ). Moreover, the factor d ln j/dT ∝
[1−(kBT/Uc)(dUc/dT )] used in the dynamic method ad-
mixes the temperature dependence Uc(T ) with the creep
exponent µ. As a result, it is difficult to distinguish be-
tween a logarithmic U ∼ Uc ln(jc/j) with a temperature-
dependent Uc, and a so-called “negative µ”-type barrier,
U = Uc[1− (j/jc)

|µ|].27,28 One should therefore resort to
other constructions, such as that proposed by Maley et
al.,5,13,19,23 which combine the results of relaxation mea-
surements at different T .

Below we show that even though this method is fraught
with shortcomings, it can be suitably adapted to yield
reliable results. In particular, a plot of the average
〈−kBTd ln(|dj/dt|)/dj〉 vs. the average 〈j〉 unambigu-
ously yields the curvature of the U(j)–relation and there-
fore the flux creep mechanism. Applying this to single
crystalline (Ba,K)Fe2As2, one finds, first of all, that the
creep rate is insufficient to qualitatively modify the field
dependence j(B) as obtained from magnetic hysteresis.
Second, the low–temperature sustainable current density
j is, typically, less than a factor of 2 lower than the value
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FIG. 1: (Color online) (a,b) In-phase fundamental (T ′H) and
amplitude of the third harmonic ac transmittivity (|TH3|) as
function of the temperature, at an applied field µ0Ha = 1.5 T,
for different indicated frequencies of the ac field. (c) Irre-
versibility field Hirr, as determined from the vanishing of
|T3H |, indicated by the arrow in (b), for Ha ‖ c and Ha ‖ ab
respectively.

the critical current density jc would have in the absence
of creep. Finally, the obtained µ-values indicate that the
same creep mechanism is relevant for all temperatures
up to the transformation of the vortex ensemble at the
so-called “second magnetization peak”.12 We discuss the
µ–value and its increase as function of magnetic field in
terms of the interplay of strong pinning by nm-scale het-
erogeneities and weak collective pinning by atomic scale
point defects in the material.

II. EXPERIMENTAL DETAILS

The Ba0.6K0.4Fe2As2 single crystals with Tc ∼ 38.1
K (Fig. 1) were grown by the self-flux method, using
FeAs as the self-flux. Details of the growth can be found
in Refs. 32,33. For the experiment, crystals were cut
to regular rectangles of dimensions 350 × 160 × 70 µm3

using a wire saw. The spatial distribution of the lo-
cal induction perpendicular to the surface of the crys-
tals in the critical state was measured using an array
of microscopic Hall sensors, fashioned in a pseudomor-
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FIG. 2: (Color online) (a) (◦) Hysteresis loop of the gradient
dB/dx ∝ jcab versus the local induction B, measured perpen-
dicular to the long edge of the Ba0.6K0.4Fe2As2 single crystal,
for Ha ‖ c at T = 10 K. The sweep-rate of the applied mag-
netic field was 0.8 mT/s for the virgin magnetization loop (up
to µ0Ha = 0.5 T), while further measurements were carried
out with a sweep-rate of 4 mT/s. The four measurement se-
quences ( 2, 3, 4, •) illustrate the decay of the flux gradient
at different applied fields, over a period spanning 5 to 5000
s after field-cooling, and reduction of the external field Ha
to the measurement field Ha − ∆Ha (with ∆Ha = 0.2 T).
(b). Time dependence of the local induction gradient for an
applied field of 0.6 T and T = 8 K.

phic GaAlAs/GaAs heterostructure using ion implanta-
tion. The 10 Hall sensors of the array, spaced by 20 µm,
had an active area of 3 × 3 µm2, while an 11th sensor
was used for the measurement of the applied field. For
measurements with field parallel to ab, an array of sen-
sors spaced by 10 µm was used. The Hall sensor array
was placed on the center of the crystal surface, perpen-
dicular to the long crystal edge, and spanning the crystal
boundary. In this manner, hysteretic loops of the spa-
tially resolved local induction were measured as function
of the applied magnetic field Ha, and as function of tem-
perature. The sweep-rate of the applied magnetic field
was 40 G/s (µ0Ḣa = 4 mT/s). In all experiments, the
applied magnetic field was not only much smaller than
the upper critical field Hc2, but also smaller than the
field at which the second magnetization peak occurs.12

Under all circumstances, the profiles of the flux density
B were well described by the critical state model,7,8 see
Fig. 3, allowing for the straightforward extraction of the
local screening current density j ≈ (2/µ0)dB/dx. The
factor 2 takes the finite dimensions of the crystal into
account; namely, the field gradient on the end surface of
a semi-infinite bar in the critical state is half the field
gradient in the interior.30 Measurements were done with
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FIG. 3: (Color online) (a) Relaxation of the critical state
flux profile in the Ba0.6K0.4Fe2As2–crystal, for Ha ‖ c, at
T = 8 K. Open symbols show the flux density profile across
the Ba0.6K0.4Fe2As2 single crystal for four successive times,
while closed symbols illustrate the flux density profiles ob-
tained after the annealing of the critical state to the indicated
temperatures. (b). Flux-creep activation barrier as function
of the screening current density, as extracted using Eq. (4).

the Hall array parallel to the ab–plane and Ha ‖ c, a
configuration that measures the usual screening current
density in the ab-plane, j = jcab, and with the array ‖ c
for Ha ‖ ab, which yields the ab-plane screening current
density jabab corresponding to vortices moving parallel to
the c-axis (perpendicular to the FeAs layers).

Measurements of the ac screening were performed with
the same set-up. A sinusoidally time-varying field of mag-
nitude 1 Oe and frequency f is applied colinearly with
the dc field. The ac component Bac(f, T ) of the local
induction is then measured using the Hall probe array.
Results, presented as the in-phase fundamental ac trans-
mittivity T ′H = [Bac(f, T )−Bac(f, T � Tc)]/[Bac(f, T �
Tc) − Bac(f, T � Tc)] and the third harmonic |T3H | =
Bac(3f, T )/[Bac(f, T � Tc) − Bac(f, T � Tc)],31 are
shown in Figs. 1a and 1b respectively. The non-zero
value of the latter signals the existence of a non-zero
critical current density jc; the vanishing of Bac(3f) at
high-temperature is used to trace the dc irreversibility
field Hirr(T ), for dc field aligned along the c–axis and
the ab–plane respectively (Fig. 1c).

As for the magnetic relaxation experiments, these were
carried out on the decreasing field branch magnetization
branch only (corresponding to flux exit relaxations), in
order to prevent possible influence of surface barrier re-
laxation. The external magnetic field was applied at a
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temperature T > Tc, at which the Hall probe array was
calibrated (with respect to the applied field). The crystal
was subsequently field-cooled to the measurement tem-
perature Te < Tc, and the field reduced by an amount
∆Ha to the measurement field. Care was taken that ∆Ha

exceeded the the field of full flux penetration, so that a
full critical state is established. After waiting 5 s to allow
for the settling of the magnet, the flux density values at
the different Hall sensor positions were measured as func-
tion of time, for a period of 5000 s. Furthermore, flux
creep annealing experiments19 were performed by heat-
ing the sample to Ta > Te, returning to the experimental
temperature Te, and re-measuring S over a period of 600
s. This procedure is equivalent to performing measure-
ments at the effective time t = τ exp[U(j(Ta))/kBTe], of
the order 106 s.

III. RESULTS

Fig. 2(a) shows hysteresis loops of the flux density
gradient dB/dx as function of the local induction B
for Ha ‖ c, at T = 10 K. The width of the loop is
proportional to the screening current density jcab in the
ab-plane, for field ‖ c. It has the characteristic shape
found in all charge–doped iron-based superconductors:1
a “central peak” of j around B = 0, followed by a drop
j ∝ B−1/2 characteristic of strong vortex pinning by
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FIG. 4: (Color online) Treatment of creep data for µ0Ha = 0.2
T ‖ c, using the method of Ref. 29. The data at the bot-
tom of the frame show the j-dependence of the product of
Te and the logarithm of the electric field, such as extracted
using Eq. (3), for different experimental temperatures Te (left-
hand axis). The master curve at the top (righthand axis) was
compiled from these data using a temperature– and current
density–independent E0; however, as in Ref. 29, E0 was as-
sumed to be proportional to B; this yields a µ–value of 0.8.

nm-scale point defects2,34,35 or heterogeneities. As B
increases, the strong pinning-contribution to the criti-
cal current becomes irrelevant, and j(B) saturates to a
field–independent value determined by weak collective
pinning of individual vortices,36 presumably by the K
dopant atoms in the material.1 The magnitude of jcab is
very similar to that found in other measurements on the
same material.1,38,39

At all magnetic fields, the sustainable current relaxes
as function of time, with S ∼ −0.06 [Fig.2(b)]. Creep is
logarithmic in time, with curvature indicative of a non-
linear U(j) relation. However, contrary to the cuprate
superconductors, and as illustrated by the near–linear
evolution of the experimentally determined flux-creep ac-
tivation barrier in the inset to Fig. 3, the accessed dy-
namical range of S(j(t)) is too small in the iron-based
superconductors to reliably extract a value of µ directly.
The effect of flux creep-annealing is also illustrated in
Fig. 3, which shows the relaxation of the trapped flux-
profile at T = 8 K together with profiles obtained after
annealing at various temperatures.

The time–dependent current density is analyzed using
the method of Maley et al..19 This yields the experimen-
tal current density-dependent activation barrier as

Ue(j) = −kBTe ln

(∣∣∣∣djdt
∣∣∣∣)+ cTe, (4)

with c a temperature-independent constant, to be cho-
sen so that segments corresponding to the Ue(j) relation
measured at different temperatures line up to form the
U(j) relation representative of the vortex creep mecha-
nism governing the magnetic relaxation. For the collec-
tive creep mechanism of Ref. 15,

j =
jc

{(kBT/Uc) ln [(t0 + t) /τ ]}1/µ
, (5)

so that the method gives23

−kBTe ln

(∣∣∣∣djdt
∣∣∣∣) = U(j)− kBTe ln

[
kBTe
U(j)

j

µτ

]
; (6)

hence, c ≡ kB ln [kBTej/U(j)µτ ] actually depends log-
arithmically on temperature. For a putative logarith-
mic dependence U = Uc ln(jc/j),40,41 yielding j =

jc [(t0 + t) /τ ]
−kBT/Uc , one has23

−kBTe ln

(∣∣∣∣djdt
∣∣∣∣) = U(j)− kBTe ln

(
kBTe
Uc

jc
τ

)
. (7)

The following shortcomings of the method of Ref. 19
are identified. While, at low temperature, only a sin-
gle c-value will satisfy the requirement of lining up the
measured segments, at higher T the temperature depen-
dence of c becomes important. Second, the prefactor
Uc(T ) ≡ Uc(0)f(T ), as introduced in Eqs. (1) and (2),
itself introduces a more important temperature depen-
dence. This can be recovered by dividing the result of
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of the applied magnetic field.

Eq. (4) at each Te by phenomenological factors f(Te),
with, again, a degree of arbitrariness. Correcting for the
temperature dependences of c and Uc in different ways re-
sults in different final results for the compiled U(j)–curve.
Finally, the method supposes that the same U(j) mech-
anism governs flux creep at all the temperatures used to
reconstitute the experimental U(j)–curve. In the present
set of experiments, we find that applying different pro-
cedures to cope with these different temperature depen-
dences yield an error bar on µ that amounts to 50 to
100 % of its value.

Because it involves the integral (3) rather than the lo-
cal value dj/dt, the method of Ref. 29 has the merit of
yielding more accurate U(j)–values. In our experiments,
we determine the electric field by integrating to the sam-
ple boundary; in accordance, the relevant value of the
current density is that which corresponds to the slope
dB/dx at the boundary. Fig. 4 shows −kBT lnE thus
determined, for various temperatures, and µ0Ha = 0.2
T ‖ c. However, if one wishes to extract flux-creep ac-
tivation energies, one is faced with the same arbitrari-
ness concerning the factor c in Ref. 19, now contained
by the factor E0. Compiling a full U(j)–curve using a
temperature- and current-density independent E0 yields
the illustrated master curve, suggesting that U(j) ∝ j−µ
with µ = 0.8. However, if one takes E0 to be propor-
tional to Bj, as in Ref. 29, one obtains a curve that fits
U(j) ∝ j−0.25.

To avoid ambiguities, we evaluate the averaged current
density-derivative 〈−kBTed ln |E|/dj〉 at each Te. This
procedure has the advantage of eliminating the prefactor
c (or, equivalently, E0) from the analysis. For Eq. (1),
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FIG. 6: (Color online) Experimental values of the creep expo-
nent µ for the two orientations of the applied magnetic field.

one has

〈kBTd ln |E|
dj

〉 = −〈 (µ+ 1)kBTe
j

− dU(j)

dj
〉 (8)

≈ µ
Uc
jc

(
jc
〈j〉

)1+µ

, (Uc � kBT )

while for power-law creep40,41

〈kBTd ln |E|
dj

〉 =
Uc
〈j〉

. (Uc � kBT ) (9)

A double-logarithmic plot (Fig. 5) of the average
〈−kBTed ln |E|/dj〉 vs. 〈j〉 for all different temperatures
Te therefore directly reveals the creep mechanism, as well
as the value of µ, from the deviation of the linear slope
from 1. Whether the condition Uc � kBT is verified
can be easily checked from the Bean (straight-line)–like
nature of the flux profiles in Fig. 3.37

From the slopes in Fig. 5, we find that Eqs. (1) and
(2) describe the data satisfactorily. The corresponding
µ–values are rendered in Fig. 6. For Ha ‖ c, µ = µc ≈
0.65 at low fields, slowly increasing towards µc ≈ 0.8
at higher fields, while for Hab ‖ ab, µab ≈ 1.5 at low
fields, decreasing towards µab ≈ 1 at higher fields. The
results for Ha ‖ c are remarkably similar to those found
in Ba(Fe0.92Co0.08)2As2 by Shen et al..6

The obtained µ–values are checked by plotting
−kBTe ln |E| vs. j−µ for all temperatures and fields.
Fig. 7 shows that this yields straight lines for both
field orientations, as required. Deviations from linear-
ity are only apparent below 8 K, and above 24 K, which
means that µ is T–independent for the greater part
of the investigated temperature range. That is, the
same mechanism governs vortex creep for all T < 24
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FIG. 7: (Color online) Current-density dependence of the
barrier U(j) for thermally activated vortex creep in the
Ba0.6K0.4Fe2As2 crystal, for (a,b) µ0Ha = 0.6 T ‖ c, µ = 0.75;
and (c,d) µ0Ha = 0.5 T ‖ ab, µ = 1.13. (b) and (d)
show the (logarithm of) the raw electric field data, multi-
plied by the experimental temperature, −kBTed ln |E|, ver-
sus (dB/dx)−µ ∝ j−µ. (a,c) show the full, compiled curves
of the creep barrier, obtained by adding the relevant factor
kBTe lnE0 for each temperature.

K. The slopes in Fig. 7 yield Ucj
µ
c , while the inter-

cept with the abscissa corresponds to j−µe , where je =
jc{Uc/kBTe ln [kBTej/U(j)µτ ]}1/µ. With the uncer-
tainty regarding µ removed, the curves obtained for dif-
ferent Te can now be compiled into a “zero-temperature”
curve by adding factors kBTe lnE0, and dividing by
f(Te). For the lowest two temperatures, we set f(Te) = 1
to obtain an unequivocal E0 = 0.019. For higher Te,
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FIG. 8: (Color online) Comparison of the temperature de-
pendence of the activation barrier Uc(T )[jc(T )/jc(0)]µ (open
symbols) extracted from the creep experiments, with that of
the measured screening current density j(T ) at the onset of
relaxation (closed symbols). The j(T ) values (closed sym-
bols) are tantamount to those one would measure in magnetic
hysteresis experiments. Large closed symbols on the lefthand
abscissa denote the jc(T = 0)–values, determined from the ex-
trapolation of the activation barrier to zero in Fig. 9. Drawn
lines denote Eq. (5), evaluated using the experimental values
of the product Ucjµc , and ln(t0 + t/τ) = 21. Dashed lines are
guides to the eye.

the value of f(Te) is adapted in order to line up the
relevant data segments to obtain a continuous compiled
curve, with continuous derivative. The result is given in
Fig. 9, which shows the extracted activation barrier U(j)
as function of j−µ (top panel) and as function of j (bot-
tom panel), for various magnetic fields ‖ c. The extracted
temperature dependence Ucjµc for Ha ‖ c is depicted in
Fig. 8.

IV. DISCUSSION

Inspection of the creep barrier in Fig. 9 shows devia-
tions from power-law behavior at low temperature < 8
K, and above 24 K. In all cases, the dependence U(j) at
the lowest temperature appears to be linear in the current
density j. This behavior is interpreted as being due to the
proximity of the measured screening current density to
the (pinning) critical current density. A linear extrapola-
tion of the U(j) curves to zero (dotted lines in Fig. 9) thus
provides an estimate of the critical current density jc(0)
in the limit T → 0. The obtained values range between
jc(0; 0.6 T) = 6.7×109 Am−2 to jc(0;Ha = 0) = 9.7×109

Am−2 for field ‖ c, and jc(0; 0.5 T) ≈ 2.3×1010 Am−2 for
Ha ‖ ab (Fig. 8). These values can be factored out from
the slopes of the curves in Fig. 9(a,b) to yield creep bar-
rier values of Uc(0)/kB = 60 – 85 K, decreasing with in-
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FIG. 9: (Color online) (a) Plot of −kBTed ln |E| vs.
(dB/dx)−µ ∝ j−µ, for different magnetic fields strengths ‖ c.
(b) Flux-creep activation barrier compiled from relaxation ex-
periments at different temperatures, for the same fields as (a).
The dotted lines show the linear extrapolation of the low-
temperature barrier to jc(0). The drawn lines show fits to
the collective creep theory, Eq. (1). (c) Data for applied field
µ0Ha = 0.2 T, showing the inadequacy of the interpolation
formula (2) (dashed-dotted line).

creasing values of field ‖ c, see Fig. 8, and Uc(0)/kB = 24
K for Ha ‖ ab. The low-temperature values of the mea-
sured screening current density j closely approach jc(0).
These values therefore yield a good order-of-magnitude
estimate of the bulk pinning force.

The Inset, Fig. 9(c), compares the high– and low cur-
rent limiting behavior of the current density–dependent
creep barrier for µ0Ha = 0.2 T ‖ c to the often–used

interpolation formula, Eq. (2). It is clear that the cur-
rent density range over which the experimental barrier
crosses over from the high–current, linear-in-j, to the
low current–behavior given by Eq. (1) is much narrower
than what can be described using Eq. (2). In fact, the
dashed–dotted curve shows that applying the interpola-
tion formula (2) yields a gross overestimate of the pinning
critical current density, as well as a possible overestimate
of µ. It therefore seems imperative to use Eq. (1), which
was derived on physical grounds,15 rather than the phe-
nomenological formula (2).

The extracted parameter values can be used to cross-
check the analysis. The drawn lines in Fig. 8 render a nu-
merical evaluation of Eq. 5 using the experimentally ex-
tracted Ucjµc products, and ln(t0+t/τ) = 21. In the inter-
mediate temperature range, at which creep is described
by the barrier (1), the agreement with the temperature–
dependent screening current density values j(T ) at the
onset of the relaxation (such as these might be mea-
sured during a field–sweep measurement) is more than
satisfactory. Given that all times the current density is,
to good approximation, given by the equation U(j) =
kBT ln(t0+t/τ),23,24,41 one has ln(t0+t/τ) = U(j)/kBT ,
where the numerator and denominator can be simply
read from Figs. 4 and 9. At the onset of relaxation (t ∼ 5
s), one finds values ranging from 20.5 (for 4.2 to 12 K)
to 52 (at T = 26 K). Thus, the value ln(t0 + t/τ) = 21 is
reasonable in the intermediate temperature range. The
expression τ = (Λjc/E0)(kBT/Uc) ∼ 10−8 s allows one
to estimate ln(t0 + t/τ) independently; for t ∼ 5 s one
again has a value of 20. For measurements performed
with a commercial superconducting quantum interfer-
ence device–based magnetometer, t ∼ 100 s, so that
ln(t0 + t/τ) is slightly larger.

Fig. 8 shows that the field dependence of the screen-
ing current density, as expressed by Eq.(5), is contained
by the parameter Ucjµc . Hence, the j(B)–dependence is
not the consequence of a field-dependence of the creep
process, which would be reflected by a strongly field–
dependent µ; rather, it reflects the intrinsic field de-
pendence of the pinning force. The B−1/2–dependence
of the screening current density in iron-based super-
conductors was recently interpreted in terms of strong
pinning34,35 by nm-sized heterogeneities.1–3 In this re-
spect, the creep exponent µ ∼ 0.6 –0.8 at low fields
parallel to the c-axis, comparable to µ = 0.5 found for
single vortex creep in the Bragg-glass phase in single
crystals of the cuprate high temperature superconductor
Bi2Sr2CaCu2O8+δ,42,43 comes as somewhat of a surprise.
Namely, vortex pinning at low fields in Bi2Sr2CaCu2O8+δ

is thought to be not in the strong pinning limit, but in the
opposite, weak pinning limit.44 In the field-values under
scrutiny, the field–dependence observed in Fig. 2 suggests
that one is dealing with strong pinning (see also Ref. 13).
A possible explanation for the similarity of the creep ex-
ponents in the two cases is that the velocity of the flux
lines at low and intermediate currents is limited by the
progression of roughened vortex segments spanning the
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region between strong pins through the background of
weak pins. This would seem natural given that weak
pinning in the iron–pnictide superconductors is thought
to be due to the local fluctuations of the dopant atom
density, while strong pinning would originate from inho-
mogeneity of the dopant atom density on a much larger
length scale. Thus, vortex segments would progress more
or less continuously through areas of homogeneous dop-
ing, before becoming stuck on a “strong pin” , that is, a
region in which the dopant atom density averaged over
several dozen nm significantly deviates from the overall
mean. The critical current density, and the screening
current density at low temperature, would then be de-
termined by the strong pins, while creep at intermediate
and high temperatures would be determined by the weak
pinning background. An alternative hypothesis is that
the creep exponent would be determined by the shape of
the energy distribution of the vortices pinned by large–
scale heterogeneity, much in the same way as this was
proposed for creep through columnar defects in the so-
called variable–range hopping regime.45

Finally, we remark that the consistently larger µ–
values found for Ha ‖ ab are not unexpected, because,
in the investigated orientation, j ‖ ab but ⊥ Ha. Vor-
tex lines are therefore oriented in the ab–plane, but are
forced to move parallel to the crystalline c-axis. This is
the hard direction for vortex motion, requiring the nucle-
ation of vortex loops in the c-direction, a process limited
by the value of the out-of-plane vortex lattice tilt modu-
lus c⊥44 ∼ ε−3λ c̃44. This exceeds the non-local tilt modulus
c̃44 for vortices ‖ c by the inverse cube of the anisotropy
factor ελ ∼ 0.4.

V. SUMMARY AND CONCLUSIONS

Iron based-superconductors show a surprisingly large
value of the relaxation rate S of the irreversible magneti-
zation. Since the relaxation rate is too small to directly
extract the current-density dependence of the flux-creep
activation barrier from the time dependence of 1/S, an

alternative, straightforward analysis method is proposed,
that directly yields the relevant creep mechanism, and
the temperature dependence of the pinning parameters in
the absence of creep. Applying this to single crystalline
Ba0.6K0.4Fe2As2, we find evidence for nucleation-type
(collective) flux creep, with a weakly field–dependent
creep exponent, µ = 0.6–0.8 for magnetic fields oriented
along the c-axis, and a slightly larger µ = 1.2 – 1.5 for
field along ab. Several hypotheses leading to such µ–
values, among which, the combined action of strong and
weak pinning centers, and a non-trivial pinning energy
distribution function are proposed. At low temperature,
the screening current approaches the pinning critical cur-
rent; therefore, meaningful information on flux pinning
in the iron-pnictide superconductors can be directly ex-
tracted from low-temperature (T <∼ 5 K) magnetic hys-
teresis experiments. The field dependence of the screen-
ing current density is found to arise from the underlying
mechanism of pinning, and not from varying creep rates
due to the flux creep process. Finally, it is found that the
crossover between low–current and high–current behav-
ior of the flux creep activation barrier is poorly described
by the so-called “interpolation formula”.
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