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Chapter 3
Seeded Segmentation Methods for Medical
Image Analysis

Camille Couprie, Laurent Najman, and Hugues Talbot

Segmentation is one of the key tools in medical image analysis. The objective of
segmentation is to provide reliable, fast, and effective organ delineation. While
traditionally, particularly in computer vision, segmentation is seen as an early vision
tool used for subsequent recognition, in medical imaging the opposite is often true.
Recognition can be performed interactively by clinicians or automatically using
robust techniques, while the objective of segmentation is to precisely delineate
contours and surfaces. This can lead to effective techniques known as “intelligent
scissors” in 2D and their equivalent in 3D.

This chapter is divided as follows. Section3.1starts off with a more “philosoph-
ical” section setting the background for this study. We argue for a segmentation
context where high-level knowledge, object information, and segmentation method
are all separate.

In Sect.3.2, we survey in some detail a number of segmentation methods that
are well-suited to image analysis, in particular of medical images. We illustrate this,
make some comparisons and some recommendations.

In Sect.3.3, we introduce very recent methodsthat unify many popular discrete
segmentation methods and we introduce a new technique. In Sect.3.4, we give some
remarks about recent advances in seeded, globally optimal active contour methods
that are of interest for this study.

In Sect.3.5, we compare all presented methods qualitatively. We then conclude
and give some indications for future work.
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3.1 The Need for Seed-Driven Segmentation

Segmentation is a fundamental operation in computer vision and image analysis. It
consists of identifying regions of interests in images that are semantically consistent.
Practically, this may mean finding individual white blood cells amongst red blood
cells; identifying tumors in lungs; computing the 4D hyper-surface of a beating
heart, and so on.

Applications of segmentation methods are numerous. Being able to reliably and
readily characterize organs and objects allows practitioners to measure them, count
them and identify them. Many images analysis problems begin by a segmentation
step, and so this step conditions the quality of the end results. Speed and ease of use
are essential to clinical practice.

This has been known for quite some time, and sonumeroussegmentation
methods have been proposed in the literature [57]. However, segmentation is a
difficult problem. It usually requires high-level knowledge about the objects under
study. In fact, semantically consistent, high-quality segmentation, in general, is
a problem that is indistinguishable from strong Artificial Intelligence and has
probably no exact or even generally agreeable solution. In medical imaging, experts
often disagree amongst themselves on the placement of the 2D contours of normal
organs, not to mention lesions. In 3D, obtaining expert opinion is typically difficult,
and almost impossible if the object under study is thin, noisy and convoluted, such
as in the case of vascular systems. At any rate, segmentation is, even for humans, a
difficult, time-consuming and error-prone procedure.

3.1.1 Image Analysis and Computer Vision

Segmentation can be studied from many angles. In computer vision, the segmen-
tation task is often seen as a low-level operation, which consists of separating an
arbitrary scene into reasonably alike components (such as regions that are consistent
in terms of color, texture and so on). The task of grouping such component into
semantic objects is considered a different task altogether. In contrast, in image
analysis, segmentation is a high-level task that embeds high-level knowledge about
the object.

This methodological difference is due to the application field. In computer vision,
the objective of segmentation (and grouping) is to recognize objects in an arbitrary
scene, such as persons, walls, doors, sky, etc. This is obviously extremely difficult
for a computer, because of the generality of the context, although humans do
generally manage it quite well. In contrast, in image analysis, the task is often to
preciselydelineate some objects sought in a particular setting known in advance.
It might be for instance to find the contours of lungs in an X-ray photograph.
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The segmentation task in image analysis is still a difficult problem, but not to
the same extent as in the general vision case. In contrast to the vision case, experts
might agree that a lesion is present on a person’s skin, but may disagree on its exact
contours [45]. Here, the problem is that the boundary between normal skin and
lesion might be objectively difficult to specify. In addition, sometimes there does
exist an object with a definite physical contour (such as the inner volume of the
left ventricle of the heart). However, imaging modalities may be corrupted by noise
and partial volume effects to an extent that delineating the precise contours of this
physical object in an image is also objectively difficult.

3.1.2 Objects Are Semantically Consistent

However, in spite of these difficulty, we may assume that, up to some level of
ambiguity, an object (organ, lesion, etc) may still be specified somehow. This means
that semantically, an object possess some consistency. When we point at a particular
area on an image, we expect to be, againwith some fuzziness, either inside or
outside the object

This leads us to the realize that there must exist some mathematical indicator
function, that denotes whether we are inside or outside of the object with high
probability. This indicator function can be considered like a series of constraints, or
labels. They are sometimes calledseedsor markers, as they provide starting points
for segmentation procedures, and they mark where objects are and are not.

In addition, ametric that expresses the consistency of the object is likely to
exist. A gradient on this metric may therefore provide object contour information.
Contours may be weak in places where there is some uncertainty, but we assume
they are not weak everywhere (else we have an ambiguity problem, and our
segmentation cannot be precise). The metric may simply be the image intensity or
color, but it may express other information like consistency of texture for instance.
Even though this metric may contain many descriptive elements (as a vector of
descriptors for instance), we assume that we are still able to compute a gradient on
this metric [61].

This is the reason why many segmentation methods focus on contours, which
are essentially discontinuities in the metric. Those that focus on regions do so
by defining and utilizing some consistency metric, which is the same problem
expressed differently.

The next and final step for segmentation is the actual contour placement, which
is equivalent to object delineation. This step can be considered as an optimization
problem, and this is the step on which segmentation methods in the literature focus
the most. We will say more about this in Sect.3.2 listing some image segmentation
categories.
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3.1.3 A Separation of Powers

In summary, to achieve segmentation in the analysis framework, we need three
ingredients: (1) an indicator function that denotes whether we are inside or outside
of the object of interest; (2) a metric from which we may derive contour information,
and (3) an optimization method for placing the contour accurately.

To achieve accuracy, we need flexibility and robustness. Some have argued that
it is useful to treat these three steps separately. This was first described in [47])
as themorphologicalmethod, but is also called by othersinteractiveor seeded
segmentation [31]. In this context, this does not mean that user interaction is
required, only that object identification is provided by some means, and contour
extraction separately by asegmentation operator.

The first ingredient, the object identification, or our indicator function, is of
course essential and it is frustrating to be obliged to only write here “by some
means”. Accurate content identification can simplify the requirements on the
segmentation operator greatly. Unfortunately, the means in question for contents
identification are problem-dependent and sometimes difficult to publish, because
they are often seen asad hocand of limited interest beyond their immediate use in
the problem at hand. Fortunately, some journals accept such publications, such as the
Journal of Image Analysis and Stereologyand applications journals (e.g.Journal of
Microscopy, materials, etc). There are also a few recent books on the matter [23,52].
Software libraries are also important but not many are freely available for training,
although the situation is improving.

Also, whereas in computer vision a fully automated solution is required, in medi-
cal imaging a semi-automated method mightbe sufficient. In biomedical imaging, a
large number of objects are typically measured (such as cells, organelles, etc.), and
a fully automated method is often desirable. However, in medical imaging, typically
a relatively small number of patients is being monitored, treated or surveyed, and so
human-guided segmentation can be sufficient. The objective of the segmentation
method in this context is to provide reasonable contours quickly, which can be
adjusted easily by an operator.

In this variety of contexts, is it possible to define precisely the segmentation
problem? The answer is probably no, at this stage at least in image analysis research.
However, it is possible to provideformulationsof the problem. While this may
sound strange or even suspicious, the reason is that there exists a real need for
automated or semi-automated segmentation procedures for both image analysis and
computer vision, and so solutions have been proposed. They can still be explained,
compared and evaluated.

3.1.4 Desirable Properties of Seeded Segmentation Methods

We come to the first conclusion that to provide reliable and accurate results, we
must rely on a segmentation procedure and not just an operator. Object identification
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and constraints analysis will set us in good stead to achieve our results, but not all
segmentation operators are equivalent. We can list here some desirable properties of
interactive segmentation operators.

• It is useful if the operator can be expressed in an energy or cost optimization
formulation. It is then amenable to existing optimization methods, and this entails
a number of benefits. Lowering the cost or the energy of the formulation can be
done in several ways (e.g. continuous or discrete optimization), which results in
different characteristics and compromises, say between memory resources and
time. Optimization methods improve all the time through the work of researchers,
and so our formulations will benefit too.

• It is desirable if the optimization formulation can provide a solution that is at
least locally optimal, and if possible globally optimal, otherwise noise will almost
certainly corrupt the result.

• The operator should be fast, and provide guaranteed convergence, because it will
be most likely restarted several times, in order to adjust parameters. Together with
this requirement, the ability to segment many objects at once is also desirable,
otherwise the operator will need to be restarted as many time as there are objects
in the image. This may not be a big problem if objects do not overlap and if
bounding boxes can be drawn around them, because the operator can then be run
only within the bounding box, but this is not the general case.

• The operator should be bias-free: e.g. with respect to objects size or to the
discretization grid or with respect to initialization.

• The operator should be flexible: it is useful if it can be coupled with topology
information for instance, or with multi-scale information.

• It should be generic, not tied to particular data or image types.
• It should be easy to use. This in practice means possessing as few parameters as

possible. Of course one can view constraints setting as an enormous parameter
list, but this is the reason why we consider this step as separate.

Such a method certainly does not yet exist to our knowledge, although some
might be considered to come close. We describe some of them in the next section.

3.2 A Review of Segmentation Techniques

Here, we list and detail some segmentation categories that are compatible with the
image analysis viewpoint, although cannot hope to present a complete description
of this field.

3.2.1 Pixel Selection

Pixel selection is likely the oldest segmentation method. It consists of selecting
pixels solely based on their values and irrespective of their spatial neighborhood.
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The simplest pixel selection method is humble thresholding, where we select pixels
that have a gray-level value greater or smaller than some threshold value. This
particular method is of course very crude, but is used frequently nonetheless.
Multiple thresholding uses several values instead of a single value; color and multi-
spectral thresholding using vectors of values and not just scalars. By definition all
histogram-based methods for finding the parameters of the thresholding, including
those that optimize a metric to achieve this [54], are pixel selection methods.
Statistical methods (e.g. spectral classification methods) that include no spatial
regularization fall into this category as well. This is therefore a veritable plethora
of methods that we are including here, and research is still active in this domain.

Of course, thresholding and related methods are usually very fast and easily made
interactive, which is why they are still used so much. By properly pre-processing
noisy, unevenly illuminated images, or by other transforms, it is surprising how
many problems can be solved by interactive or automated thresholding. However,
this is of course not always the case, hence the need for more sophisticated methods.

3.2.2 Contour Tracking

It was realized early on that (1) human vision is sensitive to contours and (2) there
is a duality between simple closed contours and objects. A simple closed contour
(or surface) is one that is closed and does notself-intersect. By the Jordan theorem,
in the Euclidean space, any such contour orsurface delineates a single object of
finite extent. There are some classical difficulties with the Jordan theorem in the
discrete setting [52], but they can be solved by selecting proper object/background
connectivities, or by using a suitable graph,for instance, the 6-connected hexagonal
grid or the Khalimsky topology [22,40].

A contour can be defined locally (it is a frontier separating two objects (or
an object and its background in the binary case)), while an object usually cannot
(an object can have an arbitrary extent). A gradient (first derivative) or a Laplacian
(second derivative) operator can be used to define an object border in many cases,
and gradients are less sensitive to illumination conditions than pixel values. As a
result, contour detection through the use ofgradient or Laplacian operators became
popular, and eventually led to the Marr–Hildreth theory [44].

Given this, it is only natural that most segmentation method use contour
information directly in some ways, and we will revisit this shortly. Early methods
usedonlythis information to detect contours and then tried to combine them in some
way. By far the most popular and successful version of this approach is the Canny
edge detector [9]. In his classical paper, Canny proposed a closed-form optimal
1D edge detector assuming the presence of additive white Gaussian noise, and
successfully proposed a 2D extension involving edge tracking using non-maxima
suppression with hysteresis.
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One problem with this approach is that there is nooptimality condition in 2D,
no topology or connectivity constraints and no way to impose markers in the final
result. All we get is a series of contours, which may or may not be helpful. Finding
a suitable combination of detected contours (which can be incomplete) to define
objects is then a combinatorial problem of high complexity. Finally, this approach
extends even less to 3D.

Overall, in practical terms, these contour tracking methods have been superseded
by more recent methods and should not be used without good reasons. For instance,
more recent minimal-path methods can beapplied to contour tracking methods,
although they are much more sophisticated in principle [3, 14]. In this class of
methods belongs also the “intelligent scissors” types. There were many attempts in
previous decades to provide automated delineating tools in various image processing
software packages, but a useful contribution was provided relatively recently by
Mortensen [48]. This method is strictly interactive, in the sense that it is designed
for human interaction and feedback. “Intelligent scissor” methods are useful to
clinicians for providing ground truth data for instance. Such methods are still strictly
2D. As far as we know, no really satisfying 3D live-wire/intelligent scissor method is
in broad use today [5]. However, minimal surfaces methods, which we will describe
shortly in Sect.3.4.3, in some ways do perform this extension to nD [30].

3.2.3 Statistical Methods

The opposite approach to contour detection is to work on the objects, or regions
themselves. An early and intuitive approach has been to try to divide (thesplitting
step) an image into uniform regions, for example using a hierarchical representation
of an image in the form of quadtrees (in 2D) and octrees (in 3D). Uniformity
can be defined by statistical parameters and/or tests. Subsequently, amergingstep
considering neighboring and statistical region information is performed [36]. Initial
considered statistics were color and intensity, but other region descriptors can be
used as well, for instance including texture, motion and so on. In this approach,
even though regions statistics are used, they are inevitably derived at the pixel level.
The split and merge approach consists of acquiring all the statistics first and basing
a decision on them.

A different approach, which is also productive, consists of building amodel
first. One way is to consider an image as a 2D or 3D graph of pixels, to start
from a vast over-segmentation at the pixel level, and to evolve cliques of pixels
(e.g. sets of one, two or more pixels that are fully-connected, respectively called
unary, binary or higher-level cliques) to fit that model. This is theMarkov Random
Field (MRF) model, named in this way by comparison to classical one-dimensional
Markov chains, for which only immediate neighboring relationships matter. Models
that can be written using these cliques turnout to corresponds to energies featuring
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weighted finite sums with as many terms as there are different kinds of cliques.
In [26] Geman and Geman proposed to optimize these sums using Gibbs sampling (a
form of Monte-Carlo Markov Chain algorithm) and simulated annealing. This was
first used for image restoration, but can be readily applied to segmentation as well.
This approach was very successful becauseit is very flexible. Markers and texture
terms can be added in, and many algorithmic improvement were proposed over
the years. However, it remains a relatively costly and slow approach. Even though
Geman and Geman showed that their simulated annealing strategy converges, it only
does so under conditions that make the algorithm extremely slow, and so usually
only a non-converged or approximate result is used. More recently, it was realized
that Graph-Cut (GC) methods were well-suited to optimized some MRF energies
very efficiently. We will give more details in the corresponding section.

MRFs belong to the larger class of Bayesian methods. Information-theoretic
perspectives and formulations, such as following the Minimum Description Length
principle, also exist. These frameworks are also very flexible, allowing for example
region competition [69]. However, the corresponding models might be complicated
both to understand and run, and sometimes possess many parameters that are not
obvious to tune. Well-designed methods are guaranteed to converge to at least a
local minimum.

In general, when dealing with regions that have complex content (for instance,
textures, or multispectral content), statistical methods can be a very good choice
although they cannot be recommended for general work, since simpler and faster
methods often are sufficient.

3.2.4 Continuous Optimization Methods

In the late 1980s, it was realized that contour tracking methods were too limited for
practical use. Indeed, getting closed contours around objects were difficult to obtain
with contour tracking. This meant that detecting actual objects was difficult except
in the simplest cases.

3.2.4.1 Active Contours

Researchers, therefore, proposed to start from already-closed loops, and to make
them evolve in such a way that they would converge towards the true contours of
the image. Thus were introducedactive contours, or snakes[39]. The formulation
of snakes takes the following continuous-domain shape:

Esnake=
∫ 1

0
{Einternal(v(s))+Edata(v(s))+Econstraints(v(s))}ds. (3.1)

wherev(s) is a parametric representation of the contour.
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This model is very flexible. It contains internal terms, image data terms and
constraints terms (see Chapter 4 for more details):

• The first term, the internal energy, contains a curvature term and a “rubber band”
energy. The former tends to smooth the resulting contour following a thin plate,
while the latter tends to make it shrink around features of interest. Other terms
such as kinetic energy can be added too, which makes it possible for the snake to
avoid noisy zones and flat areas.

• The second term, the data energy, attracts the active contours towards points of
interest in the image: typically, image contours (zones of high gradient), lines or
termination points.

• The last term, the constraint term, is optional, but allows interaction with the
snake by defining zones of attraction and repulsion.

To solve this equation, the Euler–Lagrange of (3.1) is worked out (typically in
closed form), and a gradient descent algorithm is used. All the terms are combined
in a linear combination, allowing them tobe balanced according to the needs of the
user. Due to its flexibility, the active contour model was very popular in the literature
as well as in applications. It fits very well into the interactive segmentation paradigm
because constraints can be added very easily, and it can be quite fast because it uses a
so-called Lagrangian framework. The contouritself is discretized at regular interval
points and evolves according to (3.1). Convergence towards a local minimum of the
energy is guaranteed, but may require many iterations.

In practice, there are some difficulties: the snake energy is flexible but difficult
to tune. Because of the contour evolution,points along the contour tend to spread
out or bunch up, requiring regular and frequent resampling. There can also be
topological difficulties, for instance causingthe snake to self-intersect. The snake
is also sensitive to its parametrization and to initialization. Finally, even though a
local optimum is guaranteed, in practice, it may not be of good quality due to noise
sensitivity.

One major difficulty with snakes is that they can be extended to 3D via
triangulation, but such extensions can be complicated, and topological problems
plaguing snakes in 2D are usually more difficult to avoid in 3D. However, 3D active
surfaces are still widely used, because they make it easy to improve or regularize a
triangulated surface obtained by other means. For instance, the brain segmentation
software FreeSurfer includes such a method. To distinguish them from other models
we are going to introduce now, snake-like active contours or surfaces are sometimes
calledparametric deformable models.

3.2.4.2 Level Sets

One way to avoid altogether some of the problems brought about by the way
parametric deformable models are discretized, is to embed the contour into a higher-
dimensional manifold. This idea gave rise tolevel sets, proposed by Osher and
Sethian in 1988 [53]. Remarkably, this is around the same time when active contours
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a b

Fig. 3.1 Embedding and evolving a curve as a level set of a higher-dimension function. The zero-
level of functionψ is shown in color, representing a 2D contour. To evolve the contour, the whole
function evolves. Note that topology changes can occur in the contour, while the embedding surface
shows no such effect

were proposed. However level sets were initially proposed for computational fluid
dynamics and numerical simulations. They were applied to imaging somewhat
later [43, 62]. A contour is represented on the surfaceS of an evolving regular
functionψ by its zero level-set, which is simply the threshold of the functionψ at
zero. By using sufficiently regular embedding functionsψ, namely signed distance
transforms from an initial contour, it was possible to propose effective evolution
equations to solve similar problems to Lagrangian active contours.

The main advantages of the level-sets method were that contour resampling was
no longer necessary, and contourself-intersection (shock solutions) was avoided
because level sets were able to change topology easily (see Fig.3.1b). This means
practically that it was possible at least in theory to initialize a segmentation by draw-
ing a box around a series of object of interest, and the level set could find a contour
around each of them. This was seen as a major benefit by the vision community.
The level set Eulerian formulation (where the whole space is discretized) is thought
to offer better theoretical guarantees than the Lagrangian framework of previous
non-embedded formulations, and the simulation of function evolution is a well-
researched topic with many usable and interesting results. Finally, the formulation is
dimension independent. Level sets workvirtually unchanged in 3D or more, which
is a major benefit.

There are also a number of drawbacks. First, the level set formulation is more
expensive than earlier active contour formulations. It requires the iterative solving
of PDEs in the whole space, which is expensive. In practice, it is possible to limit
the computation in a narrow band around the contour, but this is still more costly
than if they were limited to the contour itself, and requires the resampling that
was sought to be avoided. The surfaceS of function ψ is implicitly represented
by the function itself, but it requires more space than the contour. In 3D or more,
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this may be prohibitive. Some contour motions are not representable (e.g. contour
rotation), but this is a minor problem. More importantly, the fact that level-sets can
undergo topology changes is actually a problem in image analysis, where it is useful
to know that a contour initialized somewhere will converge to a single simple closed
contour. In some cases, a contour can split or even disappear completely, leading to
undesirable results.

Nonetheless, level-set formulations are even more flexible than active contours,
and very complex energies solving equally complex problems have been proposed
in the literature. Solving problem involving texture, motion, competing surfaces
and so on is relatively easy to formulate in this context [55, 56]. For this reason,
they were and remain popular. Complex level-set formulation tend to be sensitive to
noise and can converge to a poor locally optimal solution. On the other hand, more
robust, closer to convex solutions can now be solved via other means. An example
of relatively simple PDE that can be solved by level sets is the following:

ψt +F|∇ψt | = 0, (3.2)

whereF is the so-called speed function. Malladi and Sethian proposed the following
for F :

F =
1− εκ

1+ |∇I |
+ β (∇ψ .∇|∇I |). (3.3)

The first part of the equation is a term driving the embedding functionψ
towards contours of the image with some regularity and smoothing controlled by
the curvatureκ . The amount of smoothing is controlled by the parameterε. The
second term is a “balloon” force that tends to expand the contour. It is expected that
the contour initially be placed inside the object of interest, and that this balloon force
should be reduced or eliminated after some iterations, controlled by the parameterβ .
We see here that even though this model is relatively simple for a level-set one, it
already has a few parameters that are not obvious to set or optimize.

3.2.4.3 Geodesic Active Contours

An interesting attempt to solve some of the problems posed by overly general
level sets was to go back and simplify the problem, arguing for consistency and a
geometric interpretation of the contour obtained. The result was the geodesic active
contour (GAC), proposed by Caselles et al. in 1997 [10]. The level set formulation
is the following:

ψt = |∇ψ |div

(

g(I)
∇ψ

|∇ψ|

)

. (3.4)

This equation is virtually parameter-free, with only ag function required. This
function is ametricand has a simple interpretation: it defines at pointx the cost of
a contour going throughx. This metric is expected to be positive definite, and in
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most cases is set to be a scalar functional with values inR+. In other words, the
GAC equation finds the solution of:

argminC

∫

C
g(s)ds, (3.5)

whereC is a closed contour or surface. This is the minimal closed path or minimal
closed surface problem, i.e. finding the closed contour (or surface) with minimum
weight defined byg. In addition to simplified understanding and improved consis-
tency, (3.4) has the required form for Weickert’s PDE operator splitting [28, 68],
allowed PDEs to be solved using separated semi-implicit schemes for improved
efficiency. These advances made GAC a reference method for segmentation, which
is now widely used and implemented in many software packages such as ITK.
The GAC is an important interactive segmentation method due to the importance
of initial contour placement, as with all level-sets methods. Constraints such as
forbidden or attracting zones can all be set through the control of functiong, which
has an easy interpretation.

As an example, to attract the GAC towards zones of actual image contours, we
could set

g≡
1

1+ |∇I |p
, (3.6)

With p = 1 or 2. We see that for this function,g is small (costs little) for zones
where the gradient is high. Many other functions, monotonically decreasing for
increasing values for∇I , can be used instead. One point to note, is that GAC has a
so-calledshrinking bias, due to the fact that the globally optimal solution for (3.5)
is simply the null contour (the energy is then zero). In practice, this can be avoided
with balloon forces but the model is again non-geometric. Because GAC can only
find a local optimum, this is not a serious problem, but this does mean that contours
are biased towards smaller solutions.

3.2.5 Graph-Based Methods

The solution to (3.5) proposed in the previous section was in fact inspired by
preexisting discrete solutions to the same problem. On computers, talking about
continuous-form solutions is a bit of a misnomer. Only the mathematical formula-
tion is continuous, the computations and thealgorithms are all necessarily discrete
to be computable. The idea behind discrete algorithm is to embrace this constraint
and embed the discrete nature of numerical images in the formulation itself.

3.2.5.1 Graph Cuts

We consider an image as a graphΓ (V ,E ) composed ofn verticesV andmedgesE .
For instance, a 2DN×N 4-connected square grid image will haven = N2 vertices
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andm = 2×N× (N− 1) edges.1 We assume that both the edges and the vertices
are weighted. The vertices will typically hold image pixel values and the edge
values relate to the gradient between their corresponding adjacent pixels, but this is
not necessary. We assume furthermore that a segmentation of the graph can be
represented as a graphpartition, i.e:

V =
⋃

Vi∈Γ

Vi ;∀i �= j,Vj ∩Vi = /0. (3.7)

ThenE⋆ is the set of edges that are such that their corresponding vertices are in
different partitions.

E⋆ = {e= {pi , p j} ∈ E, pi ∈Vi; p j ∈Vj , i �= j}. (3.8)

The setE⋆ is called thecut, and the cost of the cut is the sum of the edge weights
that belong to the cut:

C(E⋆) = ∑
e∈E⋆

we, (3.9)

where we is the weight of individual edgee. We assume these weights to be
positive. Reinterpreting these weights ascapacities, and specifying a set of vertices
as connected to asource sand a distinct set connected to asink t, the celebrated
1962 Ford and Fulkerson result [25] is the following:

Theorem 3.1. Let P be a path inΓ from s to t. A flow through that path is a quantity
which is constrained by the minimum capacity along the path. The edges with this
capacity are said to be saturated, i.e. the flow that goes through them is equal to
their capacity. For a finite graph, there exists a maximum flow that can go through
the whole graphΓ. This maximum flow saturates a set of edges Es. This set of edges
define a cut between s and t, and this cut has minimal weight.

This theorem is illustrated in Fig.3.2.
In 2D and ifΓ is planar, this duality essentially says that the Ford and Fulkerson

minimum cut can be interpreted as a shortest path in a suitable dual graph toΓ [2].
In arbitrary dimension, the maxflow – mincut duality allows us to compute discrete
minimal hypersurfaces by optimizing a discrete version of (3.4).

There exist many algorithms that can be used to compute the maximum flow in
a graph (also called network in this framework), but none with a linear complexity.
Augmenting paths algorithms [7] are effective in 2D where the number of vertices
is relatively high compared to the number of edges. In 3D and above, where the
reverse is true, push-relabel algorithms [27] are more efficient. These algorithms
can only be used when there is one source and one sink. The case where there are
multiple sources or sinks is known to be NP-hard. To compute energies comprising
several sources or sinks and leading to multi-label segmentation, approximations

1This particular computation is left as an exercise to the reader.
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Fig. 3.2 (a) A graph with edge weights interpreted as capacities, shown as varying diameters in
this case. (b) A maximum flow on this graph. We see that the saturated vertices (inblack) separate
s from t, and they form a cut of minimum weight

can be used, such asα-expansions. These can be used to formulate and optimize
complex discrete energies with MRF interpretations [8,66], but the solution is only
approximate. Under some conditions, the result is not necessarily a local minimum
of the energy, but can be guaranteed not to be too far from the globally optimal
energy (within a known factor, often 2).

In the last 10 years, GC methods have become extremely popular due to their
ability to solve a large number of problems in computer vision, particularly in
stereo-vision and image restoration. In image analysis, their ability to form a
globally optimal binary partition with a geometric interpretation is very useful.
However, GC do have some drawbacks. They are not easy to parallelize, they are
not very efficient in 3D, they have a so-calledshrinking bias, just as GAC and
continuous maxflow have as well. In addition, they have agrid bias, meaning
that they tend to find contours and surfacesthat follow the principal directions of
the underlying graph. This results in “blocky” artifacts, which may or may not be
problematic.

Due to their relationship with sources and sinks, which can be seen as internal
and external markers, as well as their ability to modify the weights in the graph to
select or exclude zones, GC are at least as interactive as the continuous methods of
previous sections.

3.2.5.2 Random Walkers

In order to correct some of the problems inherent to graph cuts, Grady introduced
the Random Walker (RW) in 2004 [29,32]. We set ourselves in the same framework
as in the Graph Cuts case with a weighted graph, but we consider from the start
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a multilabel problem, and, without loss of generality, we assume that the edge
weights are all normalized between 0 and 1. This way, they represent the probability
that a random particle may cross a particular edge to move from a vertex to a
neighboring one. Given a set of startingpoints on this graph for each label, the
algorithm considers the probability for a particle moving freely and randomly on
this weighted graph to reach any arbitraryunlabelled vertex in the graph before any
other coming from the other labels. A vector of probabilities, one for each label, is
therefore computed at each unlabeled vertex. The algorithm considers the computed
probabilities at each vertex and assigns the label of the highest probability to that
vertex.

Intuitively, if close to a label starting point the edge weights are close to 1, then its
corresponding “random walker” will indeed walk around freely, and the probability
to encounter it will be high. So the label is likely to spread unless some other labels
are nearby. Conversely, if somewhere edge weights are low, then the RW will have
trouble crossing these edges. To relate these observations to segmentation, let us
assume that edge weights are high within objects and low near edge boundaries.
Furthermore, suppose that a label starting point is set within an object of interest
while some other labels are set outside of it. In this situation, the RW is likely to
assign the same label to the entire objectand no further, because it spreads quickly
within the object but is essentially stopped a the boundary. Conversely, the RW
spreads the other labels outside the object, which are also stopped at the boundary.
Eventually, the whole image is labeled with the object of interest consistently
labeled with a single value.

This process is similar in some way to classical segmentation procedures like
seeded region growing [1], but has some interesting differentiating properties and
characteristics. First, even though the RW explanation sounds stochastic, in reality
the probability computations are deterministic. Indeed, there is a strong relationship
between random walks on discrete graphs and various physical interpretations. For
instance, if we equate an edge weight with an electrical resistance with the same
value, thereby forming a resistance lattice, and if we set a starting label at 1 V and
all the other labels to zero volt, then the probability of the RW to reach a particular
vertex will be the same as its voltage calculated by the classical Kirchhoff’s lawson
the resistance lattice [24]. The problem of computing these voltages or probability
is also the same as solving the discrete Dirichlet problem for the Laplace equation,
i.e. the equivalent of solving∇2ϕ = 0 in the continuous domain with some suitable
boundary conditions [38]. To solve the discrete version of this equation, discrete
calculus can be used [33], which in this case boils down to inverting the graph
Laplacian matrix. This is not too costly as it is large but very sparse. Typically
calculating the RW is less costly and more easily parallelizable than GC, as it
exploits the many advances realized in numerical analysis and linear algebra over
the past few decades.

The RW method has some interesting properties with respect to segmentation.
It is quite robust to noise and can cope well with weak boundaries (see Fig.3.3).
Remarkably, in spite of the RW being a purely discrete process, it exhibits no
grid bias. This is due to the fact that level lines of the resistance distance (i.e. the
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Fig. 3.3 An intuitive explanation of why the Random Walker copes well with weak boundaries.
We assuming constant, high probabilities everywhere on this graph, except wherethick vertical
linescross an edge, where the probabilities are low. A and B represent labels, and we estimate the
probability of a random walker in C to move to the left as opposed to all the other directions (north,
south, or east). We see that locally the probabilities are identical, but globally, there are many ways
for a random walker to come from B to the north,east or south position from C. However, there
is only one way to move to the west of C, and that is to go through C. Therefore, Random walker
probabilities must be high up to C, and then drop precipitously. Since the situation is symmetrical
with respect to A, it is likely that the region left of he thick lines will be labelled with A, and the
region right to it are going to be labelled with B. This is in spite of the fact that the boundary
defined by thethick vertical linesis weak and closer to A than B

resistance between a fixed node and all the others) in an infinite graph with constant
edge weights are asymptotically isotropic [21]. RW exhibit a shrinking bias but not
as strong as GC.

3.2.5.3 Watershed

While there are many variations on discrete segmentation methods, we will consider
one last method: the Watershed Transform (WT). It was introduced in 1979 by
Beucher and Lantu´ejoul [6] by analogy to the topography feature in geography. It
can be explained intuitively in the following manner: consider a gray-level image
to be a 3D topographical surface or terrain. A drop of water falling onto this
surface would follow a descending path towards a local minimum of the terrain.
The set of points, such that drops falling onto them would flow into the same
minimum, is called acatchment basin. The set of points that separate catchment
basins form thewatershed line. Finally, the transform that takes an image as input
and produces its set of watershed lines is called theWatershed Transform. To use
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Fig. 3.4 Watershed segmentation: (a) an MRI image of the heart, (b) its smoothed gradient, (c) the
gradient seen as a topographic surface, (d) Watershed of the gradient, and (e) topographical view
of the watershed

this transform in practical segmentation settings, we must reverse the point of view
somewhat. Assume now that labels are represented by lakes on this terrain and that
by some flooding process, the water level rises evenly. The set of points that are
such that waters from different lakes meet is also called the watershed line. Now
this watershed line is more constrained, because there are only as many lines as
necessary to separate all the lakes.

This intuitive presentation is useful but does not explain why the WT is useful for
segmentation. As the “terrain”, it is useful to consider the magnitude of the gradient
of the image. On this gradient image, interior objects will have values close to zero
and will be surrounded by zones of high values: the contours of the objects. They
can therefore be assimilated to catchment basins, and the WT can delineate them
well (see Fig.3.4).

The WT is a seeded segmentation method, and has many interesting interpreta-
tions. If we consider the image again as a graph as in the GC setting, then on this
graph the set of watershed lines from the WT form a graph cut. The edges of this
tree can be weighted with a functional derived from a gradient exactly as in the GC
case. Computing the WT can be performed in many efficient ways [46,67], but an
interesting one is to consider the Maximum Spanning Forest (MSF) algorithm [19].
In this algorithm, the classical graph algorithm for maximum spanning tree (MST)
is run on the graph of the image, following for instance Kruskal’s algorithm [41,59],
with the following difference: when anedge selected by the MST algorithm is
connected with a seed, then all verticesthat are connected with it become also
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labeled with this seed, and so on recursively. However, when an edge selected by the
MST algorithm would be connecting two different seeds, the connection is simply
not performed. It is easy to show that (1) eventually all edges of the graph are labeled
with this algorithm; (2) the set of edge that are left connected form a graph cut
separating all the seeds; and (3) the labels are connected to the seeds by subtrees.
The result is a MSF, and the set of unconnected edges form a watershed line. The
MSF algorithm can be run in quasi-linear time [20].

3.2.6 Generic Models for Segmentation

Even though seeded models are the focus of this chapter, we say here a few words
about generic models that are not seeded bydefault, because they contain powerful
ideas for the future of seeded models.

3.2.6.1 Continuous Models

Over the years, several now widely cited formulations of the segmentation problem
have been proposed, including for instance the Mumford–Shah functional [49] or
the Chan–Vese active contour without edges (AWE) [13]. They generally seek to
solve the segmentation problem in the vision setting, and can be used for image
restoration as well (denoising, inpainting, etc).

In particular, the Mumford–Shah functional is the following:

E(f,C) = β

∫

Ω
(f−g)2dA+ α

∫

Ω\C
|∇f|2dA+ γ

∫

C
ds. (3.10)

This formulation is very interesting because it has been an inspiration to many.
In this expression,g is the original image,f a piecewise smooth approximation ofg
andC a collection of contours wheref is discontinuous. In essence,C represents the
segmentation ofð andf is a restored (denoised, etc) model ofð. The first term in
(3.10) is a data fidelity term; the second is a total variation term (TV), and the last
optimizes an unweighted contour length.

Both MS and AWE initially were solved using level-sets methods, but more
recently convex methods have been used. The MS functional is NP-hard in general,
but convex relaxations are computable, and can be exact in the binary case. In
particular, the ROF model is convex, and correspond to the MS model without the
last term [12]. From the image analysis point of view, these models are not readily
usable, because they correspond to simplistic models of vision, and if markers or
shape constraints are added, they tend to dominate the model, which then does not
help very much.
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3.2.6.2 Hierarchical Models

Hierarchies of segmentations are a powerful way to deal with the multi-resolution
inherent to nature. Many images contain objects at different scales. In medical
imaging a vascular network is a typicalexample. It is very difficult to come up
with a seeded strategy to solve this case. One general idea is to perform many
segmentations at once or in sequence, taking into account various scales. This is
not as easy to do as it sounds, because simplyrepeating a segmentation procedure
with different parameters will not yield compatible segmentations, in the sense that
contours are not likely to remain stable as the scale increases or decreases. One way
of dealing with this is to offer a measure to the strength of a particular piece of
contour, and as the scale increase, remove pieces of contours with weak strength
first. Thissaliencyidea was proposed by Najman and Schmitt in [51] in the context
of watershed segmentation, but more work has been done on this idea since, for
example, on ultrametric watershed and connections [50, 63]. A saliency map or
ultrametric watershed is aninteractive segmentation because edge strength can be
selected by interactive thresholding for instance, but it is not always obvious how to
combine this with seeded segmentation.

Hierarchical methods do offer some other benefits, such as the ability to
efficiently optimize Mumford–Shah-like functionals on a saliency map [35]. Other
functionals are also possible, such as optimizing minimum ratio costs [34]. There are
some drawbacks as well, such as decreased speed and extra memory requirement,
and again the question of compatibility with other constraints. This is at present a
very interesting area of research.

3.2.6.3 Combinations

Many segmentation algorithms can be combined to provide different sets of
compromises or extensions. For instance, Yuille proposed an interesting model
combining Bayesian methods with level-sets [69]. An active area of research today
are so-calledturbopixels, where a first-level over-segmentation is performed in order
to group pixels into consistent regions of similar size. Then these regions are linked
in a graph and a discrete segmentation is performed over them [42]. This two-
level segmentation procedure has some advantages in terms of speed and resource
allocations. Final segmentation can stillbe precise if the first-order grouping is
done well, and these methods are compatible with seeded segmentation. However,
segmentation quality may be poor in the presence of weak edges [64].

3.3 A Unifying Framework for Discrete Seeded Segmentation

In many early segmentation methods, the focus was on the values of the pixels
themselves, or in graph terms the values of the vertices. Since the advent of GC
methods, it was realized that focusing instead on the edges was useful. In particular,
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defining a gradient function on the edges is easy. Letp andq be two vertices in
the graphΓ(V ,E ) of image I , that we have been using so far (see Sect.3.2.5),
then we can set as weightwp,q for the edge linkingp andq any value depending
on the discrete gradientIq− Ip, whereIq represents the value ofI at vertexq. For
instance, we can usewp,q = exp(−β |Iq− Ip|

2), with β a positive scalar parameter.
This is a monotonically decreasing function of the gradient, recommended by
several authors. In addition, there are topological advantages, as a cut in such a
graph obeys the Jordan property in arbitrary dimension. In addition, there is a
fundamental difference between regions, formed of uniformly labeled vertices, and
cuts formed of edges. In former pixel-based segmentation procedures, the contours
were themselves made of pixels, which created problems [19]. The only significant
drawback is that storing edge weights rather than pixels costs roughly twice as much
memory in 2D, or three times as much in 3D for the simplest nearest-neighbor
connectivity. This extra cost increaseswith the connectivity, and may be indeed
be a problem in some applications.

3.3.1 Discrete Optimization

Assuming then this simple model of discrete images, the segmentation problem can
be viewed as an optimization problem over cliques of one or two pixels, like in the
MRF setting. For instance, classical graph cut can optimize the following problem
exactly:

argminxE(x) = ∑
u∈V

wu|xu−yu|+ ∑
(u,v)∈E

wu,v|xu−xv|, (3.11)

in the case wherex is a binary vertex labeling,y a reference binary image that can,
for instance, represent seeds, andwu and wu,v positive unary weights and binary
weights respectively. The seeded segmentation case corresponds to an imagey
containing some vertices labelled with 0, others with 1 (the seeds) and unlabelled
ones as well. Thewu for the labelled vertices iny have infinite weights, and the
unlabeled one zero. Using the same notation, the Random Walker optimizes the
following energy:

argminx E(x) = ∑
u∈V

wu(xu−yu)
2 + ∑

(u,v)∈E

wu,v(xu−xv)
2. (3.12)

In this case, the optimal labellingx⋆ is not binary even ify is binary. It expresses
the probability of a vertex belonging to label 0 or label 1. To reach a unique solution,
we must threshold the result:

su = 0 if xu <
1
2
,su = 1 otherwise. (3.13)

In this case, the binary results represents the segmentation. There is a strik-
ing similarity between (3.11) and (3.12), which leads us to propose a unifying
framework.
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Table 3.1 Our generalized scheme for image segmentation includes several
popular segmentation algorithms as special cases of the parametersp andq.
The power watershed are previouslyunknown in theliterature, but may be
optimized efficiently with a MSF calculation

q
∖

p 0 Finite ∞
1 Collapse to seeds Graph cuts Power watershedq = 1
2 ℓ2 norm Voronoi Random walker Power watershedq = 2
∞ ℓ1 norm Voronoi ℓ1 norm Voronoi Shortest path forest

3.3.2 A Unifying Framework

We propose to optimize the following general discrete energy:

argminx E(x) = ∑
u∈V

wp
u|xu−yu|

q + ∑
(u,v)∈E

wp
u,v|xu−xv|

q, (3.14)

The p andq terms are integer exponents. In cases where the optimalx⋆ is not
binary, we threshold it in the end as in (3.13). An analysis of the influence ofp and
q provides us with Table3.1.

In this table, we find some well-known algorithms, such as previously mentioned
GR and RW, in addition to the Shortest Path Forests algorithm [20], that uses forests
of shortest path leading to seeds as segmentation criteria. Most of the other cases are
not interesting (Voronoi diagrams, for instance), but the caseq = 1 or 2 andp→ ∞
is novel and interesting: this is the Power Watershed algorithm [15].

3.3.3 Power Watershed

Among the drawbacks of traditional watershed as described in Sect.3.2.5.3are the
following: (1) watershed has no energy interpretation and is purely a segmentation
algorithm; (2) watershed segmentationsare not unique: for the same seed placement
and edge weights, the same definition can provide different results; (3) watershed
results tend to leak in the presence of weak boundaries. We intend to solve all three
problems.

An analysis of the convergence of (3.14) in the caseq = 1 or 2 andp→ ∞ led us
to the algorithm shown below.

This algorithm is illustrated in Fig.3.5. We also show some pictorial results in
Fig.3.6, where we compare qualitatively the results of PW with the other classical
discrete segmentation algorithms, namely GC, RW, SPF and the classical WT in the
form of a MSF.

More details on the Power Watershed algorithm can be found in [16]. We
show the PW algorithm performs very well in terms of quantitative results, that
qualitatively PW is devoid of size bias and grid artifacts, while being only slightly
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Algorithm: power watershed algorithm, optimizingp→ ∞,q≥ 1
Data: A weighted graphΓ(V ,E ) and a reference imagey containing seed

information
Result: A potential function x and a labelingsassociating a label to each

vertex.
Setx values as unknown except seed values.
Sort the edges ofE by decreasing order of weight.
while any node has an unknown potentialdo

Find an edge (or a plateau)EMAX in E of maximal weight; denote byS the
set of nodes connected byEMAX .
if S contains any nodes with known potentialthen

Find xS minimizing (3.14) (using the input value ofq) on the subsetS
with the weights inEMAX set towi j = 1, all other weights set towi j = 0
and the known values ofx within Sfixed to their known values.
Consider allxS values produced by this operation as known.

else
Merge all of the nodes inS into a single node, such that when the value
of x for this merged node becomes known, all merged nodes are
assigned the same value ofx and considered known.

Setsi = 1 if xi ≥
1
2 andsi = 0 otherwise.

a b c d e f

Fig. 3.5 Illustration of the different steps for Algorithm in the caseq = 2. The values on the
nodes correspond tox, their color tos. The bold edges represents edges belonging to a Maximum
Spanning Forest. (a) A weighted graph with two seeds, all maxima of the weight function are
seeded, (b) First step, the edges of maximum weight are added to the forest, (c) After several steps,
the next largest edge set belongs to a plateau connected to two labeled trees, (d) Minimize (3.14)
on the subset (considering the merged nodes as a unique node) withq = 2 (i.e., solution of the
Random Walker problem), (e) Another plateau connected to three labeled vertices is encountered,
and (f) Final solutionsx andsobtained after few more steps. Theq-cut, which is also an MSF cut,
is represented indashed lines

slower than standard watershed and much faster than either GC or RW, particularly
in 3D. The PW algorithm provides a unique unambiguous result, and an energy
interpretation for watershed, which allows it to be used in wider contexts as a solver,
for instance in filtering [17] and surface reconstruction. One chief advantage of PW
with respect with GC for instance, is its ability to compute a globally optimal result
in the presence of multiple labels. When segmenting multiple objects this can be
important.
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Fig. 3.6 Slides of a 3D lung segmentation. The foreground seed used for this image is a small
rectangle in one slice of each lung, and the background seed is the frame of the image (a) GC
(b) RW (c) SPF (d) MSF (e) PW

3.4 Globally Optimum Continuous Segmentation Methods

Here, we provide some arguments for globally optimal segmentation in the context
of continuous-domain optimization.

3.4.1 Dealing with Noise and Artifacts

Even assuming we can construct a contents metric as explained in the first section,
there are several sources of artifacts in segmentation: (1) weak edges cause
uncertainty in the result; (2) noise tends to corrupt boundaries, and for some methods
tend to lead to wrong results; (3) method artifacts, such as a size bias or blockiness
artifacts can cause undesirable results. Of course all these artifacts are linked and
essentially due to the contents metric, reflecting insufficient knowledge about the
content, but it is precisely to solve this problem that we require segmentation.

Weak edges are a fact of life in medical imaging. Most often in CT for example it
is difficult to delineate a lesion because it has a similar radiation absorption profile
to surrounding tissues. In this case, it is better to use methods that interpolate
contours and surfaces well. The GAC is very useful in this context because of its
geometric formulation and shortest path/minimal surface interpretation. In addition,
it is straightforward to add simple shape information, such as elliptical or spherical
shape priors.

Many iterative methods do not cope well with noise. One reason might be that the
formulation of the corresponding energy is not convex, which implies that it would
probably not have a single global optimum. This is unfortunately the case with
most active contours and level set formulations, including the classic formulation
of GACs. In addition, these methods make it easy to add terms to the energy and
make it look like it can be optimized. The reality is that in most cases, these methods
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get stuck into a poor quality local minimum. If models are complex, tweaking
their parameters is difficult and error-prone. This is the reason why most recent
segmentation models feature few parameters and tend to propose formulations that
can be optimized globally.

Finally, all segmentation methods present artifacts. Graph Cuts for instance tend
to both produce blocky results (grid bias) and favour small objects (shrinking bias).
They can be coped with by augmenting the connectivity of the graph and by metric
manipulation knowing the position of the seeds. However, it is preferable to use
formulations that are isotropic in nature, such as continuous-domain ones.

These are some of the reasons that motivate us to mention continuous, isotropic,
efficient formulations for finding the global solution to the GAC equation exactly.

3.4.2 Globally Optimal Geodesic Active Contour

In spite of advances in GAC optimization, more efficient ways of solving equa-
tion (3.5) do exist. In particular, in 2D, this equation can be solved by a continuous-
domain, non point-convexcircular shortest path [3]. The solution, called the globally
optimal geodesic active contour (GOGAC) is globally optimal and extremely
efficient [4], although it can only find a single contour at a time. The GOGAC
solution is as flexible as the original GAC, but due to its formulation and algorithm,
it is significantly less affected by noise.

This GOGAC has no shrinking bias and no grid bias, however, it tends to favor
circular boundaries due to its polar coordinate equivalence. This may be desirable
in some applications, but not in others. This can be avoided by using a different
weighting than the 1/r given in the original article. A flat weighting can be used if
small solutions are forbidden for instance.

3.4.3 Maximal Continuous Flows and Total Variation

The GOGAC solution is extremely efficient but does not extend to 3D and higher,
but in 2006, Appleton and Talbot proposed a continuous maximum flow (CMF)
solution to solve this problem. Their solution, inspired by local solutions for discrete
graph cuts, consists of simulating a flow originating from a sourcesand ending in a
sink t, and a pressure field, linked by a PDE system forming a propagation equation
and constrained by the metricg:

∂�F
∂ t

= −∇P

∂P
∂ t

= −div�F

‖�F‖ ≤ g. (3.15)
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This unusual system, at convergence, produces a scalar fieldP that acts as an
indicator function for the interior of the contourC of (3.5). It solves the closed
minimal surface problem exactly and efficiently, and so this represents a better
way to solve it than (3.4). The result in 2D is exactly the same as that obtained
with GOGAC. This CMF result provides a direct algorithm for solving the problem
posed by Iri and Strang in [37, 65]. Interestingly, researchers in image restoration
had proposed over the years solutions to Strang’s dual problem, that of minimizing
the total variation (TV) of a functional. Initial solutions used level-set formula-
tions [60], and later ones convex optimization methods [11, 58]. Nonetheless, it
is thought that primal maximum flow methods are better suited to segmentation
than TV formulations [18]. Note that CMF are also biased towards small contours,
and because they find a global optimum, this is a more serious problem than with
standard GAC. However, there exist ways to remove this shrinking bias for an
arbitrary collection of sources and sinks [2], and the bias is less strong in 3D and
can be ignored, as long as small solutions are forbidden, using for instance large
enough inner seeds. CMFs are about as fast as GC, but can be parallelized easily.

3.5 Comparison and Discussion

In the space of a single chapter it is notpossible to present a thorough, quantitative
assessment of the most popular segmentation methods. However, in Table3.2, we
present a qualitative comparison.

In this table, we have presented all the methods discussed in the chapter. A
score of 1 indicates a low, undesirable score and the highest score is 5. These
scores are potentially controversial and represent experience and opinion rather
than hard fact. We have ranked all methods according to some desirable features.
In the following discussion, we present robustness as the ability of a method to
cope with noise and weak edges. Flexibility denotes the ability of a method to be
used in different contexts: seeded or non-seeded segmentation, and the possibility
to optimize different models, for instance with texture.

Taking the methods in order, we see that (1) Pixel selection uses low resources
but is extremely simplistic; (2) Contour tracking has some speed and flexibility
advantages but is limited to 2D; (3) Split-and-merge methods generally have
high scores but are not robust and not flexible; (4) MRFs and Bayesian methods
optimized by simulated annealing feature a lot of flexibility but are very slow; (5)
Active contours are fast and flexible but not robust, they find only one object at
a time, and cannot be extended easily to 3D; (6) Level sets (LS) are similar in
some ways but are quite slow, require lots of resources and are not robust. They
do extend to 3D readily; (7) GAC are a particular case of LS methods, which are
popular in medical imaging because they are faster and more robust but less flexible.
However standard GAC is slow compared to many other methods and still not robust
enough; (8) Graph cuts are a very popular recent method, which feature relatively
high scores across the board, in particular they are among the most flexible and
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Table 3.2 A qualitative assessment of many popular segmentation methods. Seetext for details

High Low Multi- 3D and Multi-
Speed memory label Flexibility Robustness No bias more Parallelizable resolution score

Pixel selection 5 5 1 1 1 5 5 5 1 29
Contour tracking 5 5 1 4 3 4 1 1 2 26
Split and merge 4 4 5 2 2 3 4 3 5 32
MRF – SA 1 3 4 4 3 3 3 5 2 28
Active contours 4 4 1 5 2 2 2 2 2 24
Level sets 1 2 2 5 2 3 5 4 3 27
GAC 2 2 2 3 3 3 5 4 3 27
Graph cuts 2 3 2 4 5 2 4 2 3 27
Watershed 4 4 5 2 3 5 5 3 4 35
Random Walker 3 3 5 3 4 4 4 4 3 33
GOGAC 5 3 1 1 5 3 1 1 2 22
CMF 3 2 1 2 5 3 5 4 3 28
Power watershed 4 3 5 3 4 5 5 2 4 35
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Fig. 3.7 Segmentation of the lungs in a chest CT image. (a) The CT image. (b) Segmentation
using 3D standard Geodesic Active Contours. The surfaces fail to fill the base of the lung.
(c) Segmentation using a discrete maximal flow algorithm. Observe the directional bias due to
the grid. (d) Segmentation from identical input using continuous maximal flows

robust methods. However, they are slow, particularly in 3D, not parallelizable easily
and feature much bias; (9) Watershed isan old method but has definite advantages
for segmentation: it is fast, bias-free and multi-label (it can segment many objects
at once). However, it is not flexible or very robust. Watershed can be extended
readily for multi-resolution, and due to its age, many parallel implementations exist,
including hardware ones; (10) The Random Walker is a recent method which is
similar in some ways to Watershed, but is significantly more robust. It requires more
resources however.

Among the newer methods presented in this chapter, (11) GOGAC solves GAC
exactly and quickly in 2D, and so provides a quick robust solution, which is good for
2D interactive segmentation of single objects. However, is not flexible in its model;
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(12) CMF is probably among the most robust segmentation method in the literature
for 3D segmentation, but it segments only one object at a time, is not very flexible,
and has no grid bias but does feature a shrinking bias. Finally, (13) Power watershed
fits in between standard watershed and random walker. It is significantly more
flexible and robust than standard watershed. Its speed is also comparable, but it
uses more memory, and is less parallelizable.

The global score is probably even more subject to controversy than the individual
ones, but it would tend to show that active contour methods should not be tried
as a first choice method. For medical imaging, Random Walker and watershed-
based methods are probably a good first choice, particularly for ease of use. It is
comforting to realize that more modern methods suitable for 3D medical imaging
(GC, RW, PW and CMF) are all very robust.

Many advantages presented in the literature, such as purported sub-pixel accu-
racy of segmentation, are not listed here because they are an illusion. The reported
ability of some methods to control topology or on the contrary to allow it to change
is not necessarily a drawback or advantage either way, so we do not include it
as well.

3.6 Conclusion and Future Work

In conclusion, we argue that seeded or interactive segmentation is useful in medical
imaging. Compared with model-based segmentation, seeded segmentation is more
robust in actual image analysis applications, as opposed to computer vision. The
ability to separate seeds/markers, use contour information, and perform contour
optimization are very useful, as these elements generally result in a higher likelihood
of good results. From this point of view, we argue that segmentation is a process and
not merely an operator.

In general, the literature focuses on contour placement optimization at the
expense of the other two components, with some rare exceptions. This is unfor-
tunate but understandable with respect to seeds/markers, because they are highly
application dependent. The choice of methods for obtaining contour information is
also limited, and this is probably a good area for future research. One conclusion
of this study is that contour placement optimization methods are important. More
recent methods focus on optimization robustness, which is important. For someone
not yet experienced in medical segmentation, simpler, more robust methods should
be preferred over complex ones. Among those, power-watershed is a good candidate
because of its combination of speed, relative robustness, ability to cope with
multiple labels, absence of bias and availability (the code is easily available online).
The random walker is also a very good solution, but is not generally and freely
available.

We have not surveyed or compared methods that encompass shape constraints.
We recognize that this is important in some medical segmentation methods, but this
would require another study altogether.
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Finally, at present there exists a dichotomy between the way discrete and
continuous-domain work and are presented. In the near future, it is likely we will
see methods unifying both aspects to great advantage.
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