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We explore numerically the shear rheology of soft repulsive particles at large volume fraction.
The interplay between viscous dissipation and thermal motion results in multiple rheological regimes
encompassing Newtonian, shear-thinning and yield stress regimes near the ‘colloidal’ glass transition
when thermal fluctuations are important, crossing over to qualitatively similar regimes near the
‘jamming’ transition when dissipation dominates. In the crossover regime, glass and jamming sectors
coexist and give complex flow curves. Although glass and jamming limits are characterized by similar
macroscopic flow curves, we show that they occur over distinct time and stress scales and correspond
to distinct microscopic dynamics. We propose a simple rheological model describing the glass to
jamming crossover in the flow curves, and discuss the experimental implications of our results.

PACS numbers: 62.20.-x, 83.60.La, 83.80.Iz

The emergence of solidity in disordered assemblies
of repulsive particles is a well-known phenomenon [1]
which remains difficult to understand at a fundamental
level [2, 3]. When compressed, a colloidal suspension
undergoes a ‘glass transition’ from (metastable) thermal
equilibrium [4], as observed experimentally for a broad
spectrum of particle types [5]. For colloidal hard spheres
suspended in a solvent of viscosity ηs, the shear viscos-
ity, ηT , is a universal function of the packing fraction
ϕ, ηT /ηs = G(ϕ), independently of e.g. particle size [6].
Solidity also emerges far from equilibrium upon com-
pressing non-Brownian suspensions of repulsive particles
across the ‘jamming transition’, as in foams or granular
materials [3, 5]. The viscosity η0 of a non-Brownian hard
sphere suspension is again universal, η0/ηs = J(ϕ) [7].
Depending on the community and the particular system
at hand, rheologists use a broad variety of functional
forms and empirical models for G(ϕ) and J(ϕ), while
underlying physical processes for both limits are often
not distinguished in rheology textbooks [8]. Our aim is
to determine if and how these two ideal limits are interre-
lated, addressing also the non-linear rheological regimes
and the additional effects of particle size and softness.

Glass and jamming transitions share important sim-
ilarities, in particular at the rheological level. In both
cases, solidity emerges near a ‘critical’ volume fraction
below which the material is a fluid whose viscosity in-
creases rapidly with ϕ. The amorphous solid at large
density responds elastically for small deformation, but
flows when a stress larger than a yield stress is applied [1].
The dynamics becomes very heterogeneous near the criti-
cal density; its spatial correlations are usually interpreted
by appealing to underlying phase transitions [9], though
the nature of these remains a subject of debate [2, 3].
Based on these similarities, a unified jamming phase di-
agram has been proposed where thermal and athermal
systems appear as a single ‘jammed’ phase [10, 11].

At the theoretical level, recent results have clarified the

relation between glass and jammed phases [12–14], sug-
gesting that the jamming transition occurs well inside the
non-ergodic glassy phase. For systems of soft repulsive
particles, as studied below, a glass transition line TG(ϕ)
separates the fluid (at high T , low ϕ) from the glass
(at low T , large ϕ), while the jamming transition occurs
upon compression at T = 0 inside the glass phase [14].
However, these static calculations shed little light on ei-
ther dynamical properties or rheology [15]. Although this
theoretical scenario appears in broad agreement with nu-
merical work [11, 16], glass and jamming transitions are
typically located using different sets of methods and ob-
servables, normally requiring extrapolation [16]. Similar
ambiguities exist in experimental work where e.g. esti-
mates for the location of the colloidal glass transition
cover the range ϕG ≈ 0.57 . . .0.635, depending on how
the divergence of G(ϕ) is extrapolated [4, 6, 17]. In the
same vein, data for the divergence of J(ϕ) for athermal
suspensions lie in the range ϕJ ≈ 0.585 . . .0.66 [7, 16, 18].

In this paper, we argue that a clearer picture emerges
when the non-linear rheology of both thermal and ather-
mal suspensions is considered. We use computer simu-
lations to investigate the flow properties of concentrated
assemblies of soft repulsive particles, and vary the relative
strength of thermal fluctuations and viscous dissipation
to study the crossover from thermalized suspensions (rel-
evant to soft colloids) to purely athermal ones (relevant to
jammed solids) within a single computational framework.
This setting allows us to observe and disentangle multi-
ple rheological regimes within a single system, establish-
ing in particular unambiguously that the increases of the
shear viscosities ηT (ϕ) and η0(ϕ) upon compression are
unrelated. This has important consequences for the jam-
ming phase diagram of soft particles. Although glass and
jamming limits are characterized by similar macroscopic
flow curves, we also show that they in fact occur over
well-separated time and stress scales and correspond to
qualitatively different microscopic dynamics.
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We analyze theoretically the behaviour of sheared as-
semblies of soft repulsive particles immersed in a solvent,
such as star polymers, microgels, or dense emulsions [5].
The simplest way to model these systems at large pack-
ing fraction is to ignore hydrodynamic interactions and
consider only pairwise repulsion between particles, such
as V (r) = ǫ(1− r/a)αΘ(a− r), where Θ(x) is the Heavi-
side function, and a is the particle diameter [19]. We use
molecular dynamics simulations to study the steady state
rheology of harmonic spheres, α = 2, in a simple shear
flow. We simulate the following Langevin dynamics,

ξ

(

∂~ri
∂t

− γ̇yi~ex

)

= −
∑

j 6=i

∂V (|~ri − ~rj |)

∂~ri
+ ~fi(t), (1)

where ~ri and yi represent the position and the y-
coordinate of particle i, respectively, and ~ex is the
unit vector along the x-axis. The damping coeffi-
cient, ξ, which accounts for viscous dissipation, and
the random force ~fi describing thermal fluctuations
obey the fluctuation-dissipation relation, 〈~fi(t)~fj(t

′)T〉 =
2kBTξδij1δ(t− t′), where kB is Boltzmann’s constant.
The Langevin dynamics in Eq. (1) is characterized by

two microscopic timescales: τ0 = ξa2/ǫ controls the dis-
sipation, while τD = ξa2/(kBT ) = τ0ǫ/(kBT ) sets the
timescale for Brownian motion. Therefore, τD and τ0
are comparable at high temperatures but become well-
separated when kBT ≪ ǫ, with τD ≫ τ0. The shear
rate γ̇ introduces a third timescale, γ̇−1, from which the
Péclet number is defined, Pe = γ̇τD. Timescale separa-
tion at low T allows us to separately explore the ther-
mal regime at small γ̇, Pe ≪ 1, where Brownian mo-
tion is relevant, and the athermal regime at larger γ̇,
Pe ≫ 1, where the suspension is non-Brownian. In the
alternative SLLOD dynamics frequently used to shear
suspensions [20], inertia is included and the thermostat
is the only source of dissipation. Thus, the only acces-

sible regime is Pe < 1 (with now τD =
√

ma2

kBT ), and the

T → 0 limit is unphysical. By contrast, Eq. (1) can be
simulated at T = 0 (i.e., Pe = ∞), where the dynamics
becomes similar to earlier studies of the jamming transi-
tion [21]. Thus, Eq. (1) allows us to study thermal and
athermal systems under shear in a unified manner.
We study a 3d system of N = 103 harmonic spheres,

using a 50:50 mixture of spheres with diameter ratio 1.4
to avoid crystallisation [16, 21]. We measure length in
units of the small particle diameter, a, time in units of τ0
and temperature in units of ǫ/kB. We integrate Eq. (1) at
constant γ̇ using Heun’s method with Lees-Edwards pe-
riodic boundary conditions [20] over a typical simulation
time of at least 10/γ̇. We evaluate the xy-component of
the shear stress, σ, using the Irving-Kirkwood formula,
and deduce the shear viscosity, η = σ/γ̇. The stress and
viscosity units are respectively ǫ/a3 and ξ/a. For thermal
simulations at low temperatures, we combine data from
Langevin and SLLOD dynamics to broaden the range
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FIG. 1: Flow curves at different temperatures and densities,
shown as σ(γ̇) (left) or η(γ̇) (right). Diamonds (left) mark
the state points analyzed in Fig. 3. Circles (right) indicate
thermal (closed) and athermal (open) viscosities reported in
Fig. 2. Flow curves are shown in blue (dot-dashed) when
thermal Newtonian behaviour is observed, in red (dashed)
when thermal effects are negligible, in black otherwise.

of shear rates towards very low Péclet numbers, where
SLLOD is more efficient. We have checked that both
methods yield equivalent results at equal Pe values [31].
We first characterize the macroscopic flow properties

at T = 10−4. Since τD = 104, the data in Fig. 1a mainly
cover the thermal range, Pe < 1. Accordingly, the re-
sulting flow curves are typical of dense fluids sheared
across the glass transition [15, 22, 23]. Briefly, for den-
sities ϕ < ϕG ≈ 0.61, flow curves are Newtonian at low
shear rates, while for larger γ̇, the external flow acceler-
ates structural relaxation leading to shear-thinning. The
Newtonian viscosity, ηT (ϕ), increases rapidly upon com-
pression towards ϕG. Above ϕG, the linear viscosity is
too large to be measured, and the system behaves instead
as a solid (a glass) with a finite yield stress, defined as
σY = limγ̇→0 σ(γ̇). Both the shear viscosity ηT (ϕ) and
the yield stress σY (ϕ) can be used to locate the glass
transition, which corresponds to either the divergence of
ηT , or the emergence of a finite σY , see Fig. 2.
At significantly lower temperature, T = 10−6, the

above phenomenology persists as long as Pe < 1, which
now corresponds to very low shear rates, γ̇ < τ−1

D = 10−6

in Fig. 1b. Thus, we can determine a Newtonian viscosity
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FIG. 2: (a) Shear viscosities ηT and η0 and their distinct hard
sphere limits G(ϕ) [17] and J(ϕ) [21]. (b) Density dependence
of yield stress for different temperatures, including the T = 0
limit. (c) Same data as in (b) in a ‘glass-jamming phase
diagram’.

ηT (ϕ) for γ̇ → 0 and ϕ < ϕG ≈ 0.59, and a finite yield
stress above ϕG. Note that ϕG decreases slowly with de-
creasing T , see Ref. [16]. Because τD is very large, there
now exists a broad γ̇ window where Pe ≫ 1 and ther-
mal fluctuations play little role. Surprisingly, the data in
Fig. 1b show that for a range of densities above the glass
transition, 0.59 < ϕ < 0.63, the system flows as a simple
Newtonian fluid when Pe ≫ 1. This allows us to define
a second viscosity, η0, that grows upon compression to-
wards ϕJ ≈ 0.64. Finally, for ϕ > ϕJ , the flow curves
are mainly characterized by a yield stress, σY (ϕ). The
shear viscosities ηT (ϕ) and η0(ϕ) (Fig. 2a) obey clearly
distinct behaviours. While the growth of ηT reflects the
approach to the glass transition, ϕG ≈ 0.59, the increase
in η0 is separately controlled by the jamming transition,
ϕJ ≈ 0.64. Given that both viscosities are defined over
distinct density and shear rate regimes, and can be simul-
taneously observed at this temperature, it is clear that
they reflect distinct phenomena, even without extrapo-
lation to locate ϕG and ϕJ more precisely. Correspond-
ingly, the evolution of σY (ϕ) in Fig. 2b is influenced by
both transitions, since solidity emerges near ϕG, but σY

increases significantly near ϕJ > ϕG. This is consistent
with the idea that jamming mainly affects the very low
temperature properties of the glass phase [14].
Finally, the rheology at T = 0 corresponds to Pe = ∞,

and so the glass physics cannot operate. Despite this
complete change of regime, the corresponding flow curves
shown in Fig. 1c appear qualitatively very similar to the

ones obtained at T = 10−4 in Fig. 1a. They are charac-
terized by a Newtonian viscosity η0 at small γ̇ and low
density, ϕ < ϕJ ≈ 0.64, while a yield stress emerges upon
compression, ϕ > ϕJ . These data are fully equivalent
to previous rheological studies of the athermal jamming
transition [21], and indeed near that transition can be
collapsed using the same critical scaling. The qualitative
similarity between flow curves in Figs. 1a and 1c has cre-
ated confusion in the literature [15], where data obtained
for systems undergoing the glass transition have been in-
correctly analyzed in the athermal scenario of [21].

The shear viscosities ηT and η0 are measured over γ̇
windows that become well-separated at low T and Fig. 2a
emphasizes that the difference between the two functions
increases as T decreases, ruling out a smooth convergence
of ηT to η0 for T → 0. Instead, we find that as T → 0,
ηT (ϕ) follows the same density dependence as the equi-
librium relaxation time of the corresponding hard sphere
fluid [17], while η0 is well described by an algebraic diver-
gence [18]. Our results establish that the functions G(ϕ)
and J(ϕ) controlling Newtonian flow in the hard sphere
limit are conceptually and quantitatively distinct.

The yield stress is another highly sensitive indicator
of the differences between glass and jamming transitions,
see Fig. 2b. At finite T , solid behaviour emerges near
ϕG ≈ 0.59 . . .0.61, which agrees with equilibrium dynam-
ics studies [16]. The yield stress then increases smoothly
with ϕ up to ϕJ ≈ 0.64 where its density dependence
changes dramatically. Also, while σY scales with T be-
low ϕJ , it is of order unity (in our units of ǫ/a3) above,
with only a weak T -dependence scaling approximately as
∼ (ϕ − ϕJ). Consistent with this picture, more detailed
analysis shows that σY (ϕ, T ) follows scaling behaviour
near ϕJ very similar to the one derived in Ref. [24] for
the pressure [32]. Thus glass and jammed states, hav-
ing distinct physical origins, also display distinct stress
scales, and remain well-separated even as T → 0 in the
‘glass-jamming phase diagram’ shown in Fig. 2c. Note
also that while the glass transition occurs at finite T in
the unsheared system, the jamming transition exists at
T = 0 only, so that these two limits never coexist.

The complex flow curves shown in Fig. 1 can be mod-
elled by assuming that the stress is an additive combina-
tion, σ(γ̇) = σG + σJ + ηsγ̇, of contributions from glass
and jamming physics, and from the solvent. The sim-
plest model for the glass contribution incorporating the
appropriate time and stress scales is

σG

(kBT/a3)
=

Σ̃G(ϕ)

[1 + (γ̇τD)β ]−1 + [γ̇τD τ̃G(ϕ)]−1
, (2)

with the dimensionless stress Σ̃G(ϕ) = const. + (ϕ −
ϕG)

α(ϕJ − ϕ)−δΘ(ϕ− ϕG)Θ(ϕJ − ϕ), and a dimension-
less timescale, τ̃G(ϕ), diverging at ϕG, e.g. as τ̃G(ϕ) ∼
(ϕG − ϕ)−γ . In this model, the viscosity diverges at ϕG,
ηT /ηs ∝ τ̃G(ϕ) (with ηs = ξ/a), and a finite yield stress
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FIG. 3: Mean-square displacement at ϕ = 0.62 and γ̇ =
10−3

· · · 10−7 and different temperatures. Caged dynamics
(dashed) is only observed at finite T and Pe ≪ 1.

emerges above, σY (ϕ ≥ ϕG) = (kBT/a
3)Σ̃G(ϕ) which

diverges near ϕJ . For the jamming contribution, we use
a model consistent with the scaling discussed in [21],

σJ/(ǫ/a
3) = Σ̃J(ϕ) + [(γ̇τ0)

−β′

+ (γ̇τ0J(ϕ))
−1]−1, (3)

where we take Σ̃J(ϕ) ∼ (ϕ − ϕJ)
α′

Θ(ϕ − ϕJ ) and
J(ϕ) ∼ (ϕJ − ϕ)−γ′

. The entire set of data shown in
Fig. 1 can be reproduced nearly quantitatively using ex-
ponents consistent with existing results: α = 0.7 [25],
β = 0.3 [23], δ = 0.8 [24] γ = 2.2 [16], β′ = 0.4, α′ = 1.2
and γ′ = 2.0 [21]. Our empirical model, Eqs. (2, 3), em-
phasizes that glass and jamming physics take place over
distinct time and stress sectors, and can be addressed by
independent theoretical means. Differing predictions for,
e.g., whether the onset of yield stress [15, 26] is continu-
ous, as in theories of driven athermal systems [27, 28], or
discontinuous as for driven glasses [25] then make physi-
cal sense.
The distinct nature of thermal and athermal regimes

is apparent also in microscopic dynamic correlation func-
tions. We plot the mean-squared displacements, R2(t) =
〈|~ri(t)−~ri(0)|

2〉 in Fig. 3 for fixed ϕ = 0.62 and different
T and γ̇. In the glass regime, T = 10−4, R2(t) displays
short-time diffusion, caged dynamics at intermediate
times, and shear driven diffusion at long times [22, 23].
At T = 0, we obtain very different, superdiffusive and
diffusive, behaviours, as discussed in Ref. [29]. For in-
termediate temperature, T = 10−6, Fig. 3 shows a clear
crossover between thermal and athermal regimes: while
caged dynamics is observed for low Pe, superdiffusive
motion is obtained at large Pe. Therefore, the thermal-
athermal crossover observed in the macroscopic rheology
in Fig. 1 originates from a similar crossover at the micro-
scopic level. While macroscopic flow curves in Fig. 1a-c
can easily be confused, microscopic observations as in
Fig. 3 provide a clear qualitative distinction.
We have used temperature to study the crossover be-

tween two limits, while experimentalists might equiva-
lently tune particle softness. We note from Figs. 1a and
2b that for temperatures above T ∼ 10−5, correspond-
ing to thermal particle compressions (1 − r/a) ∼ T 1/2

of only 10−3 . . . 10−2, the T = 0 physics has little influ-

ence on the rheological behaviour. This suggests that the
jamming transition cannot be studied using soft colloids
unless T/ǫ is extremely small. A second relevant experi-
mental parameter is the particle size setting the timescale
for Brownian motion, with τD ∼ 1s for particles of 1µm.
This implies that the present thermal-athermal crossover
should be observable in experiments by tuning the parti-
cle size in the range 1-10µm. Yield stress data for emul-
sions [30] seem consistent with the data shown in Fig. 2b,
but further studies are needed to confirm our predictions.

In conclusion, we have used shear rheology to study
the relationship between glass and jamming transitions.
While both correspond to the emergence of solid be-
haviour as signalled by a finite yield stress, we have
demonstrated that they occur over stress and time win-
dows that become well-separated at low temperatures in
dense repulsive systems. The glass-jamming phase dia-
gram (Fig. 2c) has a scale-separated ‘wing’ between ϕG

and ϕJ , so that the glass transition line does not extrapo-
late to the jamming point for T → 0. The two transitions
can only be observed separately in these two distinct lim-
its, i.e. on the glass line and at the jamming point. Any
other state point in the phase diagram is in principle af-
fected by a combination of both phenomena, in a way
described by the simple theoretical model of Eqs. (2, 3).
This conceptual clarification should help rationalize both
experimental data and the scope of different theoretical
approaches.

We thank M. Pica Ciamarra for discussions, and
Région Languedoc-Roussillon for financial support (A.I.,
L.B.).
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